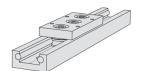
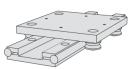


Überschrift

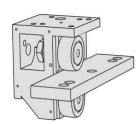

Wir über uns Inhalt

Linearführung


LGA Seite 3 - 5

LGB Seite 6 - 8

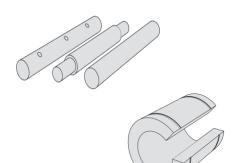
LGC Seite 9 - 11


Kurvenführung

PARO Seite 12 - 26

Schwerlast Linearführung

HEAVTE Seite 27 - 32



Präzisions Wellen

WR Seite 33 - 34

Linear-Gleitlager

PTFE Seite 34 - 37

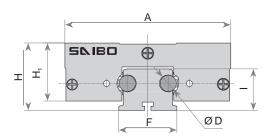
LGA Linearführung

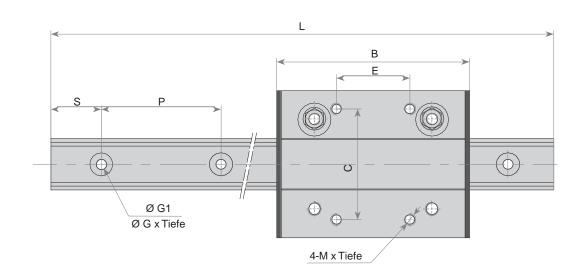
Aufbau

LGA Linearführung Systeme bestehen hauptsächlich aus leichtem Material aus Aluminiumlegierungen. Vier Rollen im Laufwagen laufen auf den gehärteten Wellen der Führung. Stabile Rollbewegungen eignen sich besonders für den Einsatz in Materialflusssystemen und automatischen Fertigungsstraßen. Unteres Bild zeigt seinen Aufbau.

Führung

Gehäuse aus eloxiertem Aluminium mit zwei verchromten Stahlwellen.


Laufwagen


Platte aus eloxiertem Aluminium

- 4 Stück zweireihige Kugeln Lager (Rollen)
- 2 Stück konzentrisch und 2 Stück exzentrisch
- 2 Stück Schmierungsdeckel aus Kunststoff mit ölgetränkten Filztabstreifern

Merkmale

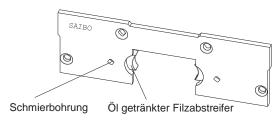
- 1. Hohe Geschwindigkeit, geringe Reibung und geräuscharm
- 2. Vorspannung ist einstellbar
- 3. Versiegelt und geschmiert

Тур	Abme g Mon					messui Wagen	-		Abmessun g Führung								
	H F		Α	В	С	Е	H ₁	M x Tiefe	D	G x Tiefe	G₁	1	S	Р	L _{max} *		
SB-LGA20	30	20	63	92	53	40	26	M6 x 8	6	9 x 5,5	5,5	19,5	30	60	1.020		
SB-LGA25	32,5	28	80	105	60	40	28	M6 x 8	8	12,5 x 5,5	5,5	20	25	50	3.000		
SB-LGA30	38,5	34,2	100	120	85	50	33	M8 x 10	10	14,5 x 6,5	6,5	24	25	50	4.000		

Lintec Antriebstechnik GmbH

LGA Linearführung

Spiel einstellen

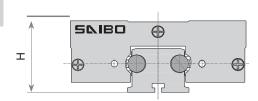

Für die Steifigkeit und Stabilität des Systems ist kein Spielraum notwendig. Die LGA-Serie verwendet zwei konzentrische Schrauben auf der einen Seite in Richtung der Schienen und zwei exzentrische Schrauben auf der anderen Seite. Diese beiden Exzenterbolzen dienen zur spielfreien Einstellung.

- 1. Ziehen Sie die konzentrischen Schrauben fest.
- 2. Ziehen Sie die Exzenterbolzen bis nahe des kritischen Punktes, aber nicht bis zum kritischen Punkt (Um die Exzenterbolzen zu drehen).
- Drehen Sie die Exzenterbolzen mit einem geraden Schraubenzieher am Ende des Bolzens, um den Abstand einzustellen. Stellen Sie den Abstand auf Null ein.
- 4. Schieben Sie den Schlitten von Hand und stellen Sie ihn so ein, dass ein leichter Rutschwiderstand entsteht.
- Halten Sie die Position des Exzenterbolzens fest und ziehen Sie die Mutter fest.

Vorspannung einstellen

Hier herrscht das gleiche Prinzip wie zuvor beim einstellen des Spielraums. Zuerst muss der Abstand auf Null gestellt werden. Weiterdrehen
und die Exzenterbolzen vorspannen. Eine angemessene Vorbelastung
sollte beliebig je nach Anwendung entschieden werden. Eine falsche
Belastung verringert die Lebensdauer des Systems. Bitte handeln Sie daher
mit Vorsicht.

Schmierung

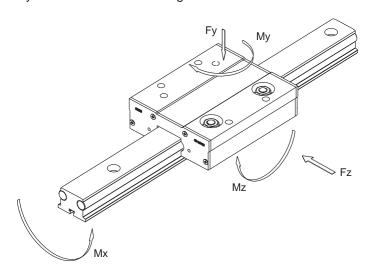


Die Kunststoffschmierschutzabdeckung enthält mit Öl getränkte Filzabstreifer, die über Schmierbohrungen nachgeschmiert werden können.

