Robust output feedback MPC using interval observers

Alex Reis, Denis Efimov, Tarek Raïssi

International Online Seminar on Interval Methods in Control Engineering

May 7th, 2021
Outline

1. Motivation
2. Problem statement
3. Design of interval observer and predictor
4. Interval MPC
5. Numerical example
Outline

1 Motivation
2 Problem statement
3 Design of interval observer and predictor
4 Interval MPC
5 Numerical example
Motivation

- Constrained systems are **recurrent**: physical limitations, performance and safety;

![Chemical reactor diagram](image1)

![Power electronics diagram](image2)

![Vehicle control diagram](image3)

- Usual feedback solutions based on Lyapunov methods often **fail** to ensure constraint satisfaction → **Model Predictive Control**

Chemical reactors [Wikipedia]
Power electronics [Elprocus]
Vehicle control [MPC and VDL Labs]
Motivation

- What about robustness?
 - Model uncertainties and noises → discrepancies between prediction and real system;
 - Unavailable states → state estimation;
 - How to ensure constraint satisfaction and feasibility?

Classical solutions: Tubes (rigid, homothetic), error set-membership estimation, moving-horizon estimation (MHE), minmax optimization, multi-stage MPC, …
Motivation

• What about *robustness*?

Illustration of loss of feasibility due to uncertainty
Outline

1. Motivation
2. Problem statement
3. Design of interval observer and predictor
4. Interval MPC
5. Numerical example
Consider the following discrete-time LPV system:

\begin{align*}
x_{k+1} &= A(\theta_k)x_k + B(\theta_k)u_k + w_k \\
y_k &= Cx_k + v_k
\end{align*}

(1)

where \(x_k \) is the state vector, \(u_k \) is the control input, \(y_k \) is the measurement vector, \(w_k \) and \(v_k \) are process and measurement noises, respectively.

Assumption 1: The additive perturbations \(w_k \in [\underline{w}_k, \overline{w}_k] \) and \(v_k \in [\underline{v}_k, \overline{v}_k] \) for all \(k \in \mathbb{Z}_+ \), where \(\underline{w}, \overline{w} \in \ell^\infty \) and \(\underline{v}, \overline{v} \in \ell^\infty \) are known signals. The scheduling parameter is unmeasured, but takes values in a known bounded set \(\Theta \).

Assumption 2: Initial conditions of (1) are bounded such as \(\underline{x}_0 \leq x_0 \leq \overline{x}_0 \), for some known \(\underline{x}_0, \overline{x}_0 \in \mathbb{R}^n \).
Assumption 3: There exist matrices $A_0 \in \mathbb{R}^{n \times n}, B_0 \in \mathbb{R}^{n \times m}$ and $\Delta A_i \in \mathbb{R}^{n \times n}, \Delta B_i \in \mathbb{R}^{n \times m}, i = 1, \ldots, \nu$ for some $\nu \in \mathbb{Z}_+$, such that the following relations are satisfied for all $\theta \in \Theta$:

$$A(\theta) = A_0 + \sum_{i=1}^{\nu} \lambda_i(\theta) \Delta A_i, \quad B(\theta) = B_0 + \sum_{i=1}^{\nu} \lambda_i(\theta) \Delta B_i,$$

$$\sum_{i=1}^{\nu} \lambda_i(\theta) = 1, \quad \lambda_i(\theta) \in [0, 1].$$

Assumption 4: Let $C \geq 0$.
Problem 1 (*Robust constrained control*) Design an output feedback control that stabilizes (1) while respecting the following constraints

\[x_k \in X, \quad u_k \in U, \quad \forall k \in \mathbb{Z}_+ \]

having \(X \) and \(U \) as known convex bounded sets, for any possible realization of disturbances \(w_k \) and \(v_k \), and of the scheduling parameter \(\theta_k \).
For our developments, we will need the following lemmas:

Lemma 1: [Efimov et al. 2013] Let $x \in \mathbb{R}^n$ be a vector variable, $x \preceq x \preceq \overline{x}$ for some $x, \overline{x} \in \mathbb{R}^n$. Then,

(1) if $A \in \mathbb{R}^{m \times n}$ is a constant matrix, then

$$A^+ x - A^- \overline{x} \leq Ax \leq A^+ \overline{x} - A^- x$$ \hspace{1cm} (2)

