28

PROGRAMACION MODULAR. DISENO DE
FUNCIONES: RECURSIVIDAD. LIBRERIAS.

Alahora de desarrollar un programa pueden plantearsenos preguntas del tipo: ssigue nuestro programa
una programacion en modulos? ;Tiene una estructura basica o es un caos? ;Estan los procedimientos y
funciones bien desarrollados? Nuestro objeto de estudio en este tema serd conocer cémo es una
programacién modular, su estructura basica y como deben ser las funciones y procedimientos de los
programas. Se presenta histéricamente como una evolucion de la programacion estructurada para
solucionar problemas de programacioén mas grandes y complejos de lo que ésta puede resolver.

N

Contenido

AMBITO DE DOCENCIA.
INTRODUCCION
PROGRAMACION MODULAR
31 TIPOS DE MODULOS
3.2 REFINAMIENTO Y MODULARIDAD
3.3 OCULTACION DE LA INFORMACION ... oereeeeereeeeesseseesseeseosesseesssssesssssasssssesesssesssssasssssasessesesssasssssessessesessssesssasssssaee
34 INDEPENDENCIA FUNCIONAL Y CALIDAD DEL SOFTWARE
3.5 ESTRUCTURA DEL PROGRAMA Y JERARQUIA DE CONTROLuuueveveeeeeeeeeeeeeesessesseeeesssssssseessssessssssesessssssssseees
DISENO DE FUNCIONES: «..oooreeeeeeeereeeeeseeeeesseeessseesssesesssssesssssessssssssssasssssaee
41 PROCEDIMIENTOS:.
4.2 FUNCIONES wooomeeeoreeeoreeeerseerenn

43 AMBITO DE IDENTIFICADOR:

RECURSIVIDAD «..cooeeeeeeeseeeeseeeeesssennn

51 TIPOS DE RECURSION: ..o,
5.2 ETAPAS DEL DISENO RECURSIVO.......
LIBRERIAS: oo eeeeeeeeeeeeeeeeeseeeesssssss s sseseeee
61 LASAPIS...
CONCLUSIONE .o eeeeeese s ses s st eessseesseassssasesseses s ss s ss s s s esseessaseseesessesessasessenesseees e ess e sssaessasessesessaeesseses nssssesesssasssaseses 12

Desarrollo del tema

1 AMBITO DE DOCENCIA.

¢ Sistemas informaticos monousuario y multiusuario (ASI 1).
e Sistemas informaticos multiusuario y en red (DAI 1).
e Sistemas operativos en entornos monousuario y multiusuario (ESI 1).

2 INTRODUCCION

La razon principal para utilizar un ordenador es para resolver problemas (en el sentido mas general de la palabra), o
en otras palabras, procesar informacién para obtener un resultado a partir de unos datos de entrada.

Durante la corta historia de los computadores, el modo de programar ha sufrido grandes cambios. La programacion
era en sus comienzos todo un arte (esencialmente cuestion de inspiracion); posteriormente diversas investigaciones
teoricas han dado lugar a una serie de principios generales que permiten conformar el nicleo de conocimientos de
una metodologfa de la programacién. Esta consiste en obtener “programas de calidad". Esto se puede valorar a través
de diferentes caracteristicas que se exponen a continuacién, no necesariamente en orden de importancia:

e La correccion del programa que, obviamente, es el criterio indispensable, en el sentido de que se desean
obtener programas correctos que resuelvan el(los) problema(s) para los que estan disefiados.

e Lacomprensibilidad, que incluye la legibilidad y la buena documentacion, caracteristicas que permiten una
mayor facilidad y comodidad en el mantenimiento de los programas.

e La eficiencia, que expresa los requerimientos de memoria y el tiempo de ejecucién del programa.

e La flexibilidad o capacidad de adaptacion del programa a variaciones del problema inicial, lo cual permite
la utilizacién del programa durante mayor tiempo.

e La“transportabilidad ", que es la posibilidad de usar el mismo programa sobre distintos sistemas sin realizar
cambios notables en su estructura.

Teniendo en cuenta que un programa, a lo largo de su vida, es escrito solo una vez, pero leido, analizado y modificado
muchas mas, cobra una gran importancia adquirir técnicas de disefio y desarrollo adecuadas, como la programacion
modular que se presenta a continuacién, para obtener programas con las caracteristicas mencionadas.

3 PROGRAMACION MODULAR

La programacion modular es la técnica de programacion basada en la filosofia del disefio descendente, que consiste en
dividir el problema original en diversos subproblemas (y estos a su vez en otros mds pequerios, obteniendo una
estructura jerdrquica o en drbol) que se pueden resolver por separado, para después recomponer los resultados y obtener
la solucidén al problema. Un subproblema se denomina modulo y es una parte del problema que se puede resolver de
manera independiente.

Un médulo es una coleccion estdtica de declaraciones definidas

en un dmbito de visibilidad particular y oculto al resto del Programa
Principal

programa con el que se comunica por una seccion de interfaz
donde se incluyen la lista de exportaciones. Usando moédulos

. ! 1
se construyen las unidades en que se ha de descomponer
cualquier programa minimamente importante. Los médulos Médulo 1 Médulo 2
se conectan entre si dando lugar a una estructura modular en
arbol que permite resolver el problema de programacion [1
planteado.

Modulo11 | Medulo21 | Medulo22 | Medulo 23

Un mddulo acttia como una caja negra con la cual el resto del

programa interactda a través de una seccioén de interfaz. La 1—‘—1 l
interfaz (o vista publica) es una coleccién de declaraciones de
constantes, tipos, variables, procedimientos, funciones, etc. La
otra seccion principal de un médulo es la implementacién (o

Méodulo 111 Madulo 112 Maodulo 221

TEMA 28. PROGRAMACION MODULAR. DISENO DE FUNCIONES: RECURSIVIDAD. LIBRERIAS.

vista privada) que incluye el cédigo de los procedimientos y demds elementos constitutivos de la parte ejecutable del
modulo.

