Un cylindre de rayon a et de hauteur $h \gg a$ est mobile sans frottement autour de l'axe vertical (Oz). Ce cylindre est isolant et porte une charge q uniformément répartie sur sa surface latérale. Initialement le cylindre est soumis à un champ magnétique $\overrightarrow{B_1}(t=0) = B_0\overrightarrow{u_z}$. Progressivement l'intensité du champ uniforme $\overrightarrow{B_1}$ diminue, jusqu'à disparaître complètement. On néglige tout autre champ magnétique devant $\overrightarrow{B_1}$.

- 1. Montrer qu'un champ électrique dépendant du temps apparaît. Avec l'équation de Maxwell-Faraday sous forme intégrale, déterminer ce champ électrique $\overrightarrow{E_1}$, dont on admettra qu'il est orthoradial.
- 2. Calculer la vitesse angulaire finale ω_F du cylindre, de moment d'inertie I par rapport à l'axe (Oz).