(2) if $A \in \mathbb{R}^{m \times n}$ is a matrix variable and $A \preceq \underline{A} \preceq A \preceq \overline{A}$ for some $A, \underline{A}, \overline{A} \in \mathbb{R}^{m \times n}$, then

$$A^+ x^+ - \overline{A}^+ x^- - \overline{A}^- \overline{x}^+ + \overline{A}^- \overline{x}^- \leq Ax \leq \overline{A}^+ \overline{x}^+ - A^+ \overline{x}^- - \overline{A}^- \overline{x}^+ + A^- x^-$$ \hspace{1cm} (3)
Preliminaries

Lemma 2: [Smith, 1995] For $A \in \mathbb{R}_{+}^{n \times n}$, the system

$$x_{k+1} = Ax_k + \omega_k, \quad \omega : \mathbb{Z}_+ \to \mathbb{R}_+^n, \quad \omega \in \mathcal{L}_\infty^n, \quad k \in \mathbb{Z}_+$$

has a non-negative solution $x_k \in \mathbb{R}_+^n$ for all $k \in \mathbb{Z}_+$ provided that $x_0 \geq 0$.

Lemma 3: [Farina and Rinaldi, 2000] A matrix $A \in \mathbb{R}_+^{n \times n}$ is Schur stable iff there exists a diagonal matrix $P \in \mathbb{R}^{n \times n}$, $P > 0$, such that $A^TPA - P < 0$.
Outline

1. Motivation
2. Problem statement
3. Design of interval observer and predictor
4. Interval MPC
5. Numerical example
Interval estimators

An *interval observer* is a two-point set-membership estimator, with stability guarantees. Under *cooperativity conditions*, they produce the following bounds:

\[\underline{x}_k \leq x_k \leq \overline{x}_k \]

Main idea: use the relation above to check constraints, since

\[[x_k, \overline{x}_k] \subset X \implies x_k \in X. \]

Main features: low computation complexity and ease of design (LMIs).
Interval estimators

Using the measurement y_k:

$$x_{k+1} = (A_0 - LC)x_k + \sum_{i=1}^{v} \lambda_i(\theta) \Delta A_i x_k + Ly_k + (B_0 + \sum_{i=1}^{v} \lambda_i(\theta) \Delta B_i) u_k - Lv_k + w_k$$

the following IO can be proposed:

$$\bar{x}_{k+1} = (A_0 - L_o C) \bar{x}_k + \Delta A_+ \bar{x}_k^+ + \Delta A_- \bar{x}_k^- + B_0 u_k + \Delta B u_k^+ + L_o y_k - L_o^+ v_k + L_o^- \bar{v}_k + \bar{w}_k$$

$$\underline{x}_{k+1} = (A_0 - L_o C) \underline{x}_k - \Delta A_+ \underline{x}_k^+ - \Delta A_- \underline{x}_k^- + B_0 u_k - \Delta B u_k^- + L_o y_k - L_o^+ \bar{v}_k + L_o^- v_k + \underline{w}_k$$

where L_o is the observer gain to be designed. Define the observer estimation errors $e_k = x_k - \underline{x}_k$ and $\bar{e}_k = \bar{x}_k - x_k$.

Lemma 4: Let assumptions 1–3 be satisfied. Then, provided that $A_0 - L_o C$ is non-negative, the estimation errors are non-negative, i.e., $e_k, \bar{e}_k \geq 0$ for all $k > 0$.

IO-MPC
Interval estimators

In order to derive stability conditions for IO (4), let us rewrite it as:

\[\chi_{k+1} = (A_0 - \bar{L}_o C_1) \chi_k + A_+ \chi^+_k + A_- \chi^-_k + \delta_k \]

where \(A_0 = \text{diag}(A_0, A_0) \in \mathbb{R}^{2n \times 2n} \), \(\bar{L}_o = \text{diag}(L_o, L_o) \in \mathbb{R}^{2n \times 2p} \), \(C_1 = \text{diag}(C, C) \in \mathbb{R}^{2p \times 2n} \), \(\delta_k = \text{vec}(\bar{\delta}_k, \underline{\delta}_k) \), and

\[
A_+ = \begin{bmatrix}
\Delta A_+ & 0 \\
-\Delta A_- & 0
\end{bmatrix}, \quad A_- = \begin{bmatrix}
0 & \Delta A_- \\
0 & -\Delta A_+
\end{bmatrix},
\]

\[
\bar{\delta}_k = B_0 u_k + \Delta B u^+_k + L_0 y_k - L_0^+ v_k + L_0^- \bar{v}_k + \bar{w}_k,
\]

\[
\underline{\delta}_k = B_0 u_k - \Delta B u^-_k + L_0 y_k - L_0^+ \bar{v}_k + L_0^- v_k + \underline{w}_k.
\]
Interval estimators

