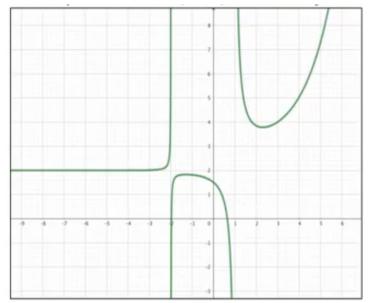
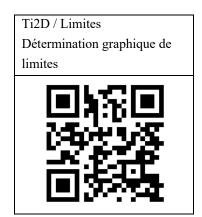
# Feuille d'exercices : Limites de fonctions

## **CONJECTURES SUR LES LIMITES**

#### **Exercice 1**: Détermination graphique de limites

On considère une fonction f définie sur  $]-\infty$ ;  $-2[\cup]-2$ ;  $1[\cup]1$ ;  $+\infty[$  et sa courbe représentative ci-dessous.



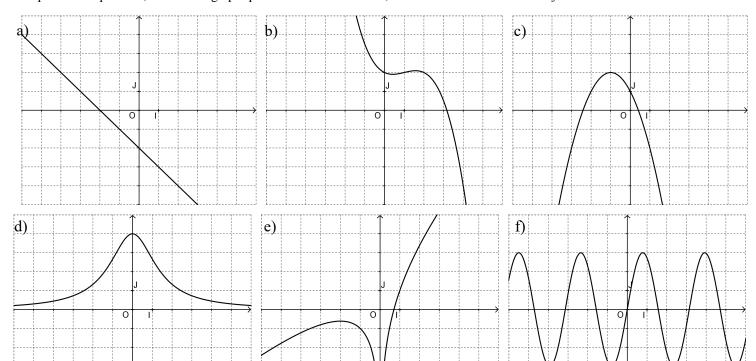


Déterminer graphiquement les limites aux bornes de son ensemble de définition (en  $-\infty$ , en  $+\infty$ , en -2 et en 1 à gauche et à droite.)

# Exercice 2:

Dans chacun des cas suivants, on donne la représentation graphique d'une fonction f.

Lorsque cela est possible, déterminer graphiquement la limite en  $-\infty$ , en  $+\infty$  et en 0 de la fonction f.



#### Exercice 3:

À l'aide d'une calculatrice, déterminer graphiquement les limites en  $-\infty$  et en  $+\infty$  des fonctions suivantes définies sur  $\mathbb R$  par :

1) 
$$f(x) = 3x + 2$$

2) 
$$g(x) = x - x^3$$

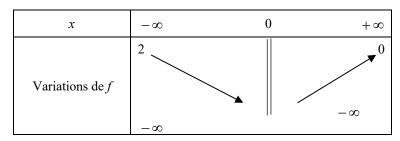
3) 
$$h(x) = -x^2 + 3x + 1$$

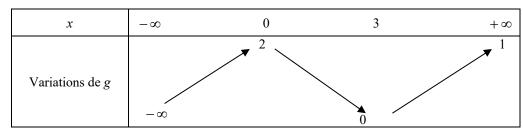
1) 
$$f(x) = 3x + 2$$
 2)  $g(x) = x - x^3$  3)  $h(x) = -x^2 + 3x + 1$  4)  $k(x) = 2 + \frac{1}{x^2 + 1}$ 

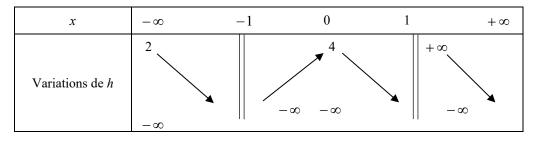
# Exercice 4:

Dans chacun des cas, on donne le tableau de variation d'une fonction f.

À l'aide de ce tableau, déterminer l'ensemble de définition et les limites de la fonction aux bornes de son ensemble de définition.





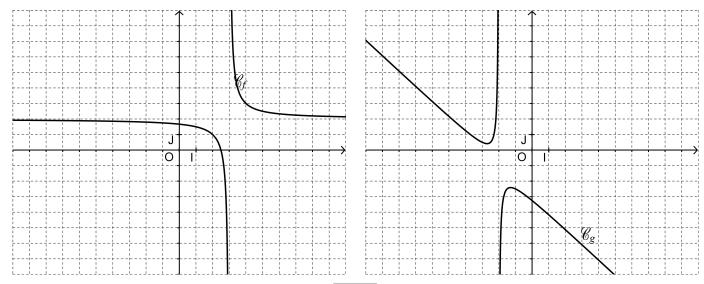


### Exercice 5:

On donne ci-dessous les représentations graphiques  $\mathscr{C}_f$  et  $\mathscr{C}_g$  des fonctions f et g.

В

Déterminer graphiquement l'ensemble de définition de chacune d'elles puis les limites aux bornes de leur ensemble de définition.