Arbeitsparameter

Max. Geschwindigkeit: 10 m/s Max. Beschleunigung: 50 m/s² Arbeitstemperatur: – 20° C ~ +80° C

Präzision



Toleranz H: ± 0,20 mm

Hinweis: Geringere Toleranzen sind auf Anfrage erhältlich.

Last und Lebensdauerberechnung

Aufgrund der Härte des Führungsschachts und der Ermüdungsanalyse der Führung und Rollen wird klar, dass die Lebensdauer der Führung nicht die Lebensdauer des Systems bestimmt. Es wird durch die Lebensdauer der Roller bestimmt. Die Lebensdauer des Systems hängt von der tatsächlichen Kombination aus Last, Arbeitsstatus und Umgebungsbedingungen ab. Daher sollte der Belastungsfaktor zuerst berechnet werden. Dann könnte das Systemleben anhand der folgenden Formel berechnetwerden.

Formel zur Berechnung des Lastfaktors LF

(LF sollte für jede Lastkombination geringer als 1,0 sein)

$$\mathbf{LF} = \frac{\mathbf{F}\mathbf{y}}{\mathbf{M}\mathbf{x}_{\text{max}}} + \frac{\mathbf{F}\mathbf{z}}{\mathbf{M}\mathbf{x}_{\text{max}}} + \frac{\mathbf{M}\mathbf{y}}{\mathbf{M}\mathbf{z}_{\text{max}}} + \frac{\mathbf{H}\mathbf{z}}{\mathbf{M}\mathbf{z}_{\text{max}}} + \frac{\mathbf{F}\mathbf{z}_{\text{max}}}{\mathbf{F}\mathbf{z}_{\text{max}}} + \frac{\mathbf{F}\mathbf{z}_{\text{$$

Fy – Tatsächliche Belastung in Y-Richtung (N).

Fz – Tatsächliche Belastung in Z-Richtung (N).

Mx – Tatsächliches Moment in X-Richtung (Nm).

My - Tatsächliches Moment in Y-Richtung (Nm).

Mz – Tatsächliches Moment in Z-Richtung (Nm).

Die folgenden Parameter können der Tabelle der Belastbarkeit entnommen werden

Fy_{max} – Maximale Belastbarkeit in Y-Richtung (N).

Fz_{max} – Maximale Belastbarkeit in Z-Richtung (N).

Mx_{max} - Maximale Momentkapazität in X-Richtung (Nm).

My_{max} - Maximale Momentkapazität in Y-Richtung (Nm).

Mz_{max} – Maximale Momentkapazitätin Z-Richtung (Nm).

Lintec Antriebstechnik GmbH

LGA Linearführung

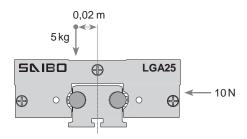
Belastbarkeit

Tim	Max. Belast	barkeit (N)	Max	. Drehmoment (N	m)
Тур	Fy _{max}	Fz _{max}	Mx _{max}	My _{max}	Mz _{max}
SB-LGA20	330	600	1,8	7,0	M6 x 8
SB-LGA25	520	1.200	7,6	26,0	M6 x 8
SB-LGA30	1.200	4.000	26,0	78,0	M8 x 10

Lebensdauerberechnung

SAIBO entwarf die Tragfähigkeit der LGA-Serie entsprechend der Mindestlebensdauer von 100 km für jeden Typ. Die Lebensdauer des Systems in km kann anhand der folgenden Formel berechnet werden.

Lebensdauer (km) =
$$\frac{100}{(0.03 + 0.97 \cdot \text{LF} \cdot \text{f})^3}$$


f – Reduktionskoeffizient der Anwendung und Umgebung.

Keine Vibration oder Erschütterung, niedrige Geschwindigkeit (< 1m/s), niedrige Frequenz der Verschiebungsrichtung, saubere Umwelt.	1,0 – 1,5
Leichte Vibration oder Erschütterung, mittlere Geschwindigkeit (1–2,5 m/s), mittlere Frequenz der Verschiebungsrichtung, etwas Schmutz.	1,5 –2,0
Starke Vibration oder Erschütterung, hohe Geschwindigkeit (> 2,5 m/s), hohe Frequenz der Verschiebungsrichtung, stark verschmutzt.	2,0 -3,5

Berechnungsbeispiel

SB-LGA25 als Berechnungsbeispiel. Der Arbeitszustand ist sauber und es gibt keine Erschütterungen oder Stöße.

Dieses System wird wie folgt berechnet:

Formel zur Berechnung des Lastfaktors LF

$$\mathbf{L} = \frac{Fy}{Fy_{\text{max}}} + \frac{Fz}{Fz_{\text{max}}} + \frac{Mx}{Mx_{\text{max}}} + \frac{My}{My_{\text{max}}} + \frac{Mz}{Mz_{\text{max}}}$$

Fy = 5 kg x 9.8 (gravity) = 49 N

Fz = 10 N

 $Mx = 49 \times 0.02 = 0.98 \text{ Nm}$

My = 0

Mz = 0

Entnehmen Sie die Werte für Fy_{max} , Fz_{max} , Mx_{max} , My_{max} , Mz_{max} der Tabelle und setzen Sie sie in die Formel ein:

$$\mathbf{L} = \frac{49}{520} + \frac{10}{1.200} + \frac{0.98}{7.60} + \frac{0}{My_{max}} + \frac{0}{Mz_{max}} = 0.2314$$