The next result verifies stability:

Theorem 1: Let assumptions 1–3 be satisfied. If there exist diagonal matrices \(\bar{P}, Q_1, Q_2, Q_3, \Omega_+, \Omega_- \), matrices \(\Gamma \in \mathbb{R}^{2n \times 2n} \) and \(\bar{U} \in \mathbb{R}^{2n \times p} \), such that the following LMIs are verified:

\[
\begin{bmatrix}
\bar{P} - Q_1 & -\Omega_+ & -\Omega_- & 0 & A_0^\top \bar{P} - C_1^\top \bar{U}^\top \\
* & -Q_2 & -\Psi & 0 & A_1^\top \bar{P} \\
* & * & -Q_3 & 0 & A_2^\top \bar{P} \\
* & * & * & \Gamma & \bar{P} \\
* & * & * & * & \bar{P}
\end{bmatrix} \succeq 0
\]

\(\bar{P} > 0, \quad \Gamma \succ 0, \quad Q_1, Q_2, Q_3, \Omega_+, \Omega_- \geq 0, \)

\(Q_1 + \min\{Q_2, Q_3\} + 2 \min\{\Omega_+, \Omega_-\} > 0 \)

then system (4) with a gain \(L_o = P^{-1}U \) is an IO for system (1), i.e., relation \(x_k \leq x_k \leq \bar{x}_k \) is satisfied for all \(k \in \mathbb{Z}_+ \) and, in addition, \(\chi \in \ell_2^n \) provided that \(\delta \in \ell_2^n \).
Interval estimators

To better illustrate the developments of this section, consider the following prototype model:

\[
x_{k+1} = \begin{bmatrix} 0.5 & 0.6 + \theta_k \\ \theta_k & 0.3 \end{bmatrix} x_k + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k + w_k
\]

\[
y_k = \begin{bmatrix} 0 & 1 \end{bmatrix} x_k + v_k
\]

\[
\mathbb{W} = [-0.1, 0.1] \times [-0.1, 0.1], \quad \mathbb{V} = [-0.1, 0.1], \quad \text{and} \quad \Theta = [0, -0.3].
\]

Interpolating functions \(\lambda_1 = \frac{\theta_k - \theta_k}{\theta_k - \theta_k} \) and \(\lambda_2 = \frac{\theta_k - \theta_k}{\theta_k - \theta_k} \).
Interval estimators

Simulate the IO

\[u_k = 1, \text{ for } k = [0, \ldots, 49] \]
\[u_k = -1, \text{ for } k = [50, \ldots, 100] \]
\[\theta_k = -|0.3 \sin(0.1k)| \]
\[w_k = 0.1 \sin(k), \quad v_k = 0.1 \sin(k) \]
Interval estimators

As seen in (4), the IO requires the measurement $y_k \rightarrow \text{unsuitable}$ for prediction.

Solution: propose an *interval predictor* \rightarrow an open-loop *framer*, i.e., independent of y_k.

Recalling that $y_k = Cx_k + v_k$, we can write the following relation under Lemma 1 and Assumption 4:

$$L_p^+ Cz_k - L_p^- C\bar{z}_k \leq L_p Cz_k \leq L_p^+ C\bar{z}_k - L_p^- Cz_k. \quad (5)$$

then the terms $L_p y_k - L_p v_k = L_p Cx_k$ can be replaced by the bounding relations above.
Interval estimators

The proposed IP:

\[
\begin{align*}
\bar{z}_{k+1} &= (A_0 - L_p C)\bar{z}_k + \Delta A_+\bar{z}_k^+ + \Delta A_-\bar{z}_k^- + L_p^+ C\bar{z}_k - L_p^- C\bar{z}_k + B_0 u_k + \Delta B u_k^+ + \bar{w}_k \\
\tilde{z}_{k+1} &= (A_0 - L_p C)\tilde{z}_k - \Delta A_+\tilde{z}_k^+ - \Delta A_-\tilde{z}_k^- + L_p^+ C\tilde{z}_k - L_p^- C\tilde{z}_k + B_0 u_k - \Delta B u_k^- + \tilde{w}_k
\end{align*}
\]

Define the prediction estimation errors \(\varepsilon_k = x_k - \bar{z}_k \) and \(\bar{\varepsilon}_k = \tilde{z}_k - x_k \).

