
JAK NA POWER BI CHEATSHEET

POWER QUERY

What is Power Query?

Components

Data values Custom function Syntax Sugar

› Ribbon – A ribbon containing settings and pre-built features by Power
Query itself rewrites in M language for user convenience.

› Queries – simply a named M expression. Queries can be moved into
groups

› Primitive – A primitive value is a single-part value, such as a number,
logical, date, text, or null. A null value can be used to indicate the absence
of any data.

› List – The list is an ordered sequence of values. M supports endless lists.
Lists define the characters “{“ and “}“ indicate the beginning and the end of
the list.

› Record – A record is a set of fields, where the field is a pair of which form
the name and value. The name is a text value that is in the field record
unique.

› Table – A table is a set of values arranged in named columns and rows.
Table can be operated on as if it is a list of records, or as if it is a record of
lists. Table[Field]` (field reference syntax for records) returns a list of values in
that field. ̀ Table{i}` (list index access syntax) returns a record representing a
row of the table.

› Function – A function is a value that when called using arguments creates a
new value. Functions are written by listing the function argumets in
parentheses, followed by the transition symbol “=>“ and the expression
defining the function. This expression usually refers to argumets by
name. There are also functions without argumets.

› Parameter – The parameter stores a value that can be used for
transformations. In addition to the name of the parameter and the value it
stores, it also has other properties that provide metadata. The undeniable
advantage of the parameter is that it can be changed from the Power BI
Service environment without the need for direct intervention in the data
set. Syntax of parameter is as regular query only thing that is special is that
the metadata follows a specific format.

› Formula Bar – Displays the currently loaded step and allows you to edit
it.To be able to see formula bar, It has to be enabled in the ribbon menu
inside View category.

› Query settings – Settings that include the ability to edit the name and
description of the query. It also contains an overview of all currently applied
steps. Applied Steps are the variables defined in a let expression and they
are represented by varaibles names.

› Data preview – A component that displays a preview of the data in the
currently selected transformation step.

› Status bar – This is the bar located at the bottom of the screen. The row
contains information about the approximate state of the rows, columns,
and time the data was last reviewed. In addition to this information, there is
profiling source information for the columns. Here it is possible to switch
the profiling from 1000 rows to the entire data set.

“An IDE for M development“

Functions in Power Query

Knowledge of functions is your best helper when working with
a functional language such as M. Functions are called with
parentheses.
› Shared – Is a keyword that loads all functions

(including help and example) and enumerators in
result set. The call of function is made inside empty
query using by = # shared

Functions can be divided into two categories:
› Prefabricated – Example: Date.From()
› Custom – these are functions that the user himself prepares

for the model by means of the extension of the notation by
„()=> “, where the argumets that will be required for the
evaluation of the function can be placed in parentheses.
When using multiple argumets, it is necessary to separate
them using a delimiter.

Each value type is associated with a literal syntax, a set of values
of that type, a set of operators defined above that set of values,
and an internal type attributed to the newly created values.
› Null – null

› Logical – true, false

› Number – 1, 2, 3, ...

› Time – #time(HH,MM,SS)

› Date – #date(yyyy,mm,ss)

› DateTime – #datetime(yyyy,mm,dd,HH,MM,SS)

› DateTimeZone –
#datetimezone(yyyy,mm,dd,HH,MM,SS, 9,00)

› Duration – #duration(DD,HH,MM,SS)

› Text – “text“

› Binary – #binary(“link“)

› List – {1, 2, 3}

› Record – [A = 1, B = 2]

› Table – #table({columns},{{first row contenct},{}…})*

› Function – (x) => x + 1

› Type – type { number }, type table [A = any, B = text]
* The index of the first row of the table is the same as for the records in sheet 0

Operators
There are several operators within the M language, but not every
operator can be used for all types of values.
› Primary operators

› (x) – Parenthesized expression
› x[i] – Field Reference. Return value from record, list of values
from table.
› x{i} – Item access. Return value from list, record from table.
“Placing the “?“ Character after the operator returns null if the

index is not in the list “
› x(…) – Function invocation
› {1 .. 10} – Automatic list creation from 1 to 10
› … – Not implemented

› Mathematical operators – +, -, *, /
› Comparative operators

› > , >= – Greater than, greater than or equal to
› < , <= – Less than, less than or equal to
› = , <> – is equal, is not equal. Equal returns true even for
null = null

› Logical operators
› and – short-circuiting conjunction
› or – short-circuiting disjunction
› not – logical negation

› Type operators
› as – Is compatible nullable-primitive type or error
› is – Test if compatible nullable-primitive type

› Metadata - The word meta assigns metadata to a value.
Example of assigning metadata to variable x:
“x meta y“ or “x meta [name = x, value = 123,…]“
Within Power Query, the priority of the operators applies, so for example
“X + Y * Z“ will be evaluated as “X + (Y * Z)“

DEMO
› Operators can be combined. For example, as follows:

› LastStep[Year]{[ID]}
*This means that you can get the
value from another step based on the index of the column

› Production of a DateKey dimension goes like this:
#table(

type table [Date=date, Day=Int64.Type, Month=Int64.Type,
MonthName=text, Year=Int64.Type,Quarter=Int64.Type],

List.Transform(
List.Dates(start_date, (start_date-endd_ate),

#duration(1, 0, 0 ,0)),
each {_, Date.Day(_), Date.Month(_),

Date.MonthName(_), Date.Year(_), Date.QuarterOfYear(_)}
))

Keywords
and, as, each, else, error, false, if, in, is, let, meta, not,
otherwise, or, section, shared, then, true, try, type, #binary,
#date, #datetime, #datetimezone, #duration, #infinity, #nan,
#sections, #shared, #table, #time

Recursive functions

Example of custom function entries:
(x, y) => Number.From(x) + Number.From(y)

(x) =>
let

out = Number.From(x) +
Number.From(Date.From(DateTime.LocalNow()))

in
out

The input argumets to the functions are of two types:
› Required – All commonly written argumets in (). Without

these argumets, the function cannot be called.
› Optional – Such a parameter may or may not be to function to

enter. Mark the parameter as optional by placing text before
the argument name “Optional“. For example (optional x). If it
does not happen fulfillment of an optional argument, so be the
same for for calculation purposes, but its value will be null.
Optional arguments must come after required arguments.