Nach der Beschreibung der Arbeitsbedingungen ist f = 1.1

Lebensdauer (km) =
$$\frac{100}{(0.03 + 0.97 \cdot \text{LF} \cdot \text{f})^3}$$
=
$$\frac{100}{(0.03 + 0.97 \cdot 0.2314 \cdot 1.1)^3}$$

= 4.716 km

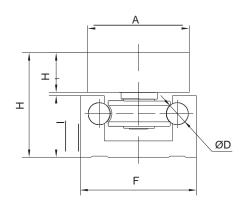
Lintec <u>intec</u> Antriebstechnik ^{GmbH} GmbH

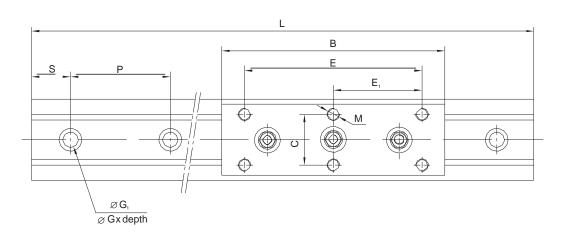
LGB Linearführung

Aufbau

LGB-Linearführungssysteme sind für den kompakten Einsatzbereich konzipiert. Die Laufwagen haben enge Strukturen. Zur Grundkonstruktion gehören die Führungen, schmale Laufwagen sowie die Schmierabdeckung.

Führung


Eloxiertes Gehäuse aus Aluminiumlegierung mit zwei verchromten Stahlwellen.


Laufwagen

- Eloxierte Aluminiumlegierungsplatte
- 3 x zweireihige Kugellager (Rollen)
- Exzenterbolzen zur Einstellung des Spiels bzw. der Vorspannung
- Optionale Schmierabdeckung mit ölgetränkten Filzabstreifern

Merkmale

- 1. Hohe Geschwindigkeit, geringe Reibung und geräuscharm
- 2. Vorspannung ist einstellbar
- 3. Schmales Gehäuse für kompakte Anwendung
- 4. Optionale Schmierabdeckung

Тур	Abme g Mon					essun g vagen						bmess Führu				
	Н	F	Α	B*	С	Е	E ₁	H₁	М	D	G x Tiefe	G₁	- 1	S	Р	L _{max}
SB-LGB15	28,8	32	28	88	20	70	-	10,9	4 x M5	6	7,5 x 2,5	4,5	17	30	60	3.000
SB-LGB20	35,5	47	47	108	38	50	-	11,5	4xM6	8	9,5 x 5	5,5	21,75	30	60	3.000
SB-LGB25	43	65	64	150	47	130	65	14,7	6xM8	10	11 x4	6,5	26,5	30	60	3.000

^{*} Die Größenangaben beinhalten nicht die Stärke der Kunststoffabdeckung. Die gesamte Stärke der Kunststoffabdeckung beträgt 2,5 mm. Zum Wert **B** (Länge des überdachten Wagens) muss daher 5,0 mm addiert werden.

Lintec Antriebstechnik GmbH

LGB Linearführung

Spiel einstellen

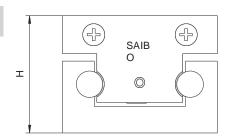
Für die Steifigkeit und Stabilität des Systems ist kein Spiel notwendig. Der Laufwagen der LGB-Serie hat zwei konzentrische Bolzen auf beiden Seiten und einen Exzenterbolten in der Mitte der Führung. Der Exzenterbolzen dient der spielfreien Einstellung.

- 1. Ziehen Sie die konzentrischen Schraubenfest.
- 2. Ziehen Sie die Exzenterbolzen bis nahe des kritischen Punktes, aber nicht bis zum kritischen Punkt (Um die Exzenterbolzen zu drehen).
- Drehen Sie die Exzenterbolzen mit einem Innensechskantschlüssel am Ende des Exzenterbolzens, um den Abstand einzustellen. Stellen Sie den Abstand auf Null ein.
- 4. Schieben Sie den Schlitten von Hand und stellen Sie ihn so ein, dass ein leichter Rutschwiderstand entsteht.
- Halten Sie die Position des Exzenterbolzens fest und ziehen Sie die Mutter fest.

Vorspannung einstellen

Hier gilt das gleiche Prinzip wie zuvor beim einstellen des Spiels. Zuerst muss der Abstand auf Null gestellt werden. Weiterdrehen und die Exzenterbolzen vorspannen. Eine angemessene Vorbelastung sollte beliebig je nach Anwendung entschieden werden. Eine falsche Belastung verringert die Lebensdauer des Systems. Bitte handeln Sie daher mit Vorsicht.

Schmierung

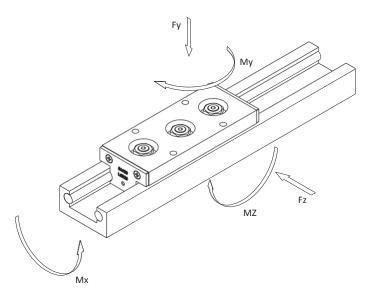


Der Kunststoffschmierdeckel enthält ölgetränkte Filzabstreifer, die über eine Schmierbohrung wieder neu geschmiert werden können. Dieser Schmierdeckel ist optional und nicht im Standard enthalten.

