

Cofinancé par l'Union européenne

La biographie d'Emmy Noether

Portrait d'Emmy Noether

Auteur inconnu. (vers 1900). *Portrait of Emmy Noether,* around 1900 [Photographie]. Dans Wikimedia Commons. Association mathématique américaine, Musée de Brooklyn, Agnes Scott College.

https://commons.wikimedia.org/wiki/File:Noether.jpg

Emmy Amalie Noether est née en 1882 à Erlangen, en Allemagne. Son père, Max Noether, était un mathématicien de renom, et deux de ses frères ont poursuivi des carrières en sciences. Enfant, Emmy regardait son père travailler et était fascinée par les motifs et les symétries, ce qui a éveillé son amour pour les mathématiques. Adulte, elle est devenue une mathématicienne célèbre pour ses travaux en algèbre abstraite et le théorème de Noether, qui relie les symétries aux lois de conservation en physique et a contribué à faire avancer la théorie de la relativité d'Einstein. Elle a publié plus de 40 articles et a collaboré avec des mathématiciens de renom comme Felix Klein et David Hilbert. Malgré la discrimination sexuelle dont elle a été victime, elle a acquis une reconnaissance mondiale. Plus tard, elle a émigré aux États-Unis, où elle a poursuivi ses recherches et enseigné au Bryn Mawr College. Emmy Noether est décédée en 1935, laissant derrière elle un héritage qui continue d'inspirer les mathématiciens et les scientifiques du monde entier.

Plan de cours 1

Découvrir le moment angulaire de Noether

Mots-clés : moment angulaire, gyroscope, symétrie rotationnelle, lois de conservation

iois de conservation	
Durée : 60 min	Âge : de 6 à 9 ans
Lieu :	Matières STEAM impliquées :
Salle de classe	S (Sciences) : la physique du mouvement des objets en
	rotation et de leurs changements de direction. Les
	bases des forces et du mouvement.
Description	Au cours de cette expérience, les enfants apprendront
	la notion de moment angulaire et comment les objets
	en rotation influencent le mouvement et la direction.
	L'expérience est divisée en deux parties : lors de la
	première partie (étapes 1 et 2), on utilise des poids ;
	lors de la deuxième partie (étapes 3 et 4), on utilise
	une roue de vélo.
Objectifs	À la fin de cette expérience, les enfants sauront :
d'apprentissage	Décrire le moment angulaire avec leurs propres
	mots et donner un exemple du mouvement
	gyroscopique observé au cours de l'expérience.

	Expliquer comment le rapprochement ou
	l'éloignement des masses du centre de rotation
	change la vitesse de rotation de l'objet.
	Montrer comment le repositionnement d'un poids
	sur un objet en rotation change sa vitesse de
	rotation, ce qui illustre le principe de conservation
	du moment angulaire.
Lien avec le modèle	Le travail d'Emmy Noether a lié les symétries naturelles
féminin	aux lois de conservation, y compris la conservation du
	moment. Cela a changé la compréhension de la
	physique et a porté à d'autres découvertes. Au cours
	de cette expérience, les enfants suivront les traces
	d'Emmy et joueront le rôle de « petits physiciens » en
	explorant l'un de ces principes de conservation, le
	moment angulaire.
Individuel ou groupe	Activité individuelle
Sécurité	Cette expérience est sûre pour les enfants si elle est
	supervisée. Un adulte devrait les aider à faire tourner
	la chaise, la roue du vélo et s'assurer que les poids
	utilisés soient adaptés aux enfants.
Matériel	☐ Roue de vélo avec des poignées (ou un gyroscope)
	□ Chaise à roulettes qui tourne sur elle-même
	□ Poids légers qui peuvent être tenus dans les mains

