INDIRECT TRANSFER TO CATHETERIZATION LABORATORY FOR ST ELEVATION **MYOCARDIAL INFARCTION IS ASSOCIATED** WITH MORTALITY INDEPENDENT OF SYSTEM **DELAYS: INSIGHTS FROM THE -PCI REGISTRY**

Farzin Beygui¹, Vincent Roule¹, Fabrice Ivanes², Thierry Dechery³, Olivier Bizeau⁴, Laurent Roussel⁵, Philippe Dequenne⁶, Marc-Antoine Arnould₇, Nicolas Combaret⁸, Jean Philippe Collet⁹, Philippe Commeau¹⁰, Guillaume Cayla¹¹, Gilles Montalescot⁹, Hakim Benamer¹², Pascal Motreff8, Denis Angoulvant2, Pierre Marcollet³, Stephan Chassaing⁷, Katrien Blanchart¹, René Koning¹³ and. Grégoire Rangé^{5;} On behalf of FRANCE-PCI investigators

¹CHU de Caen, ²CHU de Tours, ³Center Hospitalier de Bourges, ⁴CHR de Orléans, ⁵Les Hôpitaux de Chartres, ⁶Clinique Oréliance, Saran, ⁷Nouvelle clinique Tourangelle, Saint-Cyr-Sur-Loire, ⁸CHU de Clermont-Ferrand, ⁹Groupe hospitalier Pitié-Salpêtrière, Paris,¹⁰Polyclinique les fleurs, Ollioules, ¹¹CHU de Nîmes,¹²Clinique de la Roseraie, Aubervilliers, ¹³Clinique Saint Hilaire, Saint Hilaire, Rouen; France

BACKGROUND

First medical contact (FMC)-to-balloon time is associated with outcome of ST-elevation myocardial infarction (STEMI). We aimed to assess the impact on mortality and the determinants of indirect versus direct transfer to the cardiac catheterization laboratory (CCL) independent of system delays

METHODS

We analyzed data from 2206 STEMI patients consecutively included in a prospective multiregional percutaneous coronary intervention (PCI) registry. The primary endpoint was 1-year mortality. The impact of indirect admission to CCL on mortality was assessed using Cox models adjusted on FMC-to-balloon time and covariables unequally distributed between groups. A multivariable logistic regression model assessed determinants of indirect transfer.

RESULTS

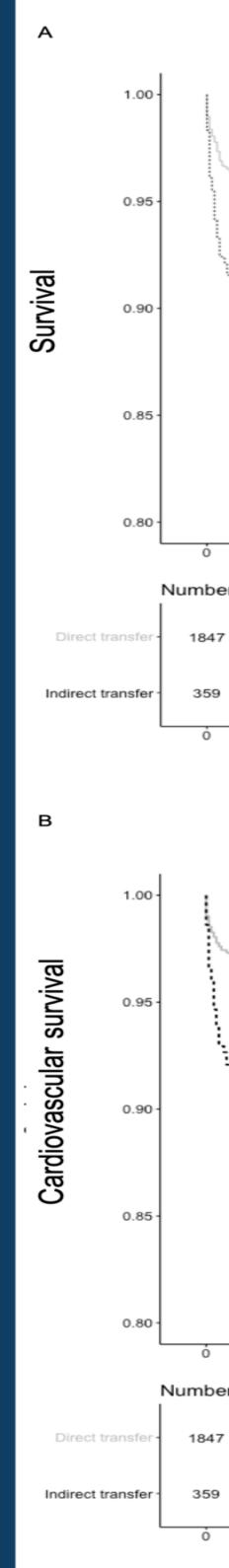
A total of 359 (16.3%) and 1847 (83.7%) were indirectly and directly admitted for PCI.

Indirect admission was associated with higher risk features, different FMCs and suboptimal pre-PCI antithrombotic therapy.

At 1-year follow-up, 51 (14.6%) and 137 (7.7%) were dead in the indirect and direct admission groups respectively (adjusted-HR 1.73; 95%Cl 1.22-2.45).

The association of indirect admission with mortality was independent of pre-FMC and FMC characteristics.

Older age, paramedics- and private physician-FMCs were independent determinants of indirect admission (adjusted-HRs 1.02 per year, 95%Cl 1.003-1.03; 5.94, 95%CI 5.94 3.89-9.01; 3.41; 95%CI 1.86-6.2, respectively).