Para efectuar un buen disefio modular los algoritmos que se van a desarrollar se han de concebir como una jerarquia
de mddulos intercomunicados donde cada uno de ellos presenta una funcién clara y diferenciada y en la que ningin
modulo accede directamente al interior de otros médulos sino que siempre utiliza los mecanismos de interfaz.

Ventajas:

e Facilita el disenio descendente

e Disminuye la complejidad del algoritmo

¢ Disminuye el tamaio total del programa

¢ Reusabilidad: ahorro de tiempo de programacion

e Divisién de la programacién entre un equipo de programadores reduccion del tiempo de desarrollo
e Facilidad en la depuraciéon: comprobacion individual de los médulos

e Programas mas faciles de modificar

e Estructuracién en librerias especificas (biblioteca de modulos)

Interfaz:

Un moédulo puede ofrecer a la "comunidad" de modulos sus propios recursos, tipos y procedimientos dentro de lo
que se conoce como seccion de interfaz del médulo. Normalmente es posible exportar cinco tipos de elementos:
constantes, tipos, variables, procedimientos y funciones.

La importacion y la exportacién constituyen acciones simétricas. Para que un mddulo pueda importar un tipo,
procedimiento u otro elemento es preciso que otro lo exporte. Por supuesto, es posible que el mismo mddulo se
comporte como exportador e importador.

EXporiacion/impor tacion
Lisl de sxportacionss L Ls 2 d& imporacionss
Inierfaz (cs., tipos y proc edi-
misnog axporiables)
Elementos no exporta-
bles

Modulo exportador M oduln mpartador

Implementacion:

Enla parte de implementacion se detallan las definiciones y el disefio de todos los elementos que el médulo contiene.
La implementacién puede incluir, asimismo, la lista de importaciones correspondiente a los elementos exteriores
utilizados por el médulo.

Como hemos visto, cuando se lleva a cabo un disefio por descomposicién modular, suele ocurrir que algunos
modulos hacen referencia a la interfaz de otros. Ello puede suceder cuando un moédulo usa un tipo declarado en
otro sitio o llama a un procedimiento o funcién que se han definido fuera del propio médulo.

Para servirse de un tipo o procedimiento ajeno a un modulo es obligatorio especificar el lugar donde se han definido
originalmente dichos elementos. Ademas, es conveniente que esa declaracién de objetos ajenos al mddulo pero
usados en ¢l, se lleve a cabo en una seccién bien diferenciada. Para tal fin se puede utilizar alguna versién de la
denominada lista de importaciones.

Cada lenguaje presenta sus peculiaridades, asi, en C, las importaciones se pueden incluir explicitamente declarando
los procedimientos y funciones en el mismo modulo o haciendo uso de un archivo de cabeceras con la sintaxis:
include "archivoDeExportaciones.h" donde archivoDeExportaciones corresponde al nombre del archivo concreto
que se utilice.

3.1 TIPOS DE MODULOS

Segun su funcion dentro del programa:

» Programa o modulo principal
= Moddulos o médulos secundarios

WWW.FPTOTAL.ES

Segun su uso:

= Funciones: devuelven un valor (evaluacion de la funcion)
» Procedimientos: realizan tareas pero no devuelven ningun valor directamente.

Segun los mecanismos de activacion:

= Invocados por referencia
» Invocados mediante interrupcién (en entornos de tiempo real)

Segun el camino de control (describe la forma en la que se ejecuta internamente):

= Moddulos convencionales: tienen una unica entrada y una unica salida y ejecutan secuencialmente una tarea
en cada momento.

= Mobdulos reentrantes: disefia de forma que de ninguna manera pueda modificarse a si mismo o a las
direcciones que referencia localmente. Asi, el moédulo puede ser usado para mas de una tarea
concurrentemente.

Dentro de una estructura de programa:

¢ Un modulo secuencial que se referencia y se ejecuta sin interrupciéon aparente por parte del software de la
aplicacion.

¢ Un moédulo incremental que puede ser interrumpido, antes de que termine, por el software de la aplicacién
y, posteriormente, restablecida su ejecucion en el punto en que se interrumpié. Este tipo de modulo se
suele denominar corrutina.

e Un mddulo paralelo que se ejecuta a la vez que otro moédulo, en entornos de multiprocesadores
concurrentes. Una denominacién utilizada para este tipo es conrrutina.

3.2 REFINAMIENTO Y MODULARIDAD

El refinamiento sucesivo

Propuesto por Niklaus Wirth en 1971, fue una de las primeras estrategias de disefio descendente. En ella, la
arquitectura de un programa se desarrolla en niveles sucesivos de refinamiento de los detalles procedimentales. Se
desarrolla una jerarquia descomponiendo una declaracién macroscépica de una funciéon de forma sucesiva, hasta
que se llega a las sentencias del lenguaje de programacion.

El refinamiento es, realmente, un proceso de elaboracién. Se comienza con una declaracién de la funcién (o una
descripcion de la informacién). Es decir, la declaracion describe la funcién o la informacién conceptualmente, pero
no proporciona informacién sobre el funcionamiento interno de la funcién o sobre la estructura interna de la
informacion. El refinamiento hace que el disefiador amplie la declaracion original, dando cada vez mas detalles
conforme se producen los sucesivos refinamientos (elaboraciones).

El concepto de modularidad

Se refiere al hecho de que el software se divida en componentes con nombres y ubicaciones determinados, que se
denominan "mddulos” y que se integran para satisfacer los requisitos del problema.