Arbeitsparameter

Max. Geschwindigkeit: 10 m/s
Max. Beschleunigung: 50 m/s²
Arbeitstemperatur: – 20° C ~ +80° C

Präzision



Toleranz H: ± 0,20 mm

Hinweis: Geringere Toleranzen sind auf Anfrage erhältlich.

Last und Lebensdauerberechnung

Aufgrund der Härte des Führungsschachts und der Ermüdungsanalyse der Führung und Rollen wird klar, dass die Lebensdauer der Führung nicht die Lebensdauer des Systems bestimmt. Es wird durch die Lebensdauer der Roller bestimmt. Die Lebensdauer des Systems hängt von der tatsächlichen Kombination aus Last, Arbeitsstatus und Umgebungsbedingungen ab. Daher sollte der Belastungsfaktor zuerst berechnet werden. Dann könnte das Systemleben anhand der folgenden Formel berechnetwerden.

Formel zur Berechnung des Lastfaktors LF

(LF sollte für jede Lastkombination geringer als 1,0 sein)

$$L = \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} + \frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}}$$

Fy – Tatsächliche Belastung in Y-Richtung (N).

Fz – Tatsächliche Belastung in Z-Richtung (N).

Mx - Tatsächliches Moment in X-Richtung (Nm).

My – Tatsächliches Moment in Y-Richtung (Nm).

Mz – Tatsächliches Moment in Z-Richtung (Nm).

Die folgenden Parameter können der Tabelle der Tragfähigkeit entnommen werden

Fy_{max} – Maximale Belastbarkeit in Y-Richtung (N).

Fz_{max} – Maximale Belastbarkeit in Z-Richtung (N).

Mx_{max} - Maximale Momentkapazität in X-Richtung (Nm).

My_{max} – Maximale Momentkapazität in Y-Richtung (Nm).

Mz_{max} – Maximale Momentkapazitätin Z-Richtung (Nm).

LGB Linearführung

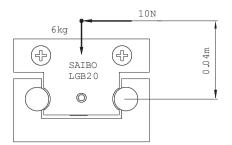
Belastbarkeit

Ties	Max. Belast	barkeit (N)	Max	. Drehmoment (N	m)
Тур	Fy _{max}	Fz _{max}	Mx _{max}	My _{max}	Mz _{max}
SB-LGB15	330	1.000	1,8	12	5,5
SB-LGB20	520	1.200	6,6	45	15
SB-LGB25	1.200	4.000	19	120	50

Lebensdauerberechnung

SAIBO entwarf die Tragfähigkeit der LGA-Serie entsprechend der Mindestlebensdauer von 100 km für jeden Typ. Die Lebensdauer des Systems in km kann anhand der folgenden Formel berechnet werden.

Lebensdauer (km) =
$$\frac{100}{(0.03 + 0.97 \cdot \text{LF} \cdot \text{f})^3}$$


f – Reduktionskoeffizient der Anwendung und Umgebung.

Keine Vibration oder Erschütterung, niedrige Geschwindigkeit (< 1m/s), niedrige Frequenz der Verschiebungsrichtung, saubere Umwelt.	1,0 – 1,5
Leichte Vibration oder Erschütterung, mittlere Geschwindigkeit (1–2,5 m/s), mittlere Frequenzder Verschiebungsrichtung, etwas Schmutz.	1,5 –2,0
Starke Vibration oder Erschütterung, hohe Geschwindigkeit (> 2,5 m/s), hohe Frequenz der Verschiebungsrichtung, stark verschmutzt.	2,0 -3,5

Berechnungsbeispiel

SB-LGB20 als Berechnungsbeispiel. Der Arbeitszustand ist sauber und es gibt keine Erschütterungen oder Stöße.

Dieses System wird wie folgt berechnet:

Formel zur Berechnung des Lastfaktors

$$L = \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} + \frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}}$$

Fy = 6 kg x 9.8 (gravity) = 58.8 N

Fz = 10 N

 $Mx = 10 \times 0.04 = 0.40 \text{ Nm}$

My = 0

Mz = 0

Entnehmen Sie die Werte für Fy_{max} , Fz_{max} , Mx_{max} , My_{max} , Mz_{max} der Tabelle und setzen Sie sie in die Formel ein:

$$\mathbf{L}_{\mathbf{F}} = \frac{58.8}{520} + \frac{10}{1.200} + \frac{0.40}{6.60} + \frac{0}{\mathsf{My}_{\mathsf{max}}} + \frac{0}{\mathsf{Mz}_{\mathsf{max}}} = 0.182$$

Nach der Beschreibung der Arbeitsbedingungen ist f = 1.1

Lebensdauer (km) =
$$\frac{100}{(0,03 + 0,97 \cdot \text{LF} \cdot \text{f})^3}$$
=
$$\frac{100}{(0,03 + 0,97 \cdot 0,182 \cdot 1,1)^3}$$

= 8.849 km

Lintec Antriebstechnik GmbH

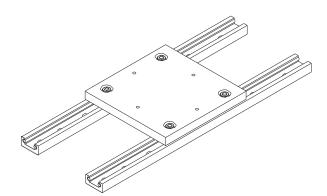
LGC Linearführung

Aufbau

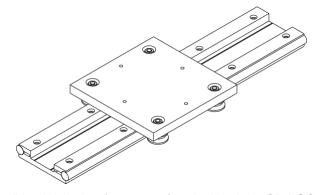
LGC Führung ist breit strukturiert. Das System kann verwendet werden, um ein aus zwei Führungselementen aufgebautes System zu ersetzen. LGC hat eine große Belastbarkeit und Momentenkapazität. Besonders die Momentlast ist viel größer, da die Spannweite von zwei Wellen groß ist.