# Exercice 6 : Détermination d'asymptotes à partir de limites.

V

Que peut-on dire des limites suivantes concernant les asymptotes horizontales ou verticales ?

a) 
$$\lim_{x \to +\infty} f(x) = -3$$

c) 
$$\lim_{x \to \infty} g(x) = -\infty$$

b) 
$$\lim_{\substack{x \to 3 \\ x > 3}} f(x) = -\infty$$

c) 
$$\lim_{x \to +\infty} g(x) = -\infty$$
  
d)  $\lim_{x \to -\infty} g(x) = 0$ 

Ti2D / Limites Détermination d'asymptotes à partie des limites



### LIMITES DES FONCTIONS DE REFERENCE

Exercice 7:

V

Dans chacun des cas suivants, donner les limites aux bornes de l'ensemble sur lequel la fonction est définie :

1) f définie sur  $\mathbb{R}$  par :  $f(x) = x^7$ .

5) f définie sur  $]-\infty$ ; 0 [ par :  $f(x) = \frac{1}{x^5}$ .

2) f définie sur  $\mathbb{R}$  par :  $f(x) = x^{2012}$ .

6) f définie sur ] 0;  $+\infty$  [ par :  $f(x) = \frac{2}{x^2}$ .

3) f définie sur  $\mathbb{R}$  par :  $f(x) = 2x^{17}$ .

7) f définie sur ]  $-\infty$ ; 0 [ par :  $f(x) = -\frac{6}{x^3}$ .

4) f définie sur  $\mathbb{R}$  par :  $f(x) = -\frac{1}{3}x^4$ .

8) f définie sur ] 0;  $+\infty$  [ par :  $f(x) = -\frac{1}{3x}$ .

Exercice 8:

V

Dans chacun des cas suivants, donner les limites aux bornes de l'ensemble sur lequel la fonction est définie :

1) f définie sur ] 0;  $+\infty$  [ par :  $f(x) = 2 \ln x$ .

3) f définie sur ] 0;  $+\infty$  [ par :  $f(x) = \frac{1}{x+1}$ .

2) f définie sur  $[0; +\infty[$  par :  $f(x) = \sqrt{3x}$ .

4) f définie sur  $\mathbb{R}$  par :  $f(x) = \frac{x^2 + 1}{4}$ .

**OPERATIONS SUR LES LIMITES** 

Exercice 9 : opérations sur les limites

R

Déterminer les limites suivantes en détaillant et en justifiant les propriétés utilisées (somme, produit ou quotient) :

a)  $\lim_{x \to -\infty} x^3 + \frac{1}{x} + 2$ 

b)  $\lim_{x \to +\infty} \frac{1}{x} + \sqrt{x} - 2$ 

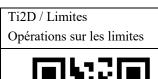
c)  $\lim_{x \to -\infty} (x^3 + 1) \left( \frac{1}{x} - 2 \right)$ 

 $d) \quad \lim_{x \to +\infty} \frac{-6 + \frac{1}{x}}{4x - 2}$ 

e)  $\lim_{\substack{x \to 2 \\ x > 2}} \frac{x^2 - 10}{x - 2}$ 

f)  $\lim_{\substack{x \to 3 \\ x > 3}} \frac{1}{x - 3}$ 

g)  $\lim_{\substack{x \to 3 \\ x < 3}} \frac{1}{x - 3}$ 





Exercice 10:

R

- 1) Rappeler les formes à retenir sur les limites de *ln*.
- 2) Déterminer les limites des fonctions suivantes sur leurs domaines de définition :

a)  $f_1(x) = \frac{3}{x} - x \ln x$  définie sur ]0;  $+\infty$ [.

b)  $f_2(x) = x^2 + \frac{x}{\ln x}$  définie sur  $]0; +\infty[$ .

c)  $f_3(x) = \ln(x) - x$  définie sur ]0;  $+\infty$ [.

## FORMES INDETERMINEES

### Exercice 11:

Dans chacun des cas suivants, déterminer les limites aux bornes de l'ensemble sur lequel la fonction est définie :

1) 
$$f$$
 définie sur  $[0; +\infty[$  par :  $f(x) = x\sqrt{x}$ .

5) 
$$f$$
 définie sur ] 0;  $+\infty$  [ par :  $f(x) = x^3 + \frac{1}{x^5}$ .

2) 
$$f$$
 définie sur  $[0; +\infty[$  par :  $f(x) = (1-2\sqrt{x})(1-3x)$ 

2) 
$$f$$
 définie sur  $[0; +\infty[$  par :  $f(x) = (1-2\sqrt{x})(1-3x)$ . 6)  $f$  définie sur  $[3; +\infty[$  par :  $f(x) = \frac{1}{-x+3}$ .