Para ilustrar este punto, consideremos la siguiente disquisicién, basada en observaciones sobre la resolucién
humana de problemas.

e Sea C(x) una funcién que define la complejidad de un problema x y E(x) una funcién que define el esfuerzo
(en tiempo) requerido para resolver un problema x. Para dos problemas, ply p2, si C(pl) > C(p2) se deduce

que E(pl) > E(p2)
Para un caso general, este resultado es intuitivamente obvio. Se tarda mas tiempo en resolver un problema dificil.

Se ha encontrado otra propiedad interesante, a partir de la experimentacién sobre la resolucién humana de
problemas, es la siguiente C(pl+p2) > C(p1) + C(p2) que indica que la complejidad de un problema compuesto por pl
y p2 es mayor que la complejidad total cuando se considera cada problema por separado. Se puede deducir que

E(pl+p2) > E(p1) + E(p2)
Esto indica que es mas facil resolver un problema complejo cuando se divide en trozos mas manejables. De la

desigualdad anterior se podria concluir que, si partiéramos el software indefinidamente, el esfuerzo requerido para
desarrollarlo seria insignificantemente pequefio. Sin embargo conforme crece el nimero de mddulos, el esfuerzo

TEMA 28. PROGRAMACION MODULAR. DISENO DE FUNCIONES: RECURSIVIDAD. LIBRERIAS.

(coste) asociado a los interfaces entre los médulos también crece. Por lo tanto, debe evitarse tanto la modularizacion
excesiva como que ésta quede pobre.

El disefio descendente o disefio de arriba abajo (Top Down)

Utiliza los conceptos de refinamiento y modularidad descritos anteriormente. Consiste en una serie de
descomposiciones sucesivas del problema inicial, que describen el refinamiento progresivo del conjunto de
instrucciones que van a formar parte del disefio.

La utilizacion de esta técnica de disefio tiene los siguientes objetivos basicos
* Simplificacién del problema y de los bloques resultantes de cada descomposicion.

* Las diferentes partes del problema pueden ser disefiadas/desarrolladas de modo independiente e incluso
por diferentes personas.

* FEl diseno final queda estructurado en forma de bloques o médulos, lo que hace mas sencilla su
implementacion y posterior mantenimiento.

La principal ventaja del disefio Top Down es que aminora la dificultad de resolucién y posterior mantenimiento de
los problemas de diseno. Como desventaja asociada tenemos que, a medida que se divide el problema en
subproblemas y el namero de modulos crece, se produce un incremento de los interfaces entre éstos con la
consiguiente complejidad asociada.

3.3 OCULTACION DE LA INFORMACION

El principio de ocultamiento de informacion Propuesto por Parnas sugiere que los modulos se han de "caracterizar
por decisiones de disefio que los oculten unos a otros". En otras palabras, los modulos deben especificarse y
disefarse de forma que la informacién (procedimientos y datos) contenida dentro de un modulo sea inaccesible a
otros modulos que no necesiten tal informacion.

El ocultamiento implica que para conseguir una modularidad efectiva hay que definir un conjunto de moédulos
independientes, que se comuniquen con los otros s6lo mediante la informacioén que sea necesaria para realizar la
funcion del software. La abstraccion ayuda a definir las entidades procedimentales (o de informacién) que componen
el software. El ocultamiento establece y refuerza las restricciones de acceso a los detalles procedimentales internos
de un modulo y a cualquier estructura de datos localmente utilizada en el médulo.

El uso del ocultamiento de informacién como criterio de disefio para los sistemas modulares, revela sus mayores
beneficios cuando se hace necesario realizar modificaciones, durante la prueba y, més adelante, el mantenimiento
del software. Debido a que la mayoria de los datos y de los procedimientos estaran ocultos a otras partes del
software, sera menos probable que los errores introducidos inadvertidamente durante la modificacién se propaguen
a otros lugares del software.

3.4 INDEPENDENCIA FUNCIONAL Y CALIDAD DEL SOFTWARE

El concepto de independencia funcional es una derivacién directa del de modularidad y de los conceptos de
abstraccion y ocultamiento de informacion.

La independencia funcional se adquiere desarrollando médulos con "una clara" funcién y una "aversion" a una
excesiva interaccion con otros modulos. Dicho de otra forma, se trata de disefiar software de forma que cada médulo
se centre en una subfuncion especifica de los requisitos y tenga una interfaz sencilla, cuando se ve desde otras
partes de la estructura del software.

Es importante la independencia funcional en el desarrollo de aplicaciones informaticas porque el software con
modularidad efectiva, es decir, con moédulos independientes, es facil de desarrollar porque su funcién puede ser
partida y se simplifican los interfaces (considérense las implicaciones cuando el desarrollo es realizado por un
equipo). Los modulos independientes son mas faciles de mantener (y de probar) debido a que se limitan los efectos
secundarios producidos por las modificaciones en el disefio/codigo, se reduce la propagacién de errores y se
fomenta la reutilizacién de los modulos. Resumiendo, la independencia funcional es la clave de un buen disefio y el
disefo es la clave de la calidad del software.

La independencia se mide con dos criterios cualitativos: la cohesion y el acoplamiento. La cohesién es una medida
de la fortaleza funcional relativa de un modulo. El acoplamiento es una medida de la interdependencia relativa entre
los modulos.

