Observability of Nonlinear Systems and Injectivity

Bernd Tibken

Bergische Universität Wuppertal
Chair of Automation and Control Theory

International Online Seminar on Interval Methods in Control Engineering
12.02.2021
Table of Contents

1. Introduction
2. Statement of the Problem
3. Lie Series
4. Reformulation
5. Injectivity Condition
Introduction

Systems

\[\dot{x}(t) = f(x(t)), \quad x(0) = x^0 \]
\[y(t) = h(x(t)) \]

Definitions

\[y^1 \text{ corresponds to } x^0 = z^1 \]
\[y^2 \text{ corresponds to } x^0 = z^2 \]

Observability

For all \(z^1 \neq z^2 \) we have \(y^1 \neq y^2 \).
How to check observability?

Find computational condition!

Simpler problem: Check
For all $z^1 \neq z^2 \in x^I$ we have $y^1 \neq y^2$.

x^I interval vector
Lie Series

Taylor series expansion of y

$$y(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \left(L^k_f h \right)(x^0)$$

Lie derivative

$$\begin{align*}
(L_f h)(x) &= \left(\frac{\partial h}{\partial x} \right) f(x) \\
(L^0_f h)(x) &= h(x) \\
(L^{l+1}_f h)(x) &= \left(L_f \left(L^l_f h \right) \right), l \geq 1
\end{align*}$$

f, h real analytic $\Rightarrow y(t)$ real analytic.
Reformulation

\[y^i(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \left(L^k f h \right) (z^i) \]

When is \(y^1(t) = y^2(t) \)?

\[\sum_{k=0}^{\infty} \frac{t^k}{k!} \left(L^k f h \right) (z^1) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \left(L^k f h \right) (z^2) \]

\[\Downarrow \]

\[\left(L^k f h \right) (z^1) = \left(L^k f h \right) (z^2) , k = 0, 1, 2, ... \]

Observability mapping

\[F(x) := \left(\begin{array}{c} h(x) \\ (L_f h)(x) \\ (L^2_f h)(x) \\ \vdots \end{array} \right) \]
Injectivity Condition

\[F(z^1) = F(z^2) \Rightarrow z^1 = z^2 \text{ uniquely} \]

\[\Rightarrow \text{System is observable.} \]

- This is injectivity of \(F \)!

- First step: finite number of columns
Injectivity Condition

- $F(z^1) = F(z^2)$ for $z^1, z^2 \in x^I \Rightarrow z^1 = z^2$ uniquely
- $F(z^1) - F(z^2) = 0$
- Idea: Apply mean value theorem

$$g(z^1) - g(z^2) = \frac{\partial g}{\partial x}(\xi)(z^1 - z^2),$$

g scalar, ξ between z^1 and z^2

$$g = \left(\begin{array}{c} g_1 \\ \vdots \\ g_p \end{array} \right), \
g_i(z^1) - g_i(z^2) = \frac{\partial g_i}{\partial x}(z^1 - z^2)$$

$$g(z^1) - g(z^2) = \left(\begin{array}{c} \frac{\partial g_1}{\partial x}(\xi_1) \\ \vdots \\ \frac{\partial g_p}{\partial x}(\xi_p) \end{array} \right)(z^1 - z^2)$$

$$M = \left(\begin{array}{c} \frac{\partial g_1}{\partial x}(\xi_1) \\ \vdots \\ \frac{\partial g_p}{\partial x}(\xi_p) \end{array} \right), \
M \neq \frac{\partial g}{\partial x}(\xi)$$

$M \in \frac{\partial g}{\partial x}(x^I) = M^I$ Interval matrix

M full rank $\Rightarrow z^1 - z^2 = 0 \Rightarrow g$ injective
Injectivity Condition

- Interval matrix M^I full rank $\Rightarrow M$ full rank $\Rightarrow F$ injective \Rightarrow system observable on x^I

- M^I full rank?

- Apply result of Jiri Rohn (sufficient condition)

- In general NP hard

- Application in the talk by Thomas Paradowski
Thank you for your attention