CONCLUSION

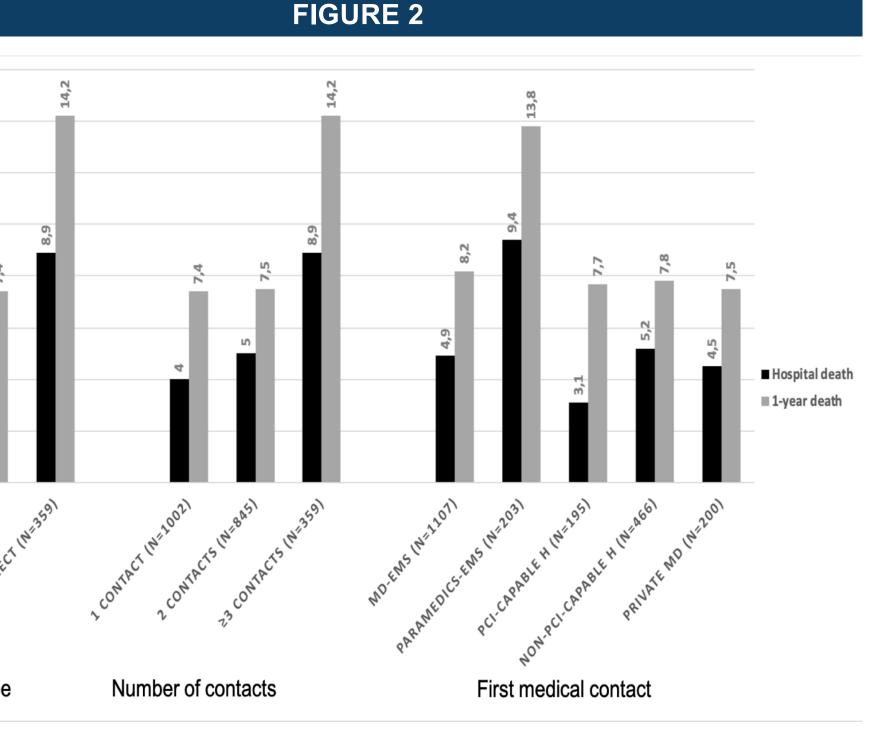
Our study showed that, indirect admission to PCI for STEMI is associated with 1-year mortality independent of FMC to balloon time and should be considered as an indicator of quality of care.

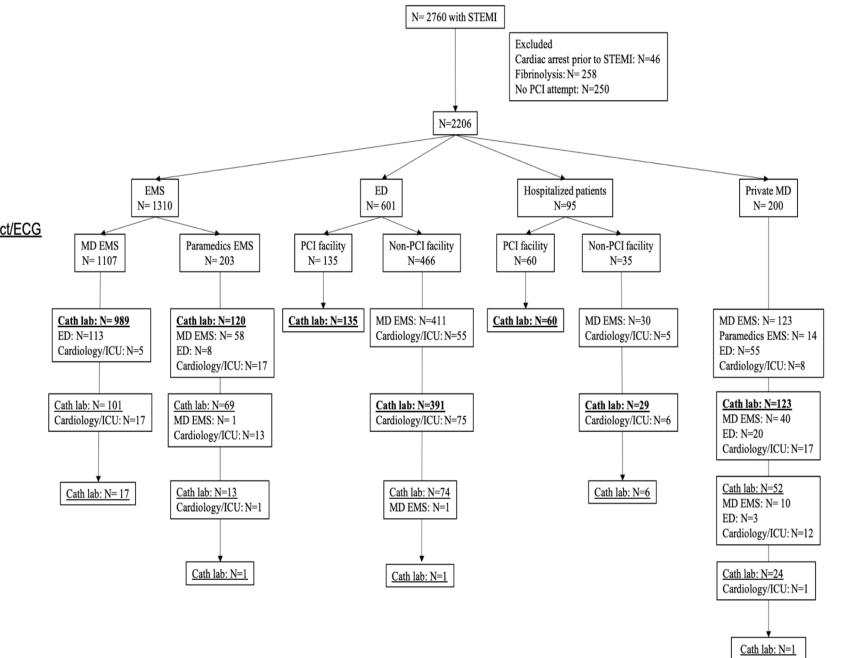
Indirect admission is associated with higher-risk features and suboptimal antithrombotic therapy. Older age, paramedics-FMC and self-

presentation to a private physician were independently associated with indirect admission.

Our study, supports population education especially targeting elderly, more adequately dispatched FMC and improved pre-CCL management.

Indirect transfer to catheterization laboratory for primary PCI for STEMI was associated with 1-Year mortality and cardiovascular mortality independent of system delays and pre-hospital characteristics of the patients


		Direct Indirect											
								Adju	sted p	=0.00	02		
and a second					~~~~			°					First medical conta
·		·					·····	······					Second contact
											···\		Third contact
			100	150	100			270	200	220	200		Fourth contact
³⁰ r at risk	60	90	120	150	¹⁸⁰ Time in da	210 ays	240	270	300	330	360		Fifth contact
1688	1674	1672	1667	1664	1656	1651	1650	1645	1644	1644	1641		Sixth contact
309	308	305	304	303	302	302	300	300	298	298	296		
30	60	90	120	150	180 Time in da	210 ays	240	270	300	330	360		
			Di	rect			. Indii		sted p	=0.00	01		16 14 12 $\frac{12}{8}$ 10
· · · · · · · · · · · · · · · · · · ·		~~											0 0 0 01 01 (%) 0 4,4 0 0 0 0
30	60	90	120	150	180 Time in da	210	240	270	300	330	360	_	DIRECT INFIBATI
r at risk					i ime in da	ays							DIRECT I INDI
1688	1674	1672	1667	1664	1656	1651	1650	1645	1644	1644	1641		
309	308	305	304	303	302	302	300	300	298	298	296		Admission ty
30	60	90	120	150	180 Time in da	210 ays	240	270	300	330	360		


None

DISCLOSURE INFORMATION

Mortality based on admission pathway

Patient flow chart