WWW.FPTOTAL.ES

Cohesioén:

Mide el grado de conexion funcional entre los elementos (instrucciones, definicion de datos, llamadas a médulos) de un
mismo moédulo. Cuanto mas fuerte sea la cohesion mejor serd el mantenimiento del médulo.

coincidene ogca temporal procedimen- de comunica- secuencial funcional
tal cion
dizperzo _ MOnoDroposito
Cahesia

Los elemenios del modulo reallzan aclividades dferentes que puede que no esién
relacionadas. el flujo de control fluye de una acihvidad a I3 siguients (cada una se ajecula a
continuacion ge 1a ofra).

|

[Imgporta el orden pero no se pasan catos|

Bacw Pasisie
Lot onrmnc
Cuaw Cunarade

Cobesidn Euncianal

Un medulo tiens Conesion Funcional 8l 5Us elementos contriouyen 3 realizar una sola £ Cohesion Temporal,
ey mmmmmmmnmwﬁnammmmwuﬂqwulm&
acabo. Nomalments esios elementos pertenecen a dferentes funcions

Ejemplos: Cakular Raiz Cuadrada. | Su nombre indica claramente su funcién

Caleular coseno angule [ree——
Compine
| Importa el orden. s& pasan datos. y hacen una unica funccn | ?§l o
e - 3 [No imgorta & orden y no comparten datos]
& Cohesinn Sscnencial prese—
shev Vo
UR Mauls comtiene Semanios que #slan envaelos & laeas, 0onoe 13 salkds 02 una S T—
1area srve de entrada a |a sigulenie. (IMPona el orden 0e (a6 tareas).
T EEY
3"‘ Los slementos de un MAUG realzan actvidades de la misma categoria ral,
l #5138 actividades a ejecutar s seleccionan desoe fuera del modulo. —
Loe sirue Modulo que realiza fres tareat o2 forma secuanclal - 3—-3 e
Cabcule comdnde L e Tren
¥ e & -ﬂi s
b [E= seleccona una actividad |
Cbene bilwiw
[’mporta el orden, se pasan datos. y NO hacen una tnica funcdn Bl
Cohesidn C jonal Cohesidn C :
Sl un mOduio compante pane del Interaz (compante 0% datos 08 entrada yio salda), ¥ Los clemenios de los modulcs realizan actwvidades dPerenies, s relaciones
N IMporta & onden en &l gue 52 Feallcen |as tarsas HTCHIvES enlre 2135,
gum
el ®] - T By ey we
. 3 — ? 3-—“- 3 [epr——
Prasamo Noi & oroen._com interfaz f
CEmwray
1 mmr

Acoplamiento:

Es el grado de interdependencia entre los mddulos de un sistema. Este criterio debe minimizarse, con ello se logra
atenuar el ruido del sistema (los errores de un modulo no se propagan a otros) y se realiza el mantenimiento sin mirar
en el interior de otros médulos.

sin acopla- de datps de marca de conkral externo normal de confenido
menb

=

TEMA 28. PROGRAMACION MODULAR. DISENO DE FUNCIONES: RECURSIVIDAD. LIBRERIAS.

AC00@TVENTO NOT.

FfOrMacion que & Imercamoan

1-Amvecs alB
2.- B realiza su funcsdn netomando el control 3 A,
3 - Toda informacion que comparten o 5& pasan,

Aceplismente (Weemal) poe Datos.
05 datoe que 52 Infercamblan son elementales.

W E

ndingQcion, ya qUE B¢ OR0e CONBURIT §U ESITUCTIM &N Jigin BE0)

a oo caloe con |a Imlencian de controlar S logica Intemna.

&5 por medio de los parametros presentes en la llamada.

La diferencia eniré ios Irés Tpos de acoplamienio normal radica &n & Bpo de

Dos maduios A v B estan acoplados normalmente 5 82 cumpien |28 cordiciones:

[a]
(=]

Do méoulos A y B estan acopiados por dalos & estan scopiados normalments y todos

Dos modules A y B acoplades nomalments eskan acoplados por esiampads sl uno e
Pasa a oiro datos compuesios 0omo veclones y regsiros. (LOS Oal0s COMPUESIOS provocan

Dos Moouios A y B Ac0pados normaiments eslan A0OPIAI0S Par SoNral 5| UG k& pasa

Ejemplos Acoplamients Normal:
Producs Toags de il Fog 0w fwmmain
Facosa Acadrez g [RE PR —
B e s
Trm i i
A e A
Muﬁ' FRES o cprwm ok e
- awat Mmaw
i o me Fag =»
Sy O spt
ntn Taineg Tagreary
e Tempmacs dn.
Cabihr Eazar Canieol
f.";:' Momtmare Sastarra B3

Acoplir st por Dager Pur

Ertampads
L nenpmrtes. b arewphen [P ————

Poi Casaral

w ek cstiecde e sasaded G
]

A un moduio &e le debe enviar dnicaments & Infarmacion que neceslie. Sintoma ge
una Mala organizacion o2 loe Moduios 26 |a presencia de datos vagal o8 datos que viajan
por gran parts g2l D.E. &in ser ullizados por i mayoria oe los médulas por i0s que pasan

Acgplamany Comin (o giobai]

mmm.ﬂ)ﬁeﬁ‘al‘ amplauusgionmslsemﬁmaunanﬂmamm
datos o varavle giaoal

L35 variabies giobales no 50N aconse|abies pamjue:
« L emmar en Ln moou pusds apareser &n olro que compans |3 varable

& E5dfich saber que maouio moafica ios datos
= Poca reutiizacion o maouos y dfich mantenimiento.

Drdenar

s | =
*C'Dz I é@ il

Zona oe Datos
Global

e < qu

A T comangn

Do& moouios estan acoplados por contenido sl uno &2 reflere al Imterior de olro o0& una
o2 136 siguientes mansras: ModNcanda ¢ IBYENN0 SUB 0310S Infermnos o saitando al nterior de
SU coaQo (GOTO).

» Comparacion de los distintos tpos de Acoplamiento.