Lemma 5: Let assumptions 1–4 be satisfied. Then, provided that \(A_0 - L_p C \) is non-negative, the prediction errors are non-negative, i.e., \(\varepsilon_k, \bar{\varepsilon}_k \geq 0 \) for all \(k \in \mathbb{Z}_+ \).
Interval estimators

In order to derive stability conditions for IP (6), let us rewrite it as:

$$ Z_{k+1} = (A_0 + \tilde{L}_p C_2) Z_k + A_+ Z_k^+ + A_- Z_k^- + \varrho_k, $$

where A_0, A_+ and A_- are the same as for IO (4), $\tilde{L}_p = \text{diag}(L_p^-, L_p^-) \in \mathbb{R}^{2n \times 2p}$, $\varrho_k = \text{vec}(\rho_k, \rho_k^-)$ and

$$ C_2 = \begin{bmatrix} C & -C \\ -C & C \end{bmatrix}, $$

$$ \overline{\rho}_k = B_0 u_k + \Delta B u_k^+ + \overline{w}_k, \quad \underline{\rho}_k = B_0 u_k - \Delta B u_k^- + \underline{w}_k. $$
Interval estimators

Theorem 2: Let assumptions 1–4 be satisfied. If there exist diagonal matrices \(\tilde{P}_2, Q_1, Q_2, Q_3, \Omega_+, \Omega_-, \Psi, \Gamma \in \mathbb{R}^{2n \times 2n} \) and \(U^+, U^- \in \mathbb{R}^{n \times p} \), such that

\[
\tilde{P}_2 A_0 - \tilde{U}^+ C_1 + \tilde{U}^- C_1 \geq 0
\]

\[
\begin{bmatrix}
\tilde{P}_2 - Q_1 & -\Omega_+ & -\Omega_- & 0 & (\tilde{P}_2 A_0 + \tilde{U}^- C_2)^\top \\
* & -Q_2 & -\Psi & 0 & (\tilde{P}_2 A_+)^\top \\
* & * & -Q_3 & 0 & (\tilde{P}_2 A_-)^\top \\
* & * & * & \Gamma & \tilde{P}_2 \\
* & * & * & * & \tilde{P}_2
\end{bmatrix} \succeq 0
\]

\(Q_1, Q_2, Q_3, \Omega_+, \Omega_-, U^+, U^- \geq 0, \quad \Gamma > 0, \quad P_2 > 0 \)

\(\tilde{P}_2 = \text{diag}(P_2, P_2), \quad \tilde{U}^+ = \text{diag}(U^+, U^+), \quad \tilde{U}^- = \text{diag}(U^-, U^-), \quad Q = Q_1 + \min\{Q_2, Q_3\} + 2 \min\{\Omega_+, \Omega_-\} > 0 \)

then (6) with gains \(L_p^- = P_2^{-1}U^- \) and \(L_p^+ = P_2^{-1}U^+ \) is an IP for system (1), i.e., \(z_k \leq x_k \leq \bar{z}_k \) holds for all \(k \in \mathbb{Z}_+ \), and (6) is ISS with respect to the input \(\varphi \in \ell_\infty^{2n} \).
Interval estimators

Simulate the IP

\[u_k = 1, \text{ for } k = [0, \ldots 49] \]
\[u_k = -1, \text{ for } k = [50, \ldots 100] \]
\[\theta_k = -|0.3 \sin(0.1k)| \]
\[w_k = 0.1 \sin(k), \quad v_k = 0.1 \sin(k) \]
Outline

1. Motivation
2. Problem statement
3. Design of interval observer and predictor
4. Interval MPC
5. Numerical example
Recall on MPC

How to prove stability → stabilizing ingredients:

- **Terminal set** \mathcal{X}_f: the set that the endpoint of the prediction must reach;
- **Terminal gain** κ_f: there exists a stabilizing controller;
- **Terminal cost** V_f.
Recall on MPC