Arguments can be annotated with `as <type>` to indicate
required type of the argument. The function will throw a type
error if called with arguments of the wrong type. Functions can
also have annotated return of them. This annotation is provided
as:
(x as number, y as text) as logical => <expression>

The return of the functions is very different. The output can be a
sheet, a table, one value but also other functions. This means
that one function can produce another function. Such a function
is written as follows:

let first = (x)=> () => let out = {1..x} in out in first

When evaluating functions, it holds that:

› Errors caused by evaluating expressions in a list of
expressions or in a function expression will propagate
further either as a failure or as an “Error“ value

› The number of arguments created from the argument
list must be compatible with the formal argumets of
the function, otherwise an error will occur with reason
code “Expression.Error“

For recursive functions is necessary to use the character “@“
which refers to the function within its calculation. A typical
recursive function is the factorial. The function for the factorial
can be written as follows:

let
Factorial = (x) =>

if x = 0 then 1 else x * @Factorial(x - 1),
Result = Factorial(3)

in
Result // = 6

Query Folding

› Each is essentially a syntactic abbreviation for declaring non-
type functions, using a single formal parameter named.
Therefore, the following notations are semantically
equivalent:

let
Source = ...,
addColumn = Table.AddColumn(Source, „NewName“, each [field1] + 1)

in
addColumn

--

let
Source = ...,
add1ToField1 = (_) => [field1] + 1,
addColumn(Source,“NewName“,add1ToField1)

in

The second piece of syntax sugar is that bare square brackets are syntax
sugar for field access of a Record named ̀ _`.

As the name implies, it is about composing. Specifically, the
steps in Power Query are composed into a single query, which
is then implemented against the data source. Data sources
that supports Query folding are resources that support the
concept of query languages as relational database sources.
This means that, for example, a CSV or XML file as a flat file
with data will definitely not be supported by Query Folding.
Therefore, the transformation does not have to take place
until after the data is loaded, but it is possible to get the data
ready immediately. Unfortunately, not every source supports
this feature.
› Valid functions

› Remove, Rename columns
› Row filtering
› Grouping, summarizing, pivot and unpivot
› Merge and extract data from queries
› Connect queries based on the same data source
› Add custom columns with simple logic

› Invalid functions
› Merge queries based on different data sources
› Adding columns with Index
› Change the data type of a column

Comments
M language supports two versions of comments:
› Single-line comments – can be created by // before code

› Shortcut: CTRL + ´
› Multi-line comments – can be created by /* before code and

*/ after code
› Shortcut: ALT + SHIFT + A

Each
Functions can be called against specific arguments. However, if
the function needs to be executed for each record, an entire
sheet, or an entire column in a table, it is necessary to append
the word each to the code. As the name implies, for each
context record, it applies the procedure behind it. Each is never
required! It simply makes it easier to define a function in-line
for functions which require a function as their argument.

let expression

Conditions

The expression let is used to capture the value from an
intermediate calculation in a named variable. These named
variables are local in scope to the `let` expression. The
construction of the term let looks like this:

let
name_of_variable = <expression>,

returnVariable = <function>(name_of_variable)
in

returnVariable

When it is evaluated, the following always applies:

› Expressions in variables define a new range containing
identifiers from the production of the list of variables and must
be present when evaluating terms within a list variables. The
expressions in the list of variables are they can refer to each
other

› All variables must be evaluated before the term let is evaluated.
› If expressions in variables are not available, let will not be

evaluated
› Errors that occur during query evaluation propagate as an error

to other linked queries.

Even in Power Query, there is an “If“ expression, which, based
on the inserted condition, decides whether the result will be a
true-expression or a false-expression.

Syntactic form of If expression:
if <predicate> then < true-expression > else < false-expression >

“else is required in M's conditional expression “

Condition entry:
If x > 2 then 1 else 0
If [Month] > [Fiscal_Month] then true else false

If expression is the only conditional in M. If you have multiple
predicates to test, you must chain together like:
if <predicate>

then < true-expression >
else if <predicate>

then < false-true-expression >
else < false-false-expression >

When evaluating the conditions, the following applies:

› If the value created by evaluating the if a condition is not a
logical value, then an error with the reason code
“Expression.Error„ is raised

› A true-expression is evaluated only if the if condition
evaluates to true. Otherwise, false-expression is evaluated.

› If expressions in variables are not available, they must not be
evaluated

› The error that occurred during the evaluation of the condition
will spread further either in the form of a failure of the entire
query or “Error“ value in the record.

The expression try… otherwise
Capturing errors is possible, for example, using the try
expression. An attempt is made to evaluate the expression
after the word try. If an error occurs during the evaluation, the
expression after the word otherwise is applied

Syntax example:
try Date.From([textDate]) otherwise null