Tipo de Acoplamienio | Modificabikidad Legibiidad Reusabilidad Moduos
IE’W Datos 2uena Buena Buena

Per Es Jusna Media Nedia

Por Conol “obre Pobre Fobre

Clobal Meza Masz Pohbre

Contedo Mala Maa Ma'a

Vision pesimista: Dos mddulos pusden presentar varios tipos de mplamlurctu
&n ssfe caso ee coneldera que tlenen &l peor de los lantos que pr

3.5 ESTRUCTURA DEL PROGRAMA Y JERARQUIA DE CONTROL

La jerarquia de control, también denominada estructura del programa, representa la organizacion (frecuentemente
jerarquica) de los componentes del programa (mddulos) e implica una jerarquia de control. No representa pues,
aspectos procedimentales del software, tales como la secuencia de procesos, la ocurrencia u orden de decisiones o

la repeticion de operaciones.

Para representar la jerarquia de control se utilizan muchas notaciones diferentes. La mas comun es un diagrama en
forma de arbol denominado diagrama de estructura.

El grado de salida (fan out) es una
medida del numero de mddulos que
estdn directamente controlados por
otros modulos.

El grado de entrada (fan in) indica
cudntos modulos controlan directa-
mente a un modulo dado.

Las relaciones de control entre los
modulos se expresan de la siguiente
forma: un médulo que controla a otro
modulo se dice que es superior a él, e
inversamente, un médulo controlado
por otro se dice que es un
subordinado del controlador.

Fanmder

La jerarquia de control también representa dos caracteristicas, sutilmente diferentes, de la arquitectura del

software: la visibilidad y la conectividad.

o La visibilidad (scope) indica el conjunto de componentes del programa a los que un modulo dado
puede invocar o utilizar sus datos, incluso cuando lo haga indirectamente. Se trata pues de un
concepto relacionado en parte con la ocultacién de la informacién. Asi, un dato es visible por un
modulo dado cuando desde éste se puede usar o variar su valor y, un médulo es visible desde otro,

cuando este ultimo puede invocar la ejecucién de aquél.

WWW.FPTOTAL.ES

o La conectividad indica el conjunto de componentes a los que directamente se invoca o de los que se
utilizan sus datos en un determinado modulo. Por ejemplo, un médulo que en un momento dado
provoca la ejecucion de otro modulo, estd conectado a ése ultimo.

Podemos concluir diciendo que la visibilidad es pues una medida de la conectividad potencial de
un programa y que cuanto mayores sean estas magnitudes menor es el nivel de ocultamiento de la
informacion y por tanto mas elevadas las posibilidades de que aparezcan los molestos efectos
laterales.

4 DISENO DE FUNCIONES:

Uno de los componentes que los lenguajes estructurados incorporan son un tipo de secuencias algoritmicas
individualizadas que pueden recibir o no valores de entrada y que también pueden devolver o no valores de salida.

Se trataria de sustituir todo un conjunto de instrucciones que puede incluir cualquier combinaciéon de las
denominadas estructuras basicas (secuencial, condicional, iterativa) por un identificador que puede incorporar la
declaracién de valores. Posteriormente, en cualquier lugar del programa se podrd invocar al conjunto de
instrucciones nominado utilizando el identificador. Tras la ejecucion, y segtn el tipo de estructura utilizada, se
pueden obtener resultados devueltos.

4.1 PROCEDIMIENTOS:

Sirven para definir partes de un programa mediante la asociaciéon de un Proirama Subrutina
identificador. Posteriormente dichas partes se pueden activar utilizando sentencias -

. . .~ < Inimoﬁh\
de llamada. Un procedimiento es pues un algoritmo disefiado de tal modo que es 1y Y —
susceptible de ser llamado por otros algoritmos que, a su vez, pueden ser ! *d //// ’—¢—‘
procedimientos e |

|

La llamada a un procedimiento se realiza escribiendo su nombre seguido de las i‘\\
expresiones sobre las que deseemos que trabaje. Estas van encerradas entre . v
paréntesis y en el orden en que han sido especificadas en el procedimiento llamado. ¢ (2) \C'_p.nm B D)
Pardmetros
Los parametros son tanto las variables usadas en la definicién del .

Lo e Programa Principal Subprograma
procedimiento como los valores utilizados en la llamada. A los | Parimetros
primeros se los denomina parametros formales y a los segundos X | Y formales
parametros reales. Los parametros reales, segtn los casos, pueden v 1) 3
ser constantes, variables definidas en el ambito del procedimiento Inicio 41
llamante o expresiones (mezcla de constantes, variables y v |
operadores). '

I— L l 3 Z=XsY
La lista de parametros formales {pfl, pf2,..., pfn} y la de parametros .]
. . arametros
reales.de cqalquler llama@a‘ al mismo {prl, pr2,.., prm} deben reales l'\ A Bl |
cumplir las siguientes condiciones: ‘)
() z
* m=n

* Dados una pareja de parametros que ocupan la misma posicion en sus respectivas listas pfi y pri su tipo
debe ser igual o, al menos, compatible. Sin embargo, su nombre no tiene por qué ser igual.

En funcién de su papel en el procedimiento, los parametros, formales o reales, pueden ser de tres clases:

* Parametros de entrada: son aquellos que se utilizan para aportar datos al procedimiento. Si dentro de éste
se produce un cambio en el valor del parametro formal el pardmetro real no se vera afectado. Los
parametros reales en este caso pueden ser constantes, variables o expresiones.

* Parametros de salida: son aquellos que se utilizan para exportar datos desde el procedimiento. No aportan
valor inicial por lo que son directamente inicializados por el procedimiento que les asigna valores. Asi, los
cambios producidos en el valor del parametro formal afectaran al pardmetro real que deberd ser una
variable.

* Parametros de entrada/salida: son aquellos cuya funcién incluye a las dos anteriores. Por un lado aportan
valores y por otro son modificados por el procedimiento para exportar valores. Los parametros reales
tienen también que ser variables.

TEMA 28. PROGRAMACION MODULAR. DISENO DE FUNCIONES: RECURSIVIDAD. LIBRERIAS.