Obwohl die Führung breit ist, ist das Gewicht durch die leichte Aluminiumlegierung gering. Im Körper der Führung gibt es eine große Uförmige Nut. Diese dient dem Einbau von angetriebenen Teilen wie Gestelle, Getriebe und Zahnriemen.

Merkmale


- 1. Hohe Geschwindigkeit, geringe Reibung und geräuscharm
- 2. Hohe Last- und Momentkapazität
- 3. Verspannung ist einstellbar
- 4. Genau und stabil

Vorteil gegenüber zwei Führungen


Verglichen mit der Struktur zweier Schienen, weißt die LGC Linearführung folgende Vorteile auf:

- Einfache Installation der Führung.
 Wenn zwei Führungen gleichzeitig installiert werden, muss der Aufbau streng kontrolliert werden. Das ist hier nicht nötig.
- Dia20 Welen erhöhen die Stabilität und stäken es.
 Das kann die Ladekapazität des Laufwagens um einiges erhöhen. Und auch die Stabilität des Systems wird sich dadurch sehr verbessern.
- Erweiterung der Lebensdauer. Gemäß der Formel ist der Lastfaktor (LF) der bestimmende Faktor für die Lebensdauer des Systems.

Bei gleicher Ladekapazität, wäre die Lebensdauer der LGC Linearführung höher, als würde man zwei Schienen nutzen. Das wird die Lebensdauer des Systems deutlich erhöhen.

System mit zwei Führungen.

Die gleiche Laufwagengröße, doch bei der SB-LGC ist die Tragfähigkeit des Laufwagens deutlich höher als bei dem System mit zwei Schienen.

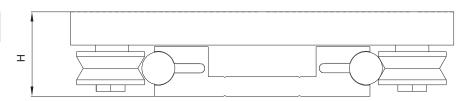
Intec Antriebstechnik GmbH

LGC Linearführung

Spiel einstellen

Für die Steifigkeit und Stabilität des Systems ist kein Spiel notwendig. Die LGC-Serie hat zwei konzentrische Schrauben auf der einen Seite in Richtung der Schienen und zwei exzentrische Schrauben auf der anderen Seite. Diese beiden Exzenterbolzen dienen zur spielfreien Einstellung.

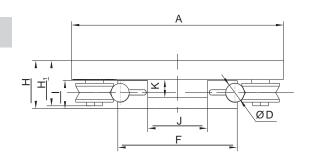
- 1. Ziehen Sie die konzentrischen Schrauben fest.
- 2. Ziehen Sie die Exzenterbolzen bis nahe des kritischen Punktes, aber nicht bis zum kritischen Punkt (Um die Exzenterbolzen zu drehen).
- Drehen Sie die Exzenterbolzen mit dem Schraubenschlüssel am Ende des Bolzens fest, um den Abstand einzustellen. Stellen Sie den Abstand auf Null ein.
- 4. Schieben Sie den Schlitten von Hand und stellen Sie ihn so ein, dass ein leichter Rutschwiderstand entsteht.
- Halten Sie die Position des Exzenterbolzens fest und ziehen Sie die Mutter fest.

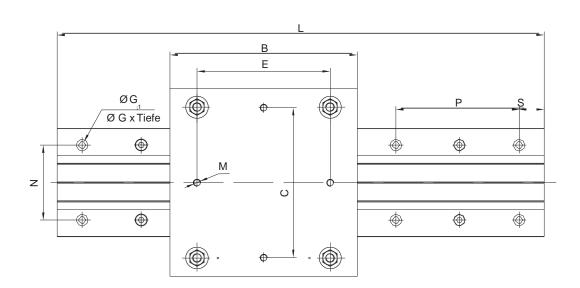

Vorspannung einstellen

Hier gilt das gleiche Prinzip wie zuvor beim einstellen des Spiels. Zuerst muss der Abstand auf Null gestellt werden. Weiterdrehen und die Exzenterbolzen vorspannen. Eine angemessene Vorbelastung sollte beliebig je nach Anwendung entschieden werden. Eine falsche Belastung verringert die Lebensdauer des Systems. Bitte handeln Sie daher mit Vorsicht.

Arbeitsparameter

Max Geschwindigkeit: 10 m/s
Max. Beschleunigung: 50 m/s²
Arbeitstemperatur: -20° C ~ +80° C

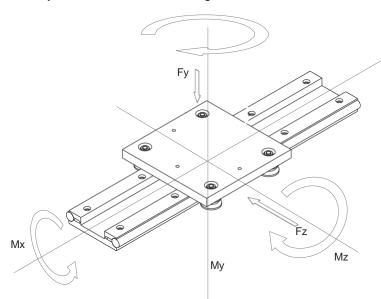

Präzision



Toleranz H: ± 0.20 mm

Hinweis: Geringere Toleranzen sind auf Anfrage erhältlich.

