Une coquille sphérique S de centre O, de rayon extérieur R et de rayon intérieur αR ($\alpha < 1$) est électriquement chargée en volume avec une charge volumique uniforme ρ . 1.a. Déterminer le champ électrique $\overrightarrow{E}(M)$ en un point extérieur à la sphère.

- 1.b. Déterminer le champ $\overrightarrow{E}(M)$ pour $\alpha R \leq r \leq R$.
- 1.c. Rappeler comment on peut déterminer l'énergie électrostatique associée à cette distribution. Le calcul complet n'est pas à faire.
- 1.d. Déterminer le potentiel V(r) pour r > R en choisissant l'origine des potentiels à l'infini. Que vaut V(r = 0)?
- 2. Lorsque $(1-\alpha) \ll 1$, S est une coquille sphérique de très faible épaisseur que l'on assimile à une sphère de rayon R, uniformément chargée en surface avec la densité surfacique de charge σ . Exprimer σ en fonction de α , ρ , R, ainsi que la différence de potentiel V(R) V(0) en fonction notamment de σ et de $(\alpha 1)$.