Paso de Pardmetros:

* Porvalor: inicamente nos interesa el valor, no las modificaciones que pueda tener dentro del subalgoritmo.
Se trabaja con una copia del valor pasado. Son parametros unidireccionales, que pasan informacién desde
al algoritmo al subalgoritmo. Puede ser cualquier expresion evaluable en ese momento.

* Por referencia: se pasa una referencia a la posiciéon de memoria donde se encuentra dicho. Se utilizan tanto
para recibir como para transmitir informaciéon entre el algoritmo y el subalgoritmo. Debe ser
obligatoriamente una variable.

Definicion de procedimientos:
Se utilizara la sintaxis propia del lenguaje de programacion que se esté utilizando.
En general, todos los lenguajes suelen dividir esta definicion en dos partes:

* Cabecera o interfaz: incluye el identificador del procedimiento usualmente precedido de una palabra
reservada tal que procedure, y la lista de parametros formales con cero o mas parametros. En esta lista se
indica el tipo de los parametros y su clase. Para la clase se debe emplear alguna notacioén especifica.
Nosotros, a efectos de explicacion, utilizaremos las siguientes palabras reservadas que precederan a los
parametros:

o De entrada, van precedidos por la palabra reservada ent.
o De salida, por la palabra sal.
o De entrada/salida, por la palabra entSal.

* Cuerpo: el cuerpo del procedimiento los componen las declaraciones e instrucciones en las que se ejecuta
el algoritmo propio del procedimiento.

4.2 FUNCIONES

Son procedimientos con caracteristicas peculiares: a excepcion de un parametro de salida, todos los demds son de
entrada. El pardmetro de salida sirve para albergar el valor devuelto por la funcién.

No es casual que las funciones tengan un tnico parametro de salida. De hecho, las funciones de salida tienen sentido
como clase de subprograma diferente a los procedimientos en que calculan un valor, valor que se asigna al pardmetro
de salida y al que desde fuera de la funcion se accede usando el identificador de la propia funcién empleado en la
llamada. Es por ello que en la llamada a una funcién el parametro de salida no debe aparecer en la lista de parametros.
Esta estructura, ademas de facilitar la escritura de las aplicaciones, evita efectos laterales indeseados que se pueden
producir cuando se usan parametros de e /s tipicos de los procedimientos.

La instruccién de llamada evalda la funcion y realiza una asignacion interna al identificador que luego puede ser
asignado, en la misma llamada, a una variable. Las llamadas a funciones pueden también aparecer en expresiones
complejas diferentes a la asignacion. El requisito que se debe siempre cumplir es que el tipo del valor que la funcién
retorna sea compatible con el requerido en la expresion. A este tipo del valor devuelto se le conoce como tipo de la
funcion.

La definicion de funciones es muy parecida a la de los procedimientos. No obstante, existen una serie de diferencias:

* Como hemos dicho, la funcién tiene un tipo igual

al del valor que devuelve. Para especificar este algoritmo Ejemplo
tipo, en la definicién de la funcién, lo afiadiremos var x, ¥« veal frar
al fll'.l.':.ll de la cab.ecera., tras la lista de par.a.met.rgs accion A (varx -real) '\\
y utilizando la sintaxis normal de especificacion | VAT m. 1 entero fvar \
de tipos, es decir, dos puntos, "', seguidos del tipo — e <
devuelto accion B (w : real)
var p. g © entero fiar
* Al ser todos los parametros de entrada, en la lista ccion 2B
de parametros formales no se utiliza la etiqueta N
ent.
» o '\ facrion #4 /
* El valor devuelto por la funcién se indica usando - A
: ' 10 rar | - parmeter
la palabra reservada retorna seguida por la [aceionC (varletra: caracter)
expresion correspondiente a dicho valor. Es usual var e - casacter frar
adoptar el convenio de que esta instruccion faccion ac
aparezca Unicamente al final de la funcién y que s

sea la inica forma de terminar la funcién.
falzoritme.

WWW.FPTOTAL.ES

4.3 AMBITO DE IDENTIFICADOR:
Conjunto de sentencias donde puede utilizarse ese identificador.

* Variables locales: variable declarada dentro de un subprograma y, por tanto, s6lo disponible durante el
funcionamiento del mismo.

* Variables globales: variables declaradas en el programa principal y, por ello, pueden ser utilizadas por el
programa principal y por todos sus subprogramas.

* Efecto Lateral: efecto de un moédulo sobre otro modulo que no es parte de la interfaz definida explicitamente
entre ellos.

Reglas para el cdlculo del dmbito de un identificador:

1. Unidentificador declarado en un bloque es accesible tnicamente desde ese bloque y todos los bloques incluidos
en él (se considera local a ese bloque). Un parametro formal se considera también una declaracion local al bloque
de la funcion.

2. Los identificadores declarados fuera de cualquier bloque se consideran globales y pueden ser utilizados desde
cualquier punto del fichero.

3. Cuando tenemos un bloque dentro de otro bloque y en ambos se declaran identificadores con el mismo nombre,
el del bloque interno "oculta" al del bloque externo.

5 RECURSIVIDAD

« Un objeto es recursivo si su definiciéon requiere la definicion previa del objeto en un caso mas sencillo.

e Una funcién es recursiva si su resolucion requiere la solucion previa de la funcion para casos mas sencillos.

¢ Un algoritmo A que resuelve un problema P es recursivo si estd basado directa o indirectamente en si

mismo.

Los algoritmos recursivos son especialmente apropiados si el propio problema o el propio calculo a realizar o la
propia estructura con la que trabaja el problema aceptan una definicion recursiva. Sin embargo, la existencia de
tales definiciones no garantiza que la mejor forma de resolver un problema pase por utilizar un algoritmo recursivo.