How to prove stability → stabilizing ingredients. Recall the classic axioms of Mayne et al.:

Definition 1 The stabilizing ingredients are such that the following axioms are verified:

1. $X_f \subset X$, closed and $0 \in X_f$: the state constraint is satisfied in X_f;
2. $\kappa_f(x) \in U$, $\forall x \in X_f$: the control constraint is satisfied in X_f;
3. $f(x,\kappa_f(x)) \in X_f$, $\forall x \in X_f$: X_f is positively invariant under $\kappa_f(x)$;
4. $[V_f + \ell](x,\kappa_f(x)) \leq 0$, $\forall x \in X_f$: V_f is a local Lyapunov function.
IP: Control design

How to design a feedback controller for the IP? Let us consider:

\[u_k = K \mathcal{Z}_k + K_+ \mathcal{Z}_k^+ + K_- \mathcal{Z}_k^- + R \mathcal{W} \] \hspace{1cm} (7)

where \(\mathcal{W}_k = \text{vec}(\mathbf{w}_k, \bar{\mathbf{w}}_k) \). This control leads to the following closed-loop:

\[\mathcal{Z}_{k+1} = \mathcal{K} \mathcal{Z}_k + \mathcal{K}_+ \mathcal{Z}_k^+ + \mathcal{K}_- \mathcal{Z}_k^- + \tilde{D} \mathcal{W} \] \hspace{1cm} (8)

where \(\mathcal{K} = \mathcal{A}_0 + \tilde{L}_p \mathcal{C}_2 + \mathcal{B}_0 \mathcal{K}, \quad \mathcal{K}_* = \mathcal{A}_* + \mathcal{B}_0 \mathcal{K}_* \quad \tilde{D} = \mathbb{I}_{2n} + \mathcal{B}_0 \mathcal{R} \) and \(\mathcal{B}_0 = [\mathcal{B}_0^\top, \mathcal{B}_0^\top] \).
This brings us to the following result:

Theorem 3: Let assumptions 1–4 be satisfied. If there exist matrices $P, Q_1, Q_2, Q_3, \Gamma, \Omega_+, \Omega_- \in \mathbb{R}^{2n \times 2n}$ and $W_1, W_2, W_3, W_4 \in \mathbb{R}^{m \times 2n}$ such that

$$
\begin{bmatrix}
P - Q_1 & -\Omega_+ & -\Omega_- & 0 & W_1^\top B_0^\top & + PD_z^\top \\
* & -Q_2 & -\Psi & 0 & W_2^\top B_0^\top & + PA_+^\top \\
* & * & -Q_3 & 0 & W_3^\top B_0^\top & + PA_-^\top \\
* & * & * & \Gamma & W_4^\top B_0^\top & + P \\
* & * & * & * & P
\end{bmatrix} > 0
$$

$P > 0, \quad \Gamma > 0, \quad Q_1, Q_2, Q_3, \Omega_+, \Omega_- \geq 0,$

$Q = Q_1 + \min\{Q_2, Q_3\} + 2\min\{\Omega_+, \Omega_-\} > 0,$

then IP (6) under control (7) with gains $K = W_1P^{-1}, K_+ = W_2P^{-1}, K_- = W_3P^{-1}, R = W_4P^{-1}$ is ISS with respect to the inputs $\mathcal{W} \in \ell^{2n}_\infty.$
IP: Control design

How to ensure that $u_k \in \mathcal{U}$?

Corollary 1: Let there exist symmetric and positive definite matrices $S \in \mathbb{R}^{m \times m}$ and $Z \in \mathbb{R}^{2n \times 2n}$ such that $\mathcal{U} = \{u \in \mathbb{R}^m : u^\top Su \leq 1\}$ and $\mathcal{W}_k \in \{\mathcal{W} \in \mathbb{R}^{2n} : \mathcal{W}^\top Z \mathcal{W} \leq 1\}$, and the conditions of Theorem 4 be satisfied with additional inequalities:

$$\frac{\eta}{\alpha \kappa} \Gamma \leq \min\{\kappa^{-1}Z, P\}, \ P \geq \kappa Z^{-1},$$

$$\begin{bmatrix}
\frac{\eta}{3}P & 0 & 0 & W_1^\top + W_2^\top \\
0 & \frac{\eta}{3}P & 0 & W_3^\top - W_1^\top \\
0 & 0 & \frac{\kappa}{3}P & W_4^\top \\
W_1 + W_2 & W_3 - W_1 & W_4 & S^{-1}
\end{bmatrix} \succeq 0$$

for some constants $\eta > 0$ and $\kappa > 0$, then control (7) satisfies the constraint $u_k \in \mathcal{U}$ for all $\mathcal{Z}_k \in \mathcal{X}_f \times \mathcal{X}_f$.
The predictive controller