	(par exemple des haltères de 2 Kg ou deux
	bouteilles d'eau)
Plan de cours	
Introduction	Commencez avec une question : « Avez-vous déjà joué
(10 min)	avec une roue ou en avez-vous déjà vu une rouler sur
	le sol ? Lorsqu'elle se déplace vite, elle semble rester
	début toute seule. Mais, dès qu'elle ralentit, elle perd
	de stabilité et peut se renverser. Pourquoi pensez-
	vous que cela se produit ? ». Dites-leur que, avec cette
	expérience, ils verront que les objets en rotation se
	comportent différemment et que cela est lié à un
	principe appelé moment angulaire.
	Introduisez Emmy Noether en racontant comment ses
	études sur les lois de la physique ont aidé les
	scientifiques à comprendre des concepts comme
	celui-ci.
Question de	Demandez : « Pensez-vous que le fait de bouger les
recherche /	bras vers l'intérieur ou vers l'extérieur pendant la
Hypothèse	rotation changera la vitesse à laquelle vous tournez ? »
(5 min)	
	Laissez les enfants partager leurs suppositions. Toutes
	les réponses sont les bienvenues et l'expérience
	donnera la réponse.

Instructions étapes par étapes

(35 min)

Étape 1 – Observer l'extension du bras pendant la rotation :

Demandez un volontaire et faites asseoir l'enfant sur une chaise qui tourne alors qu'il tient dans chaque main un poids léger. Faites tourner doucement la chaise et demandez à l'enfant de bouger les bras vers l'extérieur. Demandez à tous les enfants de faire attention à la vitesse de rotation de la chaise.

Étape 2 - Changer la position des bras afin de modifier la vitesse :

Alors qu'il tourne, demandez à l'enfant sur la chaise de rapprocher les poids de son corps. La vitesse de rotation de la chaise va augmenter. Si l'enfant éloigne les bras à nouveau, elle va diminuer et vice versa.

Étape 3 - Introduire la roue de vélo qui tourne :

Pour l'autre partie de l'expérience, demandez à un autre enfant volontaire de s'asseoir sur la chaise en tenant la roue de vélo horizontalement. Cette fois, faites tourner doucement la roue de vélo et faites remarquer aux enfants que l'enfant sur la chaise commence à tourner.

	Étape 4 - Incliner la roue afin d'altérer la rotation :
	Demandez à l'enfant sur la chaise de placer la
	roue de vélo en position verticale et faites
	remarquer aux enfants que la rotation ralentit
	voire s'arrête complètement. Placer à nouveau la
	roue en position horizontale fera tourner la
	chaise plus vite.
Source	"Conservation of Angular Momentum" par Springfield
	College
	"Spinning Wheel on Spinning Chair" par
	utexascnsquest
Conclusion	L'expérience a confirmé que rapprocher ou éloigner
(5 min)	les poids du centre de rotation change la vitesse de
	rotation. En rapprochant les poids, la vitesse augmente
	alors qu'en les éloignant celle-ci diminue. De même,
	avec la roue de vélo, nous avons vu que le changement
	de direction de la roue affectait la rotation de l'enfant
	sur la chaise, démontrant ainsi que les objets en
	rotation peuvent influencer leurs mouvements
	respectifs. Cela est dû au moment angulaire.
Expliquez	Lorsqu'un objet tourne, il génère un moment
l'expérience	angulaire. En rapprochant le poids du centre d'un objet
(5 min)	en rotation, cet objet commencera à tourner plus vite

en raison de la conservation du moment angulaire. En revanche, lorsque la masse de l'objet est répartie sur une plus grande surface (c'est-à-dire lorsque les bras sont écartés), la vitesse de rotation ralentit.