Siempre que disefiemos un algoritmo recursivo habra que asegurarse no sélo de que el numero de llamadas es finito
(la recursion acaba) sino también de que es pequeiio, ya que hace falta espacio de memoria (pila de recursién) para
almacenar en cada llamada los objetos locales, los parametros de la llamada y el estado del proceso en curso para
recuperarlo cuando acabe la llamada actual y haya que reanudar la antigua.

5.1 TIPOS DE RECURSION:

Recursién lineal:
Si cada llamada recursiva genera, como mucho otra llamada recursiva

e FINAL: si la llamada recursiva es la dltima operacién que se efectua, devolviéndose como resultado lo que
se haya obtenido de la llamada recursiva sin modificacion alguna.

e NO FINAL: El resultado obtenido de la llamada recursiva se combina para dar lugar al resultado de la funcién
que realiza la llamada.

Ejem: Funcion recursiva que calcule el factorial de un nimero entero positivo.

_IF.IH‘JE'I'GH F-HE'TU] Jéntero) reforna enrero
inicio
5i n=0 entonces
devolver(l)
5i_no
devolverin * Factin-1))
fin_si

Jin_funcion

TEMA 28. PROGRAMACION MODULAR. DISENO DE FUNCIONES: RECURSIVIDAD. LIBRERIAS.

Recursion multiple:

Si alguna llamada puede generar mas de una llamada adicional.

Ejem: Funcion recursiva que calcule el término n de la serie de Fibonacci. Siendo n entero positivo

funcion Fibo(n:entero) retorna entero
micio
si n=0 o n=1 entonces
devolver(l)
5i_no
devolver(Fibo(n-1) + Fibo(n-2))
Sfin_si

fin_funcion

Recursidon anidada:

Hay recursion anidada cuando uno de los argumentos de la funcién recursiva es el resultado de la llamada recursiva.

Ejem: Calcular la raiz n de un numero entero x
Funcion raices (n,x: entero) retorna real
inicio
segun sea
n=1: devolver(raiz2ix))
n=1: devolver raices(n — (n div 2), raices{in div 2),x))
Jfin_segiin

5

fin_funcion

5.2 ETAPAS DEL DISENO RECURSIVO:
Un disefo recursivo constara de las siguientes etapas:

1. Definicién del problema.

2. Analisis de casos. Identificacion de la funcion limitadora.

3. Trascripcion algoritmica y verificacién de cada caso.

4. Validacién de la induccién: la funcion limitadora decrece estrictamente en las llamadas.

Existe recursividad en algoritmos cuando un algoritmo se invoca a si mismo o es invocado en otro algoritmo
previamente llamado. La recursividad requiere dos condiciones para su correcto funcionamiento:

* Lassucesivas invocaciones deben ser efectuadas con versiones cada vez mas reducidas del problema inicial.

¢ Debe existir una condicion de fin de las llamadas o fin de la recursividad, sin esta condicién de terminacion,
el algoritmo no podria construirse siguiendo esta técnica y su ejecucion produciria un ciclo infinito.

La recursividad y la iteracion son los dos mecanismos suministrados por los lenguajes de programacién para
describir célculos que han de repetirse un cierto niumero de veces.

6 LIBRERIAS:

Una biblioteca (libreria si traducimos library "por libre") es un conjunto documentado, probado y, en su caso,
previamente compilado, de procedimientos y funciones que es posible invocar desde otro programa. Las bibliotecas son
un claro ejemplo de reutilizacion del software.

Una biblioteca basica debe proporcionar una coleccién de estructuras de datos, funciones y procedimientos
independientes del tipo de aplicacién donde se vayan a usar. Esta coleccién debe ser suficiente para cubrir las
necesidades de la mayoria de las aplicaciones en los lenguajes que permitan su uso. Ademas, una biblioteca ideal
debe ser:

* Completa: la biblioteca debe proporcionar una familia de subprogramas, unidas por un interfaz compartido
pero empleando cada representacion diferente, de manera que los desarrolladores puedan seleccionar las
que sean mas apropiadas para la aplicacién de que se trate.

10

WWW.FPTOTAL.ES

* Adaptable: todos los aspectos especificos de la plataforma deben estar claramente identificados y aislados,
de manera que puedan realizarse sustituciones y adaptaciones locales (por ejemplo, mediante el uso de
funciones propias que intermedien entre el codigo de la aplicacion y las invocaciones a los procedimientos
de biblioteca).

* Eficiente: los componentes deben ser de facil incorporacion al coédigo propio (eficiencia en términos de
recursos de compilacion), utilizar cantidades razonables de memoria y tiempo de ejecucion (eficiencia en
ejecucion) y de uso comprensible y seguro (eficiencia en términos de recursos de desarrollo).

* Segura: es un requisito fundamental que la biblioteca esté completamente probada en todos los entornos
previsibles. Uno de los indicadores de esa robustez es el uso de excepciones para identificar condiciones
para las cuales se violan las precondiciones de un algoritmo. Cuando estas excepciones se generen el
sistema debe ser capaz de mantener la estabilidad sin que se produzcan reacciones anémalas, rupturas
bruscas de la secuencia de ejecucién o corrupciones en el espacio de direcciones del programa.

* Simple: caracteristica que es cada vez mas dificil de cumplir (en este sentido ayudan mucho las técnicas
0.0.). Se trata de dotar a la biblioteca de una organizacion clara y consistente que facilite la identificaciéon
y seleccién de las estructuras y procedimientos adecuados para el fin requerido.

» Extensible: los desarrolladores propios deben ser capaces de afadir funcionalidad a la biblioteca sin alterar
su integridad arquitectonica original.