Determine $S_n = \{s_0, \ldots, s_{N-1}\}$ solving the OCP

$$S_N^k := \arg\min_{S_N} V_N(\mathcal{Z}_{k,0}, \ldots, \mathcal{Z}_{k,N}, S_N)$$

with a cost function

$$V_N(\mathcal{Z}_{k,0}, \ldots, \mathcal{Z}_{k,N}, S_N) = V_f(\mathcal{Z}_{k,N}) + \sum_{i=0}^{N-1} \ell(\mathcal{Z}_{k,i}, s_i).$$

under the following constraints:

\begin{align*}
\mathcal{Z}_{k,0} &= \min\{\bar{x}_k, \bar{z}_{k-1,1}\}, & \bar{z}_{k,0} &= \max\{x_k, \bar{z}_{k-1,1}\} & (9a) & \rightarrow \text{initialization} \\
\mathcal{Z}_{k,i+1} &\text{ computed by } X & (9b) & \rightarrow \text{prediction using the IP} \\
\mathcal{Z}_{k,i+1} &\subset X \times X, & s_i &\subset U, & (9c) & \rightarrow \text{state and input constraint} \\
\mathcal{Z}_{k,N} &\in X_f \times X_f & (9d) & \rightarrow \text{terminal constraint}
\end{align*}
The predictive controller

Why initialize using information from both IO and IP? Let $V = [-0.5, 0.5]$.

Comparison IO/IP in case of big meas. noise

![Graph comparing IO/IP](image)
The predictive controller

Algorithm 1: IO-MPC

Offline: Solve LMIs, estimate X_f and select $\Psi_1 = P^{-1}, \Psi_2 \leq \frac{\alpha}{2} P^{-1}$ and $\Psi_3 \leq \frac{\alpha}{8} P^{-1}$.

Input: Initial conditions x_0, \bar{x}_0 and prediction horizon N.

Online:

1. **for** each decision instant $k \in \mathbb{Z}_+$ **do**

2. Measure y_k and update IO (4).

3. Initialize IP (6).

4. Solve OCP (17) under constraints (9a)-(9d).

5. Assign $u_k = s_0^k$ and apply to the system.

6. **end for**
The predictive controller

Theorem 4: Let \([x_0, \bar{x}_0] \subset X\) and assumptions 1–4 be satisfied with \([w_{k+1}, \bar{w}_{k+1}] \subseteq [w_k, \bar{w}_k]\) for all \(k \in \mathbb{Z}_+\). Then, following Algorithm 1, the closed-loop system composed by (1), (4) and (6) has the following features:

1. Recursive feasibility of reaching the terminal set in \(N\) steps;
2. ISS of dynamics (8) in \(X_f\) and practical ISS for (1);
3. Constraint satisfaction.
The LTI and the TD case

The same ideas were applied to linear time-invariant (LTI) and time-delayed systems (TD):

\[x_{k+1} = A_0 x_k + A_1 x_{k-h} + Bu_k + w_k, \quad k \in \mathbb{Z}_+ \]
\[x_k = \phi_k, \quad k \in [-h, \ldots, 0] \]
\[y_k = C x_k + v_k \]

Main differences:

- Optimization of gains made through the interval width \(\delta x_k = \bar{x}_k - x_k \).
- Control design made regarding the interval center \(x_k^* = \frac{\bar{x}_k + x_k}{2} \).
- For the TD case, the Lyapunov-Krasovskii framework is required;
Complexity

One of the main advantages of using IO/IP is their fixed complexity.

