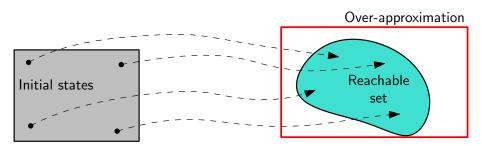
Interval Reachability Analysis

Pierre-Jean Meyer

4th of June 2021

Reachability analysis

Discrete-time $x^+ = f(x)$ or continuous-time system $\dot{x} = f(x)$



Exact computation of the reachable set: impossible

→ over-approximation by a multi-dimensional interval

Motivations for reachability analysis

Verification of safety and reachability specifications

- Does the over-approximation intersect the unsafe set ?
- Is the over-approximation contained in the target set ?

Abstraction-based control synthesis

- Partition of the state space
- Over-approximations to abstract the continuous system into a finite transition system
- High-level control synthesis on the discrete abstraction

Measuring the robustness of control policies

• Volume of the over-approximation under bounded disturbances

Objectives of the presentation

Overview of several methods and how to use them

- Tutorial-like presentation
 - Intuition
 - Requirements and limitations
 - Over-approximation computation
- Monotonicity (DT + CT)
- Mixed monotonicity (DT + CT)
- Sampled-data mixed monotonicity (CT)
- Growth bounds/Contraction analysis (CT)
- Quasi-Monte Carlo (DT + CT)
- Monte Carlo (DT + CT)
- Overview of Matlab toolbox TIRA

Monotonicity - Intuition

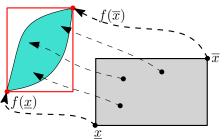
Discrete-time system: $x^+ = f(x)$

Definition (Cooperative system)

A system is cooperative if f preserves the inequality \geq :

$$x \ge \hat{x} \Rightarrow f(x) \ge f(\hat{x})$$

Over-approximation of the reachable set after one time step



Monotonicity

Discrete-time system: $x^+ = f(x)$

Assumption

There exist $\varepsilon = [\varepsilon_1; ...; \varepsilon_n] \in \{0, 1\}^n$ such that for all $x \in [\underline{x}, \overline{x}]$ and $i, j \in \{1, ..., n\}$ we have:

$$(-1)^{\varepsilon_i+\varepsilon_j}\frac{\partial f_i(x)}{\partial x_j}\geq 0$$

Proposition

$$f\left([\underline{x},\overline{x}]\right)\subseteq\left[f\left(\underline{x}\left(1_{n}-\varepsilon\right)+\overline{x}\varepsilon\right),f\left(\underline{x}\varepsilon+\overline{x}\left(1_{n}-\varepsilon\right)\right)\right]$$

- Over-approximation from only 2 evaluations of f
- Tightest interval over-approximation

Proposition

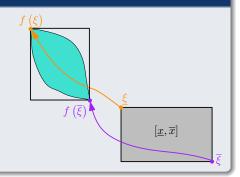
$$f([\underline{x},\overline{x}]) \subseteq [f(\underline{x}(1_n - \varepsilon) + \overline{x}\varepsilon), f(\underline{x}\varepsilon + \overline{x}(1_n - \varepsilon))]$$

Example

$$sign\left(\frac{\partial f(x)}{\partial x}\right) = \begin{pmatrix} + & -\\ - & + \end{pmatrix}$$

$$\varepsilon = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\underline{\xi} = \begin{pmatrix} \underline{x}_1 \\ \overline{x}_2 \end{pmatrix} \quad \overline{\xi} = \begin{pmatrix} \overline{x}_1 \\ \underline{x}_2 \end{pmatrix}$$



Monotonicity - Continuous-time

Continuous-time system: $\dot{x} = f(x)$

Trajectories: $x(t, x_0)$

Assumption

There exist an invariant set $X \subseteq \mathbb{R}^n$ and $\varepsilon = [\varepsilon_1; \dots; \varepsilon_n] \in \{0, 1\}^n$ such that for all $x \in X$ and $i, j \in \{1, \dots, n\}$ with $i \neq j$ we have:

$$(-1)^{\varepsilon_i+\varepsilon_j}\frac{\partial f_i(x)}{\partial x_i}\geq 0$$

Proposition

$$x(T, [x, \overline{x}]) \subseteq [x(T, x(1_n - \varepsilon) + \overline{x}\varepsilon), x(T, x\varepsilon + \overline{x}(1_n - \varepsilon))]$$

