
JAK NA POWER BI CHEATSHEET

DAX

What is DAX?

Introduction to DAX

Operators

Calculation contexts

“ Data Analysis Expressions (DAX) is a
library of functions and operators
combined to create formulas and

expressions “

Calcuation Groups Hierarchy

› Where to find
› Power BI, Power Pivot for Excel, Microsoft Analysis Services

› Purpose
› DAX was created to enumerate formulas across the data

model, where the data is stored in the form of tables, which
can be linked together through the sessions. They may have a
cardinality of either 1: 1, 1: N, or M: N and your direction,
which decides which table filters which. These sessions are
either active or inactive. The active session is automatically
and participates in the calculation. The inactive is involved in
this when it is activated, for example, by a function

USERELATIONSHIP()

Basic concepts
› Constructs and their notation
› Table – ‘Table‘
› Column – [Column] -> ‘Table‘[Column]
› Measure – [NameOfMeasure]

› Comments
› Single-line (CTRL + ´) – // or --
› Multi-line – /* */

› Data types
› INTEGER
› DECIMAL
› CURRENCY
› DATETIME
› BOOLEAN
› STRING
› VARIANT (not implemented in Power BI)
› BINARY

› DAX can work very well with some types as well combined as
if it were the same type. If so, for example, the DATETIME and
INTEGER data types are supported operator "+" then it is
possible to use them together.

Example: DATETIME ([Date]) + INTEGER (1) = DATETIME ([Date] + 1)

› Arithmetic { + , - , / , * , ^ }
› Comparative { = , == , > , < , >= , <= , <> }
› Joining text { & }
› Logic { && , II , IN, NOT }
› Prioritization { (,) }

Calculated Columns
› They behave like any other column in the table.
Instead of coming from a data source, they are
created through a DAX expression evaluated based on
the current context line, and we cannot get values of
another row directly.
› Import mode. Their evaluation and storage is in progress
when processing the model.
› DirectQuery mode. They are evaluated at runtime, which may
slow down the model.

Profit = Trades[Quantity]*Trades[UnitPrice]

Measures
› They do not compare row-based calculations, but they

perform aggregation of row-based values input contexts that
the environment passes to the calculation. Because of this,
there can be no pre-counting result. It must be evaluated
only at the moment when Measure is called.

› The condition is that they must always be linked to the table
to store their code, which is possible at any time alter.
Because their calculation is no longer directly dependent, it is
common practice to have one separate Measure Table, which
groups all Measures into myself. For clarity, they are
therefore further divided into folders.

Example of Measure:

SalesVolume = SUM (Trades[Quantity])

› Variables in DAX calculations allow avoiding
repeated recalculations of the same procedure.
Which might look like this:

NumberSort =
VAR _selectedNumber =

SELECTEDVALUE(Table[Number])
RETURN
IF(_selectedNumber < 4, _selectedNumber, 5)

› Their declaration uses the word VAR after followed
by the name "=" and the expression. The first using
the word VAR creates a section for DAX where
possible declare such variables 1 to X. Individual
variables always require a comment for their
declaration VAR before setting the name. To end this
section, the word RETURN that it defines is a
necessary return point for calculations.

› Variables are local only.
› If there is a variable in the formula that is not used

to get the result, this variable does not evaluate.
(Lazy Evaluation)

› Evaluation of variables is performed based on
evaluated context instead of the context in which
the variable is used directly. Within one, The
expression can be multiple VAR / RETURN sections
that always serve to evaluate the currently
evaluated context.

› They can store both the value and the whole table

Variables

Calculate type function

› All calculations are evaluated on a base basis some
context that the environment brings to the
calculation. (Evaluation context)
› Context Filter -
The following calculation calculates
the profit forindividual sales.

Revenue =
SUMX(Trades,

Trades[Quantity]*
Trades[UnitPrice]
)

If I place this calculation in a table
without a Country column, then the
result will be 5,784,491.77. With this column, we get "Total"
the same as the previous calculation. Still, the individual
records provide us with a FILTER context that filters in
calculating the input the SUMX function's input. They behave
the same way, for example, AXES in the chart.

› The filter context is can be adjusted with various functions,
such as FILTER,ALL, ALLSELECTED
› Row context - Unlike the previous one, this context does not
filter the table. It is used to iterate over tables and evaluate
values columns. They are typical, but at the same time,
specific example calculated columns that are calculated from
data that are valid for the table row being evaluated. In
particular that, manual creation is not required when creating
the line context because DAX makes it. Above the mentioned
example with the use of SUMX also hides in itself line context.
Because SUMX is the function for that specified, the table in
the first argument performs an iterative pass and evaluates
the calculation line by line. The line context is possible to use
even nested. Or, for each row of the table, evaluates each row
of a different table.

› CALCULATE, and CALCULATETABLE are functions that can
programmatically set the context filter. In addition to this
feature converts any existing line context to a context filter.
› Calculate and Calculatetable syntax:

CALCULATE / CALCULATETABLE (
<expression> [, <filter1> [, …]]
)

› The section filter within the Calculate expression is NOT of
type boolean but Table type. Nevertheless, boolean can be
used as an argument.