3) 
$$f$$
 définie sur  $\mathbb{R}$  par :  $f(x) = (7x+3)^2(5x+9)$ 

7) 
$$f$$
 définie sur ] -2; 2 [ par :  $f(x) = -\frac{3}{x^2 - 4}$ 

4) 
$$f$$
 définie sur ] 0;  $+\infty$ [ par :  $f(x) = (x+2) \ln x$ .

8) 
$$f$$
 définie sur ]  $-\infty$ ; 0 [ par :  $f(x) = 4 + \frac{3}{x}$ .

# Exercice 12:

Déterminer les limites en  $-\infty$ , en  $+\infty$  et en 1 des fonctions suivantes :

1) 
$$f(x) = -3x^2 + 4x + 1$$

4) 
$$f(x) = -6x^2 + 2x^3 + 1$$

7) 
$$f(x) = \frac{3x-5}{3+2x-x^2}$$

2) 
$$f(x) = -x^3 + x + 1$$

5) 
$$f(x) = \frac{-3x^2 + x + 2}{x^2 - x - 2}$$

8) 
$$f(x) = \frac{x^3 - 4x^5 + 2x - 1}{7x^5 + 4x^2 - 6}$$

3) 
$$f(x) = x^4 - 2x^3 + x - 1$$

6) 
$$f(x) = \frac{2x^2 - 7x + 12}{x - 2}$$

9) 
$$f(x) = \frac{4x+1}{1-4x^2}$$

# Exercice 13:

G

- 1)  $f_1$  est la fonction définie sur  $\mathbb{R}^*$  par  $f_1(x) = 2 + \frac{1}{x}$ . Déterminer la limite de  $f_1$  en 1, en -2 et en  $+\infty$ .
- 2)  $f_2$  est la fonction définie sur  $\mathbb{R}^*$  par  $f_2(x) = x^3 + \frac{1}{x}$ . Déterminer la limite de  $f_2$  en 3, en  $+\infty$  et en  $-\infty$ .
- 3)  $f_3$  est la fonction définie sur  $\mathbb{R}$  par  $f_3(x) = x^2 x^3$ . Déterminer la limite de  $f_3$  en  $-\infty$ .
- 4)  $f_4$  est la fonction définie sur  $\mathbb{R}^*$  par  $f_4(x) = x^3 \left(-2 + \frac{3}{x}\right)$ . Déterminer la limite de  $f_4$  en  $+\infty$  et en  $-\infty$ .
- 5)  $f_5$  est la fonction définie sur  $]-\infty$ ; 0 [ par  $f_5(x)=\frac{1+x}{x^3}$ . Déterminer la limite de  $f_5$  en 0.

- 6)  $f_6$  est la fonction définie sur ] 0;  $+\infty$  [ par  $f_6(x) = \frac{-1 + \frac{1}{x}}{x^2}$ . Déterminer la limite de  $f_6$  en  $+\infty$  et en 0.
- 7)  $f_7$  définie sur  $]\frac{1}{3}$ ;  $+\infty[$  par  $f_7(x) = \frac{x+1}{3x-1}$ . Déterminer la limite de  $f_7$  en  $\frac{1}{3}$ .
- 8)  $f_8$  définie sur  $]-\infty$ ; 3 [par  $f_8(x)=2x+1+\frac{1}{x-3}$ . Déterminer la limite de  $f_8$  en 3.

# **EXERCICES TYPE BAC:**

Exercice 14:

On considère la fonction f définie par  $f(x) = \frac{-3}{x^2 + x - 2}$ .

- a) Résoudre dans IR  $x^2 + x 2 = 0$ 
  - b) En déduire le domaine de définition de f.
- Etudier les limites de la fonction f aux bornes de son ensemble de définition.
- En déduire l'existence éventuelle d'asymptotes à la courbe représentative de la fonction f.

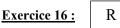
Exercice 15:

On considère la fonction f définie sur ]0;  $+\infty[$  par  $:f(x) = 2 - x + \ln x.$ 

Le plan est rapporté à un repère orthonormé (O; I, J) d'unités graphiques 4 cm.

On note  $\mathcal{C}_f$  la courbe représentative de la fonction f.

- 1) a) Étudier la limite de la fonction f en 0.
  - b) En déduire l'existence d'une asymptote à  $\mathcal{C}_f$  dont on précisera une équation.
- 2) a) Montrer que, pour tout  $x \in ]0; +\infty[: f(x) = x\left(\frac{2}{x} 1 + \frac{\ln x}{x}\right)]$ 
  - b) En déduire la limite de la fonction f en  $+\infty$ .
- 3) Déterminer la fonction dérivée de la fonction f.
- 4) Étudier les variations de la fonction f puis dresser son tableau de variations.
- 5) Déterminer une équation de T, la tangente à  $\mathscr{C}_f$  au point d'abscisse 2.