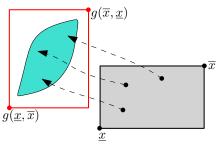
Mixed monotonicity - Intuition

Discrete-time system: $x^+ = f(x), x \in X$

Definition (Mixed monotonicity)

A system is mixed-monotone is there exists $g: X \times X \to X$ such that

- g(x, y) is increasing with x
- g(x, y) is decreasing with y
- g(x,x) = f(x)



Mixed monotonicity

Assumption

There exists $L \in \mathbb{R}^{n \times n}$ such that for all $i, j \in \{1, ..., n\}$ we have:

- either $\frac{\partial f_i(x)}{\partial x_i} + L_{ij} \geq 0$, $\forall x \in [\underline{x}, \overline{x}]$
- or $\frac{\partial f_i(x)}{\partial x} + L_{ij} \leq 0$, $\forall x \in [\underline{x}, \overline{x}]$

Constructive definition of g

For all $i \in \{1, ..., n\}$,

$$g_i(x,\hat{x}) = f_i(\xi^i) + [|L_{i1}|, \dots, |L_{in}|] * (x - \hat{x})$$

with $\xi^i \in \mathbb{R}^n$ defined for all $j \in \{1, ..., n\}$ such that

$$\xi_j^i = \begin{cases} x_j & \text{if } \frac{\partial f_i(x)}{\partial x_j} + L_{ij} \ge 0\\ \hat{x}_j & \text{if } \frac{\partial f_i(x)}{\partial x_i} + L_{ij} < 0 \end{cases}$$

Mixed monotonicity

Proposition $f\left([\underline{x},\overline{x}]\right)\subseteq [g\left(\underline{x},\overline{x}\right),g\left(\overline{x},\underline{x}\right)]$

- Over-approximation from only 2 evaluations of g
- Tightness guaranteed when the Jacobian is sign-stable $(L = 0_{n \times n})$
- Monotonicity result is a particular case

Mixed monotonicity - Illustration

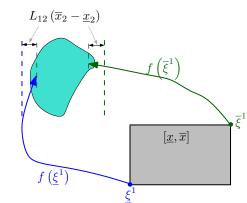
$$sign\left(\frac{\partial f(x)}{\partial x} + L\right) = \begin{pmatrix} + & + \\ - & + \end{pmatrix} \qquad L = \begin{pmatrix} 0 & L_{12} \\ 0 & 0 \end{pmatrix}$$

Dimension 1:

$$g_1(\underline{x},\overline{x}) = f_1(\underline{\xi}^1) - L_{12}(\overline{x}_2 - \underline{x}_2)$$

$$g_1(\overline{x},\underline{x}) = f_1(\overline{\xi}^1) + L_{12}(\overline{x}_2 - \underline{x}_2)$$

$$\underline{\xi}^1 = \begin{pmatrix} \underline{x}_1 \\ \underline{x}_2 \end{pmatrix} \quad \overline{\xi}^1 = \begin{pmatrix} \overline{x}_1 \\ \overline{x}_2 \end{pmatrix}$$



Mixed monotonicity - Illustration

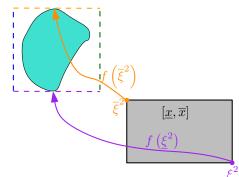
$$sign\left(\frac{\partial f(x)}{\partial x} + L\right) = \begin{pmatrix} + & + \\ - & + \end{pmatrix} \qquad L = \begin{pmatrix} 0 & L_{12} \\ 0 & 0 \end{pmatrix}$$

Dimension 2:

$$g_2(\underline{x},\overline{x}) = f_2(\xi^2) + 0$$

$$g_2(\overline{x},\underline{x}) = f_2(\overline{\xi}^2) + 0$$

$$\underline{\xi}^2 = \begin{pmatrix} \overline{x}_1 \\ \underline{x}_2 \end{pmatrix} \quad \overline{\xi}^2 = \begin{pmatrix} \underline{x}_1 \\ \overline{x}_2 \end{pmatrix}$$