* Independiente de la plataforma final de ejecucion: caracteristica que estd adquiriendo cada vez una mayor
importancia. Se trata de hacer la biblioteca lo mas independiente que sea posible del hardware y sistema
operativo donde finalmente se ejecute la aplicacion que se esta desarrollando. Para ello se crean bibliotecas
abstractas que actuan como interfaz. Estas bibliotecas se conectan de forma transparente para el
desarrollador con otras que si dependen de los servicios de la plataforma. Dicha conexiéon se puede
producir, bien al compilar el cddigo, con lo que habra que recompilar para cada tipo de plataforma, bien en
tiempo de ejecucion de forma dindmica, como ocurre, por ejemplo, con las bibliotecas de clases de Java, lo
que obliga al uso de las conocidas como "maquinas virtuales".

6.1 LAS AP.LS.

Una API (Application Programming Interface), en castellano, interfaz para la programacion de aplicaciones es un
conjunto de bibliotecas de programacion, que elaboran y publican los fabricantes de elementos tales como sistemas
operativos o dispositivos hardware, para permitir a los programadores de aplicaciones utilizar los servicios y
posibilidades de dichos elementos. Por extension, se denomina API a cualquier grupo de funciones que son parte de
ciertas aplicaciones pero que son utilizables desde otras aplicaciones.

Cuando dividimos un problema en distintos moédulos, no siempre ha de corresponder cada moédulo a un
subprograma. Puede corresponder a todo un conjunto de subprogramas que estaran agrupados en un fichero
independiente. La principal utilidad de dividir el programa en ficheros distintos es que se pueden programar y
compilar por separado. De esta manera no hace falta compilar cada vez todo el programa.

Esto se realiza normalmente para programas muy grandes o simplemente cuando queremos realizar una libreria de
subprogramas.

* Compilacién de un programa en un solo fichero:

Compilador Linker o enlazador
programa fuente i programa objeto i programa gjecutable
P. Principal |————— 0 - EXC
compilacion montar, linkar

o enlazar
* Compilacién de un programa en varios ficheros:

Compilador Linker o enlazador
programa luente l programa objelo l programa ejeculable

P. Principal

—— O—
compilacion

Madulo N compilacion mmuar, linkar

o enlazar

1

TEMA 28. PROGRAMACION MODULAR. DISENO DE FUNCIONES: RECURSIVIDAD. LIBRERIAS.

Como ya hemos indicado, la mayoria de los lenguajes permiten al programador la creacién de bibliotecas de
funciones que pueden ser invocadas desde su programa y aparecen como si estuviesen elaboradas dentro del propio
lenguaje. Usualmente, en entornos Windows, los mddulos de programas que contienen las funciones estan
precompilados en archivos de programas objeto (.obj) que pueden agruparse en archivos de bibliotecas (lib)
utilizando un bibliotecario (un programa auxiliar o parte de un entorno integrado de desarrollo IDE).

Cuando se debe crear una version final ejecutable de una aplicacién, un enlazador analiza los archivos objeto de la
aplicacion buscando referencias a funciones que no estan definidas en el propio programa, luego recorre todos los
archivos de bibliotecas cuyo uso se ha solicitado, buscando las funciones que faltan. El enlazador extrae los médulos
que contienen las funciones invocadas, los incluye en el archivo ejecutable y los enlaza con las llamadas del programa
de aplicacion. A este proceso se lo conoce como enlace estdtico, ya que toda la informacién de direccionamiento que
necesita el programa para el acceso a las funciones de biblioteca queda fijada definitivamente cuando se crea el
ejecutable y permanece invariable en tiempo de ejecucion. Tradicionalmente, los enlazadores incluyen los médulos
enteros cuando se los enlaza en los ejecutables finales aunque las tltimas versiones de IDE ya son capaces de extraer
unicamente el cddigo correspondiente a la funcién referida.

El enlace estatico produce un gran desperdicio de memoria dado que cada programa incluye una copia propia de
cada libreria utilizada (ej: imaginar el manejo de ventanas en Windows)

Con el enlace dindmico, los moédulos de programas conteniendo las funciones también son precompilados en
archivos de programas objeto (.obj), pero, en lugar de agruparlos en archivos de bibliotecas, son enlazados en un
formato especial de archivo ejecutable de Windows conocido como DLL7, biblioteca de enlace dindmico. Cuando se
construye una DLL, el constructor especifica qué funciones van a ser accesibles desde otras aplicaciones en
ejecucion mediante la técnica, ya estudiada, denominada exportacion.

Al crear un archivo ejecutable para Windows, el enlazador analiza los archivos objeto de la aplicacion y elabora una
lista de todas aquellas funciones que no estan ya incluidas en el cédigo del programa junto con la indicacién de las
bibliotecas de enlace dindmico donde se encuentran.

Cuando se ejecuta una aplicacién con acceso a DLLs, cada vez que se invoca una funcién de las ubicadas en la
biblioteca de enlace dinamico, la direccion real de enlace es calculada y la funcién se enlaza dindmicamente con la
aplicacién. De este modo, aunque existe una inica copia en memoria por cada DLL, los programas pueden compartir
las funciones incluidas en dicha biblioteca.

7 CONCLUSION:

* Resaltar la importancia que ha tenido la programaciéon modular en la mejora de la productividad dentro de
la Ingenieria del Software.

* Ala hora de disefnar funciones se deben tener en cuenta factores como la cohesion, el acoplamiento, la
estructura del programa y la jerarquia de control.

* Larecursividad es una de las estrategias mas potentes y elegantes en el disefio de soluciones, entre los
inconvenientes que tiene destacan el consumo de memoria y la complejidad en su disefio.

* Para facilitar todo el trabajo con médulos y funciones se crean las librerias (un conjunto documentado,
probado vy, en su caso, previamente compilado, de procedimientos y funciones que es posible invocar desde otro
programa). Las librerias son un claro ejemplo de reutilizacion del software.

12