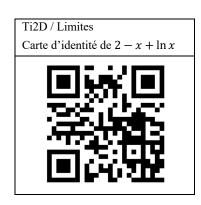


On considère la fonction f définie sur ]0;  $+\infty$  [ par :  $f(x) = \frac{2 \ln x}{x} + 3$ 

Le plan est rapporté à un repère orthonormé (O; I, J) d'unités graphiques 2 cm.

On note  $\mathscr{C}_f$  la courbe représentative de la fonction f.

- 1) a) Déterminer  $\lim_{x\to+\infty} f(x)$  et  $\lim_{\substack{x\to0\\x>0}} f(x)$ .
  - b) Que peut-on en déduire pour la courbe  $\mathscr{C}_f$ ?
- 2) Déterminer la fonction dérivée de la fonction f.
- 3) Étudier les variations de la fonction f puis, dresser son tableau de variations.
- 4) On considère la droite  $\mathcal{D}$  d'équation y = 3.
  - a) La courbe  $\mathscr{C}_f$  et la droite  $\mathscr{D}$  ont un point commun E, calculer les coordonnées de E.
  - b) Étudier la position relative de la courbe  $\mathscr{C}_f$  par rapport à la droite  $\mathscr{D}$ .
- 5) On admet l'existence d'un unique nombre réel  $\alpha$  tel que  $f(\alpha) = 0$ Déterminer à la calculatrice une valeur approchée de  $\alpha$  à  $10^{-1}$  près.



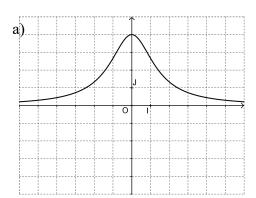
### POUR ALLER PLUS LOIN

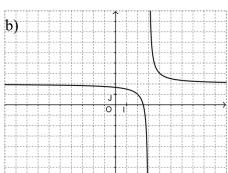
#### **ASYMPTOTES OBLIQUES:**

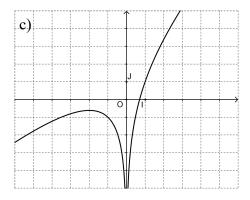
#### Exercice A:

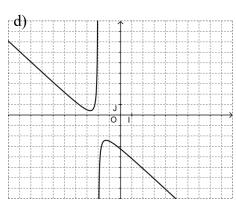
G

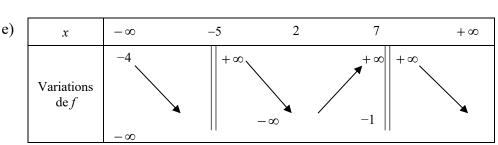
Dans chacun des cas suivants, on donne soit la courbe représentative, soit le tableau de variations d'une fonction f. La courbe représentative de la fonction f admet-elle des asymptotes ? Si oui, préciser leurs équations.











# Exercice B :

On considère la fonction f définie sur  $[3; +\infty[$  par  $f(x) = \frac{-6x^2 - x + 5}{3x + 2}$ . On note  $\mathscr{C}_f$  sa courbe représentative.

- 1) Déterminer la limite de la fonction f en  $+\infty$ .
- 2) Vérifier que pour tout *x* de [ 3 ;  $+\infty$  [  $f(x) = -2x + 1 + \frac{3}{3x+2}$ .
- 3) a) Démontrer que  $\mathcal{C}_f$  admet une asymptote oblique  $\Delta$  dont on précisera l'équation.
  - b) Étudier la position relative de  $\mathscr{C}_f$  par rapport à  $\Delta$ .

#### LIMITES DE FONCTIONS COMPOSEES:

## **Exercice C:**

N

On considère la fonction g définie sur ]  $-\infty$ ; -1 [ par  $g(x) = \frac{2x^2 - 1}{(x+1)^2}$ 

- 1) Montrer que la courbe représentative  $\mathscr{C}_g$  de la fonction g, admet une asymptote verticale D et une asymptote horizontale  $\Delta$  dont on précisera les équations.
- 2) a) Etudier le signe de  $g(x) 2 \operatorname{sur} ] \infty; -1 [.$ 
  - b) En déduire la position relative de  $\mathscr{C}_g$  par rapport à  $\Delta$ .

# Exercice D: N

On considère la fonction f la fonction définie sur ] 0;  $+\infty$  [ par  $f(x) = 3 - x - \frac{\ln x}{x}$ .

- 1) Étudier les limites de la fonction f aux bornes de son ensemble de définition.
- 2) Calculer  $\lim_{x\to +\infty} (f(x)-(3-x))$  Que peut-on en déduire pour la courbe représentative  $\mathscr{C}_f$  de la fonction f?
- 3) a) Déterminer le signe de f(x) (3 x) sur ] 0;  $+ \infty$  [?
  - b) En déduire la position relative de  $\mathscr{C}_f$  par rapport à son asymptote oblique.