Mixed monotonicity - Continuous-time

Continuous-time system $\dot{x} = f(x)$, trajectories $x(t, x_0)$

Assumption

 $\exists L \in \mathbb{R}^{n \times n}$ such that for all $i, j \in \{1, ..., n\}$ with $i \neq j$ we have:

- either $\frac{\partial f_i(x)}{\partial x_i} + L_{ij} \geq 0$, $\forall x \in X$
- or $\frac{\partial f_i(x)}{\partial x_i} + L_{ij} \leq 0$, $\forall x \in X$

Decomposition function *g*: same definition

Embedding system:
$$\begin{pmatrix} \dot{x} \\ \dot{\hat{x}} \end{pmatrix} = h(x, \hat{x}) = \begin{pmatrix} g(x, \hat{x}) \\ g(\hat{x}, x) \end{pmatrix}$$

Proposition

$$x(T,[\underline{x},\overline{x}]) \subseteq \left[\Phi_{1...n}^{h}(T,\underline{x},\overline{x}),\Phi_{n+1...2n}^{h}(T,\underline{x},\overline{x})\right]$$

Sampled-data mixed monotonicity

Motivation

Sign-stable Jacobian matrix ($L = 0_{n \times n}$)

→ tighteness only guaranteed in discrete time

	Discrete-time	Sampled-data	
	mixed-monotonicity	mixed-monotonicity	
		$\dot{x} = f(x)$	
System	$x^+ = F(x)$	$x^+ = x(T; x_0)$	
Requirement	Bounded Jacobian	Bounded sensitivity	
	$\frac{\partial F(x)}{\partial x} \in [\underline{J}, \overline{J}]$	$\frac{\partial x(T;x_0)}{\partial x_0} \in [\underline{S},\overline{S}]$	

Main challenge: bounding the sensitivity matrix

Sensitivity bounds - Interval Analysis

Continuous-time system: $\dot{x} = f(x)$

Jacobian matrix: $J^{x}(x) = \frac{\partial f(x)}{\partial x}$

Sensitivity matrix: $S^{x}(t; x_0) = \frac{\partial x(t; x_0)}{\partial x_0}$

Assumption

Bounded Jacobian: $\forall x \in X$, $J^{x}(x) \in [\underline{J^{x}}, \overline{J^{x}}]$

Interval analysis method

$$\dot{S}^{x} = J^{x} * S^{x}, \qquad S^{x}(0; x_{0}) = I_{n}$$

 $S^{x}(T) \in e^{\left[\underline{J^{x}},\overline{J^{x}}\right]*T} o \mathsf{Taylor} \; \mathsf{OA} \; \mathsf{of} \; \mathsf{the} \; \mathsf{interval} \; \mathsf{matrix} \; \mathsf{exponential} ^{a}$

^aM. Althoff, O. Stursberg, and M. Buss. *Reachability analysis of linear systems with uncertain parameters and inputs.* CDC07.

Fast and sound, but usually very conservative

Sensitivity bounds - Sampling and Falsification

No assumption

Sampling

- Sample initial interval $[\underline{x}, \overline{x}]$
- Numerical evaluation of $S^{x}(T; x_0)$ for each sample x_0
- Interval hull: $[\min_{x_0} S^x(T; x_0), \max_{x_0} S^x(T; x_0)]$

Falsification

- Optimization problem: find $x_0^* \in [\underline{x}, \overline{x}]$ such that $S^x(T; x_0^*) \notin [S^x, \overline{S^x}]$
- Update sensitivity bounds:

$$\frac{\underline{S^{x}}}{\overline{S^{x}}} \leftarrow \min\left(\underline{S^{x}}, S^{x}(T; x_{0}^{*})\right)$$
$$\overline{S^{x}} \leftarrow \max\left(\overline{S^{x}}, S^{x}(T; x_{0}^{*})\right)$$

No guarantee that the final $[\underline{S}^x, \overline{S}^x]$ is an over-approximation

Sensitivity bounds - Tunable method

Second-order Jacobian: $J^{xx}(x) = \frac{\partial J^{x}(x)}{\partial x}$

Second-order sensitivity: $S^{xx}(t;x_0) = \frac{\partial S^x(t;x_0)}{\partial x_0}$

$$\dot{S}^{xx} = J^x * S^{xx} + J^{xx} * (S^x \otimes S^x)$$

$$S^{xx}(0;x_0)=0$$

Assumption

Bounded Jacobian: $\forall x \in X$, $J^{x}(x) \in \left[\underline{J^{x}}, \overline{J^{x}}\right]$ and $J^{xx}(x) \in \left[\underline{J^{xx}}, \overline{J^{xx}}\right]$