Abmessung



Тур	g	essun		g	messi			Abmessun g Führung											
	Н	F	Α	В	С	Е	H ₁	M	D	G x Tiefe	G ₁	1	L	K	N	S	Р	L _{max} *	
SB-LGC100	51	99	200	200	140	140	48	4 x M8	20	14 x 5,5	9	30	40	18	62	30	300	6.000	
SB-LGC130	51	130	230	230	180	160	48	4 x M8	20	14 x 5,5	9	30	65	18	90	30	300	6.000	

LGC Linearführung

Last und Lebensdauerberechnung Aufgrund der Härte des Führungsschachts und der Ermüdungsanalyse der Führung und Rollen wird klar, dass die Lebensdauer der Führung nicht die Lebensdauer des Systems bestimmt. Es wird durch die Lebens- dauer der Roller bestimmt. Die Lebensdauer des Systems hängt von der tatsächlichen Kombination aus Last, Arbeitsstatus und Umgebungsbe- dingungen ab. Daher sollte der Belastungsfaktor zuerst berechnet werden. Dann könnte das Systemleben anhand der folgenden Formel berechnet werden.

Formel zur Berechnung des Lastfaktors LF

(LF sollte für jede Lastkombination geringer als 1,0 sein)

$$\mathbf{L} = \frac{Fy}{Fy_{\text{max}}} + \frac{Fz}{Fz_{\text{max}}} + \frac{Mx}{Mx_{\text{max}}} + \frac{My}{My_{\text{max}}} + \frac{Mz}{My_{\text{max}}}$$

Fy - Tatsächliche Belastung in Y-Richtung (N).

Fz – Tatsächliche Belastung in Z-Richtung (N).

Mx – Tatsächliches Moment in X-Richtung (Nm).

My – Tatsächliches Moment in Y-Richtung (Nm).

Mz – Tatsächliches Moment in Z-Richtung (Nm).

Die folgenden Parameter können der Tabelle der Belastbarkeit entnommen werden

Fy_{max} – Maximale Belastbarkeit in Y-Richtung (N).

Fz_{max} – Maximale Belastbarkeit in Z-Richtung (N).

Mx_{max} - Maximale Momentkapazität in X-Richtung (Nm).

My_{max} - Maximale Momentkapazität in Y-Richtung (Nm).

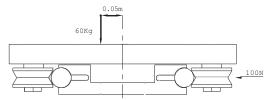
Mz_{max} – Maximale Momentkapazitätin Z-Richtung (Nm).

Belastbarkeit

Tim	Max. Bela (1	astbarkeit N)	ı	Max. Drehmomen (Nm)	t
Тур	Fy _{max}	Fz _{max}	Mx _{max}	My _{max}	Mz _{max}
SB-LGC100	6.000	6.000	190	210	210
SB-LGB130	6.000	6.000	240	240	240

Lebensdauerberechnung

SAIBO entwarf die Tragfähigkeit der LGC-Serie entsprechend der Mindestlebensdauer von 100 km für jeden Typ. Die Lebensdauer des Systems in km kann anhand der folgenden Formel berechnet werden.


Lebensdauer (km) =
$$\frac{100}{(0.03 + 0.97 \cdot \text{LF} \cdot \text{f})^3}$$

f – Reduction coefficient of the application and environment.

Keine Vibration oder Erschütterung, niedrige Geschwindigkeit (< 1m/s), niedrige Frequenz der Verschiebungsrichtung, saubere Umwelt.	1,0 – 1,5
Leichte Vibration oder Erschütterung, mittlere Geschwindigkeit (1–2,5 m/s), mittlere Frequenz der Verschiebungsrichtung, etwas Schmutz.	1,5 –2,0
Starke Vibration oder Erschütterung, hohe Geschwindigkeit (> 2,5 m/s), hohe Frequenz der Verschiebungsrichtung, stark verschmutzt.	2,0 -3,5

Berechnungsbeispiel

Wir haben hier ein Lastbeispiel um die Lebensdauer zu berechnen. Die Belastung ist auf der unteren Abbildung zu erkennen. Die Arbeitsbedingung ist deutlich und es gibt weder Vibrationen noch Erschütterungen.

Formel zur Berechnung des Lastfaktors

$$\textbf{LF} = \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} + \frac{Mx}{Mx_{max}} + \frac{Mz}{My_{max}}$$

Fy = 60 kg x 9.8 (gravity) = 588 N

Fz = 100 N

 $Mx = 588 \times 0.05 = 29.4 \text{ Nm}$

My = 0

Mz =

Entnehmen Sie die Werte für Fy_{max} , Fz_{max} , Mx_{max} , My_{max} , Mz_{max} der Tabelle und setzen Sie sie in die Formel ein:

$$\mathbf{LF} = \frac{588}{6.000} + \frac{10}{6.000} + \frac{29.4}{240} + \frac{0}{My_{max}} + \frac{0}{Mz_{max}} = 0,2372$$

Gemäß der Beschreibung des Arbeitszustandes, nehmen Sie für f=1.1

Lebensdauer (km) =
$$\frac{100}{(0,03 + 0.97 \cdot \text{LF} \cdot \text{f})^3}$$
=
$$\frac{100}{(0,03 + 0.97 \cdot 0.2372 \cdot 1.1)^3}$$
= **4.405 km**

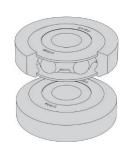
Lintec Antriebstechnik GmbH

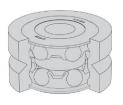
PARO Linear- und Kurvenführung

Lineare Bewegungskomponenten

Aufbau

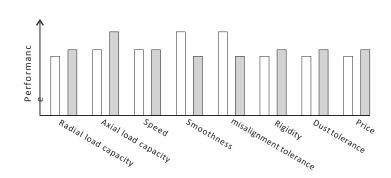
Bitte betrachten Sie die folgende Abbildung. Dieses System umfasst eine Doppelkanten-Raumschiene, ein konzentrisches Lager, ein exzentrisches Lager, Kappenverschluss und einen Schmierstoffgeber. Führung, Lager und andere Komponenten sind austauschbar mit allen internationalen Standards.