Afin d'aider les enfants à visualiser ce phénomène et à faire le lien entre ce qu'ils ont observé lors de l'expérience et les choses qu'ils voient tous les jours, l'enseignant peut expliquer ce qu'est un gyroscope (un dispositif en rotation qui aide à maintenir les objets stables en s'opposant aux changements de direction). Lorsqu'un objet tourne, comme un gyroscope, il possède un moment angulaire, ce qui le rend plus difficile à renverser ou à changer brusquement de mouvement. Ce concept est utilisé dans de nombreux cas que nous pouvons observer au quotidien :

- Lorsque les roues d'un vélo tournent, le vélo reste en équilibre et il est plus facile à utiliser, grâce au moment angulaire.
- Dans les smartphones, de petits gyroscopes détectent si vous tournez ou inclinez l'appareil, ajustant en conséquence l'orientation de l'écran.
- Le moment angulaire est aussi essentiel pour maintenir les trains et les voitures stables lorsqu'ils effectuent des virages.

_	
	Ces exemples montrent la connexion entre la rotation
	et l'équilibre, aidant les enfants à lier ce qu'ils ont vu
	au cours de l'expérience aux objets qu'ils voient
	quotidiennement.
Explication	Le moment angulaire est un concept clé de la physique
scientifique	qui décrit l'inertie rotationnelle d'un objet en rotation.
	Comme nous venons de le voir, lorsqu'un objet
	tourne, il génère du moment angulaire.
	Le moment angulaire d'un objet en rotation dépend
	donc de la répartition de la masse de l'objet et de la
	vitesse de l'objet en rotation. Mathématiquement, il est
	représenté par la formule suivante :
	$\mathbf{L} = \mathbf{I} \cdot \mathbf{\omega}$
	Où:
	ullet L est le moment angulaire ;
	• I est le moment de l'inertie (ou comment la
	masse est distribuée par rapport au centre de
	rotation) ; et
	• ω est la vitesse angulaire (ou la vitesse de
	rotation).
	Lorsqu'un objet commence à tourner, une valeur ${f L}$ se
	crée. Puisque $f L$ est constante lorsque l'objet

commence à tourner, cela signifie que si le moment de l'inertie **I** diminue (par exemple lorsque les poids sont rapprochés de l'axe de rotation), ω doit augmenter, donc l'objet commence à tourner plus vite. Inversement, si I augmente (en éloignant les poids de l'axe de rotation), ω diminue, donc la vitesse diminue.

Le même concept est appliqué à la partie de l'expérience concernant la roue qui tourne. Lorsque l'enfant tenait la roue horizontalement, sa force essayait de « pousser » contre la chaise, ce qui faisait tourner la chaise et l'enfant. Cela s'est produit parce que le moment angulaire (c'est-à-dire la force de rotation de la roue) était aligné sur la rotation de la chaise.

Mais lorsque la roue était mise en position verticale, sa force pointait vers le haut ou vers le bas plutôt que sur les côtés, donc il n'y avait plus rien qui « poussait » la chaise à continuer de tourner. De ce fait, la chaise a arrêté de tourner car la rotation de la rue était à présent exercée dans une direction qui n'avait pas d'influence sur le mouvement de la chaise.

Les recherches d'Emmy Noether ont aidé à démontrer que les lois de conservation, comme le moment angulaire, sont liées aux symétries naturelles. En d'autres termes, le moment angulaire est conservé dans les systèmes à symétrie de rotation, ce qui signifie que sa quantité totale reste constante en l'absence de forces extérieures. Ce principe de conservation explique pourquoi les objets dotés d'un moment angulaire, comme les toupies ou les roues de vélo, conservent leur état de rotation.

Plan de cours 2

Découvrir les principes de conservation de Noether avec le principe de Bernoulli

Mots-clés : principe de Bernoulli, flux d'air, aérodynamique, lois de conservation

Durée : 60 min	Âge : de 6 à 9 ans
Lieu : Salle de classe	Matières STEAM impliquées : S (Sciences) : la physique du mouvement de l'air et comment cela influence les objets.
	E (Ingénierie) : comment ce principe aide à créer des objets comme des avions.
Description	Les enfants exploreront le principe de Bernoulli et apprendront comment les différences dans le flux d'air et la pression peuvent causer le soulèvement des objets. L'expérience est divisée en 2 parties : dans la première partie (étapes 1 et 2), les enfants utiliseront un sac en polypropylène ; dans la deuxième partie (étapes 3, 4 et 5), les enfants utiliseront les feuilles en papier.