3-step method

- Interval analysis on $\dot{S}^x = J^x * S^x$
 - \rightarrow over-approximation of $S^{x}([0, T]; [\underline{x}, \overline{x}])$
- Interval analysis on $\dot{S}^{xx} = J^x * S^{xx} + J^{xx} * (S^x \otimes S^x)$
 - \rightarrow over-approximation of $S^{xx}(T; [\underline{x}, \overline{x}])$
- Evaluation of $S^{x}(T; x_0)$ on a sampling grid of $[\underline{x}, \overline{x}]$
 - \rightarrow over-approximation of $S^{\times}(T; [\underline{x}, \overline{x}])$

Sensitivity bounds - Comparison

	Interval analysis	Sampling	3-step approach
Soundness	yes	no	yes
Conservativeness	large	small	tunable
Complexity	low	high	tunable
Requirements	$[\underline{J^{\times}},\overline{J^{\times}}]$	none	$[\underline{J^{x}},\overline{J^{x}}]$, $[\underline{J^{xx}},\overline{J^{xx}}]$

Growth bounds - Intuition

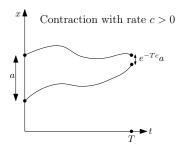
Continuous-time system: $\dot{x} = f(x)$

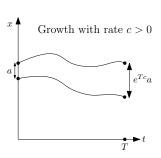
Various terms

- Growth bounds
- Contraction

- Incremental stability
- Discrepancy functions

Exponential convergence/divergence of any pair of trajectories





Growth bounds

Assumption (Scalar growth bound)

There exist an invariant set $X \subseteq \mathbb{R}^n$ and a scalar $c \in \mathbb{R}$ such that the infinity matrix measure of the Jacobian is bounded:

$$\forall x \in X, \; \max_{i} \left(\frac{\partial f_i(x)}{\partial x_i} + \sum_{i \neq j} \left| \frac{\partial f_i(x)}{\partial x_j} \right| \right) \leq c$$

Proposition

$$x(T, [\underline{x}, \overline{x}]) \subseteq \\ \{x(T, x^*)\} + \left[-e^{cT}[x], e^{cT}[x]\right] \xrightarrow{x} \xrightarrow{x(T, x^*) - e^{cT}[x]} \\ x(T, x^*) = x(T, x^*) + e^{cT}[x]$$

Assumption (Matrix growth bound)

There exist an invariant set $X \subseteq \mathbb{R}^n$ and a matrix $C \in \mathbb{R}^{n \times n}$ such that

$$\forall x \in X, \ \begin{cases} \frac{\partial f_i(x)}{\partial x_i} \leq C_{ii} \\ \left| \frac{\partial f_i(x)}{\partial x_j} \right| \leq C_{ij}, \quad i \neq j \end{cases}$$

Proposition

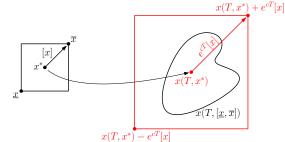
$$x(T, [\underline{x}, \overline{x}]) \subseteq \{x(T, x^*)\} + \left[-e^{CT}[x], e^{CT}[x]\right]$$

$$x(T, [\underline{x}, \overline{x}]) \subseteq x(T, x^*) + e^{cT}[x]$$

Generalization of the growth-bound method to a grid sampling

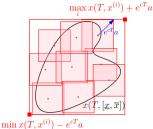
Growth bound

- Unique sample x*
- Growth for the interval half width e^{cT}[x]



Quasi Monte Carlo

- Uniform grid $\{x^{(i)}\}$
- Growth for half the grid size e^{cT} a
- Interval hull



Continuous-time system: $\dot{x} = f(x)$

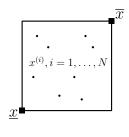
Assumption

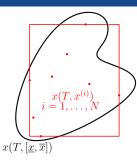
- There exists a scalar growth bound $c \in \mathbb{R}$
- The initial interval $[\underline{x}, \overline{x}]$ has a uniform sampling grid $\{x^{(i)}\}$ of size 2a