› Example of using the calculate function in a cumulative
calculation the sum of sales for the last 12 months:
CALCULATE (

SUM (Trades[Quantity]),
DATESINPERIOD(

DateKey[Date],
MAX (DateKey[Date]),
-1,
YEAR

))

› Syntax Sugar:
› [TradeVolume](Trades[Dealer] = 1)

=
CALCULATE ([TradeVolume], Trades[Dealer] = 1)

=
CALCULATE ([TradeVolume], FILTER (

ALL (Trades[Dealer]) ,
Trades[Dealer] = 1))

› They are very similar to Calculated members from MDX. In
Power BI, it is not possible to create them directly in the
Desktop application environment, but an External Tool
Tabular Editor is required.

› This is a set of Calculation Items grouped according to their
purpose and whose purpose is to prepare an expression,
which can be used for different input measures, so it doesn‘t
have to write the same expression multiple times. To where
she would be, but the input measure is placed
SELECTEDMEASURE().
Example:

CALCULATE (SELECTEDMEASURE(),
Trades[Dealer] = 1)

› From a visual point of view, the Calculation Group looks like a
table with just two columns, "Name," "Ordinal," and rows
that indicate the individual Calculation Items.

› In addition to facilitating the reusability of the prepared
expressions also provide the ability to modify the output
format of individual calculations. Within this section, “Format
String Expression ”often uses the DAX function
SELECTEDMEASUREFORMATSTRING(), which returns a format
string associated with the Measures being evaluated.

Example:

VAR _selectedCurrency = SELECTEDVALUE(Trades[Currency])
RETURN

SELECTEDMEASUREFORMATSTRING() & „ “ & _selectedCurrency

› In Power BI, they can all be evaluated pre-prepared items, or
it is possible, for
example, to use the
cross-section to define
items that are currently
being evaluated

› Sometimes, however, it is
necessary to enable the evaluation of Calculation Items only
for Specific Measures. In that case, it is possible to use the
ISSELECTEDMEASURE() function, whose output is a value of type
boolean or the SELECTEDMEASURENAME() function that returns
the name of the currently inserted measure as a string.

Conditions
› Like most languages, DAX uses the IF function. Within this

language, it is defined by syntax:
IF (<logical_test>, <value_if_true>[, <value_if_false>])

Where false, the branch is optional. The IF function explicitly
evaluates only a branch that is based on the result of a logical
test relevant.

› If both branches need to be evaluated, then there is a function
IF.EAGER() whose syntax is the same as IF itself but
evaluates as:

VAR _value_if_true = <value_if_true>
VAR _value_if_false = <value_if_false>
RETURN
IF (<logical_test>, _value_if_true, _value_if_false)

› IF has an alternative as IFERROR. Evaluates the expression
and return the output from the <value_if_error> branch only if
the expression returns an error. Otherwise, it returns the
value of the expression itself.

› DAX supports concatenation of conditions, both using
submerged ones IF, so thanks to the SWITCH function. It
evaluates the expression against the list values and returns one
of several possible result expressions.

› The basic building block of DAX queries is the expression
EVALUATE followed by any expression whose output is a
table.

Example:

EVALUATE
ALL (Trades[Dealer])

› The EVALUATE statement can be divided into three primary
sections. Each section has its specific purpose and its
introductory word.
› Definition – It always starts with the word DEFINE. This section defines
local entities such as tables, columns, variables, and measures. There can
be one section definition for an entire query, although a query can contain
multiple EVALUATEs
› Query – It always starts with the word EVALUATE. This section contains
the table expression to evaluate and return as a result.
› Result – This is a section that is optional and starts with the word ORDER
BY. It contains the possibility to sort the result based on the inserted
inputs.

Example:

DEFINE
VAR _tax = 0.79

EVALUATE
ADDCOLUMNS(
Trades,
„AdjustedpProfit“,

(Trades[Quantity] * Trades[UnitPrice]) * _tax
)

ORDER BY [AdjustedpProfit]

› This type of notation is used, for example, in DAX Studio
(daxstudio.org). It is a publicly available tool that provides free
access to query validation, code debugging, and query
performance measurement.
› DAX studio has the ability to connect directly to

Analysis Services, Power BI a Power Pivot for Excel

DAX Queries

Recommended sources
› Marco Russo & Alberto Ferrari

› Daxpatterns.com
› dax.guide
› The Definitive Guide to DAX

› DAX itself has no capability within the hierarchy to
automatically convert your calculations to parent or child
levels. Therefore, each level must Prepare Your Measures,
which are then displayed based on the ISINSCOPE function.
She tests which level to go just evaluating. Evaluation takes
place from the bottom to the top level.

› The native data model used by DAX does not directly support
its parent/child hierarchy. On the other hand, DAX contains
functions that can convert this hierarchy to separate columns.

› PATH - It accepts two parameters, where the first parameter is the key ID
column tables. The second parameter is the column that holds the parent
ID of the row. The result of this function then looks like this: 1|2|3|4
Syntax: PATH(<ID_columnName>, <parent_columnName>)
› PATHITEM – Returns a specific item based on the specified position
from the string, resulting from the PATH function. Positions are counted
from left to right. The inverted view uses the PATHITEMREVERSE function.
Syntax: PATHITEM(<path>, <position>[, <type>])
› PATHILENGTH – Returns the number of parent elements to the specified
item in given the PATH result, including itself.
Syntax: PATHLENGTH(<path>)
› PATHCONTAINS – Returns true if the specified item is specified exists in
the specified PATH path.
Syntax: PATHCONTAINS(<path>, <item>)