Assume that the number of hyperplanes needed to define X, U and X_f depends linearly on n, and that $m = n$. Therefore, the worst-case number of variables for solving the constrained OCP is $10Nn$ ($8Nn$ for the linear cases).
Outline

1 Motivation
2 Problem statement
3 Design of interval observer and predictor
4 Interval MPC
5 Numerical example
Numerical example (LPV)

Recall the LPV prototype example:

\[
x_{k+1} = \begin{bmatrix} 0.5 & 0.6 + \theta_k \\ \theta_k & 0.3 \end{bmatrix} x_k + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k + \omega_k
\]

\[
y_k = \begin{bmatrix} 0 & 1 \end{bmatrix} x_k + v_k
\]

Constraints: \(\mathcal{X} = [-12, 3] \times [-12, 3], \quad \mathcal{U} = [-2, 2] \)

Disturbances: \(\mathcal{W} = [-0.1, 0.1]^2, \quad \mathcal{V} = [-0.1, 0.1] \)

Interpolating functions \(\lambda_1 = \frac{\theta_k - \bar{\theta}_k}{\theta_k - \theta_k} \) and \(\lambda_1 = \frac{\theta_k - \theta_k}{\bar{\theta}_k - \theta_k}, \quad \Theta = [-0.1, 0.1] \)

Select \(x_0 = \text{vec}(-7, -12) \) and \(\bar{x}_0 = \text{vec}(-6, -10) \). Prediction horizon \(N = 20 \), simulation time span \(T = 20 \) steps \(\times \) 100 runs.
Numerical example (LPV)

Evolution of the states

Control Input

Constraints
IP trajectory
Real trajectories

Time steps $[k]$

Time steps $[k]$
Numerical example (LPV)

Solver: *fmincon* (active set method)

For $N = 10$, computation time 0.22 ± 0.0313 second/step with a maximum of 0.7725 second.
Numerical example (LTI)

Consider the (linearized) CSTR model, given by the following matrices:

\[
A = \begin{bmatrix}
0.745 & -0.002 \\
5.610 & 0.780 \\
\end{bmatrix}, \quad B = \begin{bmatrix}
5.6 \times 10^{-6} \\
0.464 \\
\end{bmatrix}, \quad C = \begin{bmatrix}
0 \\
1 \\
\end{bmatrix}
\]

Constraints: \(X = [-2,2] \times [-10,5] \) and \(U = [-4.5,4.5] \)

Disturbances: \(W = [-0.02,0.02] \times [-0.2,0.2] \) and \(V = [-0.3,0.3] \)

For a later comparison, the Tube-MPC from [Mayne et al, 2009] will be implemented, taking an LQR controller for its design with matrices \(Q_{LQ} = 0.1 I_2 \) and \(R_{LQ} = 0.1 \).

Solver: \textit{quadprog}, computation time: \(0.0032 \pm 0.0021 \) second/step, maximum of 0.1358.
Numerical example (LTI)

States evolution (IO-MPC)

Control input

Time steps [k]

Time steps [k]

IO-MPC
Numerical example (LTI)

Feasible Regions (OPC)

Constraint Set
- IO-MPC
- Tube-MPC
Numerical example (TD)

Consider the following TD system:

\[
x_{k+1} = \begin{bmatrix} 0.5 & -0.1 \\ 0.5 & 0.2 \end{bmatrix} x_k + \begin{bmatrix} 0.1 & -0.3 \\ 0 & -0.1 \end{bmatrix} x_{k-h} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k + w_k
\]

\[
y_k = \begin{bmatrix} 0 & 1 \end{bmatrix} x_k + v_k
\]

Constraints: \(X = [-9,3] \times [-7,4] \) and \(U = [-1,1] \)

Disturbances: \(W = [-0.2,0.2]^2 \) and \(V = [-0.5,0.5] \)

and a known time-delay \(h = 10 \).

Solver: quadprog, computation time: \(0.0032 \pm 0.0021 \) second/step, maximum of 0.1358.
Numerical example (TD)

Evolution of the states

Control inputs

Time steps [k]
Conclusions & perspectives

Conclusions:

- Developed new interval estimators for LTI, LPV and TD systems, as well as their respective state feedback controllers;
- Proposed new robust output feedback MPC algorithms;
- Illustrated the methodologies with numerical experiments;
- Advantages: low fixed complexity, ease of design, low conservativeness.

Perspectives:

- Enhance the interval estimators and the proposed MPC algorithms aiming to reduce conservativeness;
- Test their efficiency in practical scenarios.
Thank you for your attention

Feel free to ask questions or contact me by e-mail: alex.dos-reis-de-souza@inria.fr