Proposition

$$x(T, [\underline{x}, \overline{x}]) \subseteq \left[\min_{i} x(T, x^{(i)}), \max_{i} x(T, x^{(i)})\right] + \left[-e^{cT}a, e^{cT}a\right]$$

- Grid granularity \rightarrow tune the tradeoff precision/complexity
- Also works for discrete-time systems





Random sampling and nested probabilistic objectives

- Accuracy $\varepsilon \in (0,1)$: a random initial state yields a successor in the interval approximation, with probability $> 1 \varepsilon$
- Confidence $\delta \in (0,1)$: probability $> 1-\delta$ that the interval approximation has the above accuracy
- ightarrow Want **high confidence** that the approximation has **high accuracy**
 - How many sample points N are needed to achieve this?

- No assumption
- Works for both continuous-time and discrete-time systems
- $\{x^{(i)}, i \in \{1, \dots, N\}\}$: random sampling of $[\underline{x}, \overline{x}]$

Proposition

If $N = \left\lceil \frac{1}{\varepsilon} \left(\frac{e}{e-1} \right) \left(\log \frac{1}{\delta} + 2n \right) \right\rceil$, we have the nested probabilities:

$$P\left(P\left(\left[\min_{i} x(T, x^{(i)}), \max_{i} x(T, x^{(i)})\right]\right) \ge 1 - \varepsilon\right) \ge 1 - \delta$$

 $1-\delta$ confidence that the interval approximation is at least (1-arepsilon)-accurate

- Sampling complexity only linear in n
- No over-approximation guarantees

Monte Carlo - Example

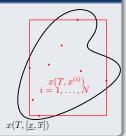
Proposition

If
$$N = \left\lceil \frac{1}{\varepsilon} \left(\frac{e}{e-1} \right) \left(\log \frac{1}{\delta} + 2n \right) \right\rceil$$
, we have the nested probabilities:

$$P\left(P\left(\left[\min_{i} x(T, x^{(i)}), \max_{i} x(T, x^{(i)})\right]\right) \ge 1 - \varepsilon\right) \ge 1 - \delta$$

Example

$$n=5$$
, $\varepsilon=0.05$, $\delta=0.01$ $N=463$ random samples give 99% chances that the interval approximation contains 95% of the reachable set



Inputs and time-varying systems

Discrete-time system: $x^+ = f(t, x, p)$ Continuous-time system: $\dot{x} = f(t, x, p)$

Time-varying vector field → all methods

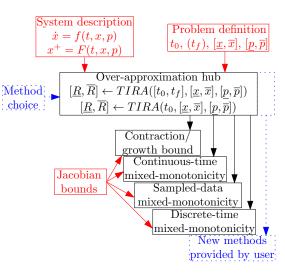
Input limitations

- \bullet Continuous-time systems: need constant input signals over $[0,\,\mathcal{T}]$ for
 - Sampled-data mixed-monotonicity
 - Quasi Monte Carlo
 - Monte Carlo
- Growth-bound method: need additive input $\dot{x} = f(t, x) + p$

TIRA: Toolbox for Interval Reachability Analysis

Design objectives

- Library of interval reachability methods in a unified framework
- Easily extensible with new methods
- Usable by non-experts



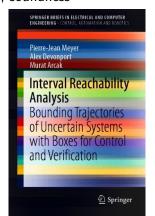
TIRA: Toolbox for Interval Reachability Analysis

Implemented methods and those coming soon

- Monotonicity (DT + CT)
- Mixed monotonicity (DT + CT)
- Sampled-data mixed monotonicity (CT)
 - Interval analysis
 - Sampling and falsification
 - Tunable method with second-order sensitivity
- Growth bounds (CT)
- Quasi-Monte Carlo (DT + CT)
- Monte Carlo (DT + CT)

- Overview of several interval reachability methods
- With various performance objectives
 → generality, complexity, tightness, accuracy, soundness

- Book: Interval Reachability Analysis (Meyer, Devonport, Arcak)
- Matlab toolbox: TIRA: Toolbox for Interval Reachability Analysis https://gitlab.com/pj_meyer/TIRA



Contact: pierre-jean.meyer@univ-eiffel.fr