Objectifs	À la fin de l'expérience, les enfants seront capables de :
d'apprentissage	Expliquer comment l'air en mouvement (flux d'air)
	crée des différences de pression, ce qui soulève des
	objets comme le papier ou les fait rester plats ;
	Décrire au moins deux changements visibles dans le
	comportement d'un objet (se soulever, se plier)
	lorsque l'air souffle au-dessous ou au-dessus de
	celui-ci ;
	Recueillir et comparer leurs observations (combien
	de respirations sont nécessaires pour gonfler un
	sac, comment le papier se déplace) et discuter de
	comment le flux d'air affecte chaque résultat.
Lien avec le modèle	Cette expérience est liée aux contributions d'Emmy
féminin	Noether à la physique, en particulier à ses études sur
	les lois de conservation. Les idées d'Emmy ont permis
	de comprendre comment des forces, telles que le flux
	d'air, affectent les objets, un principe qui permet à la
	technologie moderne, comme les avions, de défier la
	gravité.
Individuel ou groupe	Activité individuelle ou en groupes (de 3-4)
Sécurité	Les produits utilisés sont sûrs pour les enfants avec la
	supervision d'un enseignant lorsqu'ils utilisent un
	sèche-cheveux.

Matériel	☐ 5 sacs en polypropylène
	□ 1 sèche-cheveux (facultatif)
	□ 1 rouleau de ruban adhésif
	☐ Feuilles de papier A4 (une pour chaque enfant)
	Plan de cours
Introduction	Commencez avec une question : « vous vous êtes déjà
(10 min)	demandé comment un avion fait-il pour rester dans le
	ciel même s'il est aussi lourd ? Comment pensez-vous
	qu'il vole ? »
	Expliquez qu'ils vont faire une expérience avec le flux
	d'air et la pression, des concepts que les scientifiques
	et les ingénieurs utilisent pour éviter qu'un avion ne
	tombe du ciel.
Question de	Demandez : « Pensez-vous que la façon dont on
recherche /	souffle de l'air dans un sac ou autour d'une feuille de
Hypothèse	papier peut faire plier ou bouger les objets ? »
(5 min)	Encouragez les enfants à partager leurs suppositions.
	L'expérience donnera la réponse !
Instructions étapes	Étape 1 – Gonflement direct du sac
par étapes	Demandez 4 volontaires ou créez des groupes de
(30 min)	3–4 enfants. Demandez à l'un d'entre eux de
	souffler directement dans le sac en polypropylène
	pour le gonfler pendant que les autres enfants

comptent combien de respirations sont nécessaires pour le remplir.

Étape 2 - Gonflement efficace du sac

Démontrez qu'il est possible de remplir le sac plus rapidement en le tenant légèrement éloigné de la bouche et en soufflant dedans.

Étape 3 - Préparez l'angle du papier :

Ensuite, donnez une feuille de papier à chaque enfant et aidez-les à coller une feuille sur le bord de la table pour que la plupart de la feuille se trouvent au-delà du bord.

Étape 4 - Souffler de l'air au-dessous :

Demandez aux enfants de souffler de l'air en dessous de la partie du papier qui déborde. La même chose peut être faite avec un sèche-cheveux afin de montrer aux enfants que peu importe la force de soufflage, le résultat sera très similaire : le papier se pliera et bougera à peine.

Étape 5 - Souffler de l'air au-dessus :

Demandez aux enfants de souffler au-dessus du papier ou d'utiliser un sèche-cheveux pour voir le papier se plier.