Double Edge Space Rail

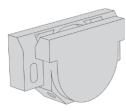
- Hergestellt aus hochwertigem Lagerstahl aus Europa
- Durch die Tiefenhärtung in den Arbeitsflächen ergibt sich eine hohe Verschleißfestigkeit
- Double 70° V working edges together to ensure parallelism
- Weicher Schienenkörper für einen kundenspezifischen Bearbeitungsprozess
- Drei Standardgrößen stehen zur Verfügung
- Jede Länge bis zu 5,50 m ohne Verbindung
- Eine längere Strecke (unbegrenzt) kann durch die Verbindung der Führungen erreicht werden
- zwei Präzisionstypen sind verfügbar, geschliffen und ungeschliffen

Konzentrische und exzentrische Lager

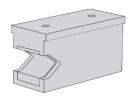

- Hergestellt aus hochwertigem Lagerstahl
- · Vollständig gehärtetes Gehäuse für hohe Verschleißfestigkeit.
- Zwillingslager und doppelreihiges Lager (siehe folgende Abbildung)
- Lange Schrauben ist für den dicken Laufwagenblock
- Kurze Schrauben ist für den dünnen Laufwagenblock
- Konzentrische und exzentrische Schrauben im Lieferumfang.

☐ Twin bearing

Double row bearing

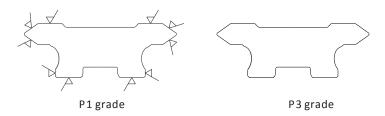


PARO Linear- und Kurvenführung

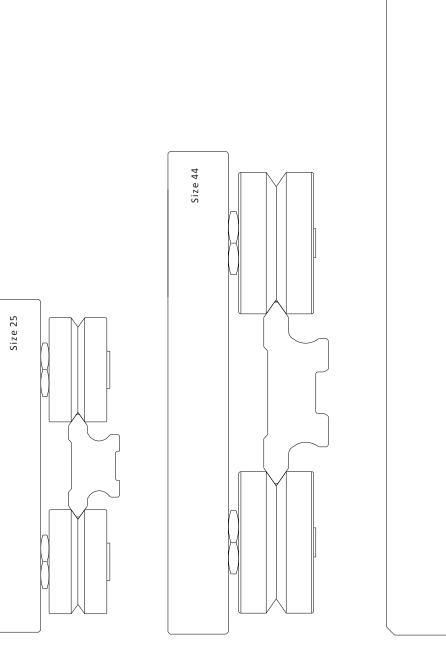

Verschlusskappe

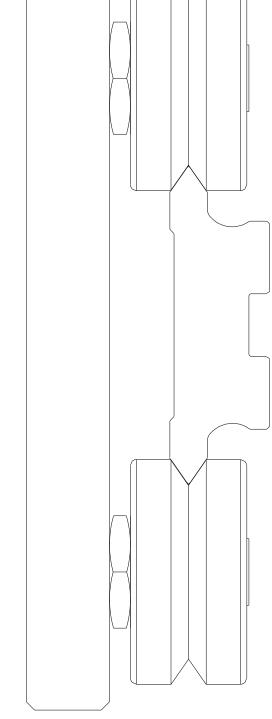
- · Schützt das Lager vor Staub
- · Schützt den Bediener
- Geschmierte Filzwischer berühren die Arbeitsfläche der Führung und erhöhen somit die Belastbarkeit und Lebensdauer.
- · Standard und auswechselbar

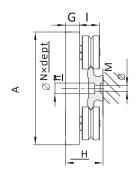
Geschmierte Wischer

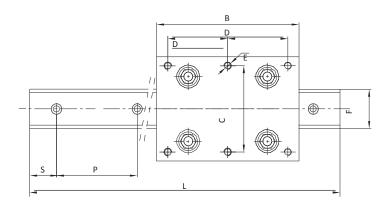

- Geschmierte Filzwischer berühren die Arbeitsfläche der Führung und erhöhen somit die Belastbarkeit und Lebensdauer.
- Der geschmierte Filzwischer wird durch eine kleine Feder leicht angedrückt, um eine geringe Reibung mit der Führung zu gewährleisten.
- · Lässt sich einfach durch deine Öffnung mit Öl füllen.
- · Standard und auswechselbar

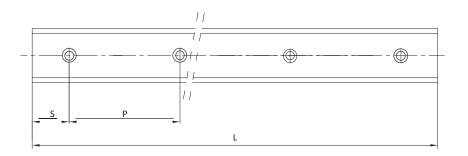
Präzisionsgrad

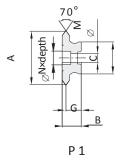

SAIBO bietet zwei Präzisionsgrade an. P1 geschliffen und P3 unge schliffen. Hier müssen wir betonen, dass die Bewegung der P3Klasse sehr sanft und stabil ist. Es ist für einen ruhigen Lauf ohne hohe Präzision und geringe Kosten geeignet.