	1
Source	Remplissage d'un sac en polypropylène : <u>"Bernoulli's</u>
	Principle" par Wolf_Science
	Souffler un papier : <u>"Bernoulli's Principle Demo: Paper</u>
	on Table" par Physics Demos
Conclusion	Vérifiez l'hypothèse initiale et demandez aux enfants
(5 min)	de partager leurs observations. Souffler de l'air dans le
	sac d'une certaine façon l'a fait gonfler plus
	rapidement. De la même façon, souffler de l'air au-
	dessus du papier a fait bouger visiblement le papier et
	même plier alors que souffler au-dessous l'a à peine
	fait bouger.
Expliquez	Lorsqu'on souffle directement l'air dans le sac depuis
l'expérience	l'ouverture, juste l'air de la respiration entre dans le
(5 min)	sac, donc il faut plus de respirations pour le remplir.
	Mais, lorsque le sac est maintenu légèrement éloigné
	de la bouche et qu'on souffle dedans, l'air en
	mouvement rapide qui se crée attirera en fait plus d'air
	de la pièce avec lui. Cet air supplémentaire ira
	également dans le sac et le fera gonfler plus
	rapidement.
	Lorsqu'on souffle au-dessous du papier, il bouge à
	peine. Cela se produit car la pression de l'air reste à
	peu près la même des deux côtés, donc il n'y a pas de

grosse différence de pression pour faire soulever le papier. Mais, lorsqu'on souffle au-dessus, cela crée une mineure pression au-dessus du papier. Cette différence de pression fait soulever le papier, de manière similaire à ce qui se passe avec les avions (même si, avec les avions, d'autres facteurs comme la forme des ailes jouent également un rôle).

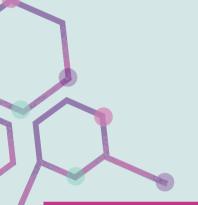
Explication scientifique

Le principe de Bernoulli a été découvert par le scientifique suisse Daniel Bernoulli au 18ème siècle. Ce principe décrit la relation entre la vitesse et la pression d'un fluide (comme l'air ou l'eau) : si la vitesse d'un fluide augmente, la pression qu'il exerce diminue.

Ce principe présente d'importantes applications dans le monde qui nous entoure, spécialement dans le domaine de l'aérodynamique, où il nous aide à comprendre comment des objets comme des ailes d'avions génèrent de la portance. La surface supérieure des ailes d'un avion, par exemple, est courbée, donc l'air doit se déplacer plus rapidement au-dessus plutôt qu'au-dessous. Cet air qui se déplace plus rapidement au-dessus réduit la pression sur la partie supérieure de l'aile, alors que l'air qui se déplace plus lentement au-dessous de celle-ci

maintient une pression plus élevée. La différence de pression crée une force qui pousse vers le haut, appelée portance, qui aide l'avion à voler.

Le principe de Bernoulli est fondamental non seulement pour le vol mais aussi pour de nombreuses formes d'ingénierie et de design. Les recherches d'Emmy Noether au cours du 20ème siècle sur les lois de conservation (par exemple des principes qui expliquent comment certaines quantités restent constantes dans la nature) ont lié des concepts comme celui de Bernoulli à des lois physiques plus complexes. En reliant les symétries naturelles à ces principes de conservation, ses recherches ont aidé les scientifiques à mieux comprendre le mouvement, l'énergie et les forces. Tout cela exerce une influence sur l'ingénierie moderne et l'innovation, de la conception de voitures plus sûres à la poursuite de l'exploration de l'espace.



#steamtales-project

www.steamtales.eu

STEAM Tales (KA220-HE-23-24-161399) est financé par l'Union européenne. Les points de vue et les opinions exprimés sont toutefois ceux des auteurs et ne reflètent pas nécessairement ceux de l'Union européenne ou du Nationalen Agentur im Pädagogischen Austauschdienst. Ni l'Union européenne ni l'autorité chargée de l'octroi des subventions ne peuvent en être tenues pour responsables.