Wenn die Linearschiene die Ringschiene verbindet, müssen Sie P1 verwenden.


www.lintec-linear.de

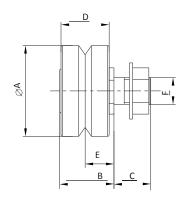

Gesamtübersicht

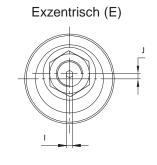

Montage



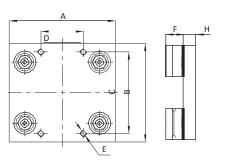
									Abr	nessur	ng						
Führung	Laufwagen	Α	В	С	D	Е	F	G	ŀ	Н		М	N x Tiefe	Р	S	L	max
		4	В	C	D		Г	G	P ₁	P ₃	•	IVI	NX Hele	Г	ס	P ₁	P ₃
	SB-SLC25A		80		24	4 x M6											
SB-LGV25XL	SB-SLC25B	80	135	65	60	6xM6	25	11,5	30,5	30,85	16,5	5,5	10 x 5,5	90	45	1.500	5.500
	SB-SLC25C		180		82	6xM6											
	SB-SLC44A		125		50	4 x M8											
SB-LGV44XL	SB-SLC44B	116	180	96	80	6 x M8	44	14,5	38,5	38,85	5 21	7	11 x 7	90	45	2.000	5.500
	SB-SLC44C		225		103	6 x M8											
	SB-SLC76A		200		90	4 x M10											
SB-LGV76XL	SB-SLC76B	185	300	160	135	6 x M10	76	20	58,5	58,85	33,5	11	20 x 12	90	45	2.000	5.500
	SB-SLC76C		400		185	6 xM10	- · · I	20	00,0			00,0	20 / 12				

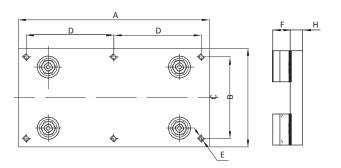
Führungskomponenten




Führungsabstandhalter

Tim	1	4	E	3	(2	(3	М	N x Tiefe	D	٠	L	nax
Тур	P ₁	P ₃	IVI	N X TIEIE	Р	o	P ₁	P ₃						
SB-LGV25XL	25	25.2	12.25	12.9	15	15.5	10	10.35	5.5	10.5 x 5.5	90	45	1.400	5.500
SB-LGV44XL	44	44.2	15.5	16.2	26	26.5	12.5	12.85	7	11 x7	90	45	2.000	5.500
SB-LGV76XL	76	76.2	24	24.7	50	50.5	19.5	19.85	11	20 x 12	90	45	1.900	5.500


Lager



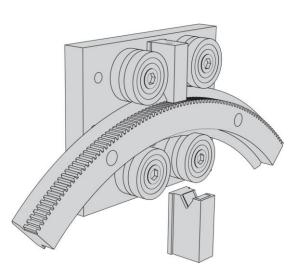
Standard Laufwagenabmessung

SB-SCP A

SB-SCP B/C

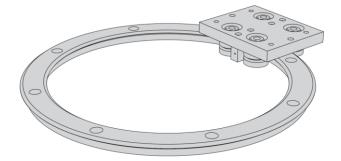
				,	Abme	essun	g				Max. Nutzlast (N)					Statische Lager (Co) und dynamische (C) Tragfähigkeiten (N)								
Тур											Dop -	pel		lings		oppelre				ir Zwiilli				
- 76	Α	В	С	D	Е	F	G	Н	1	J	reih s L	ige ager	- 1	ager	Radia	l Last	Axial	Last	Radia	l Last	Axial	Last		
											Radial	Axial	Radial	Axial	Co	С	Со	С	Co	С	Со	С		
SVR-25C	25	16.4	11,3	14	9	M8	8	13	3	_	1.500	400	600	320	2.646	5.214	821	1.618	1.333	3.237	326	791		
SVR-25E	25	10,4	11,3	14	9	IVIO	0	13	3	0,75	1.500	400	600	320	2.040	5.214	021	1.010	1.333	3.231	320	791		
SVR-34C	34	21	14,	18	11 5	M10	10	15	4	_	3.000	900	1.400	800	5.018	9.293	1.362	2.523	2.600	5.291	557	1.270		
SVR-34E	34	21	3	10	11,5	IVIIO	Ю	เอ	4	1	3.000	900	1.400	000	5.016	9.293	1.302	2.023	2.000	5.291	557	1.270		
SVR-54C	54	33,	19,8	28	10	M14	1/1	27	6	_	5.000	2.500	3.200	1.800	12 900	21.373	2 777	4.601	6.657	13.595	1.136	2.320		
SVR-54E 54	54	53, 5	19,0	20	19	IVI 14	14	27	6	1,5	3.000	2.300	3.200	1.000	12.099	21.3/3	2.111	4.001	0.007	13.393	1.130	2.320		

	A	A										lutzlast N)	
Тур	Anwend - bare Führung	Anwend - bares Lager	Α	В	С	D	E	F	н	Dop reihige:	pel- s Lager	Zwilling	gslager
	- amang	Lugo								Fy	Fz	Fy	Fz
SLC25A		SVR-	80			24	4 x M6						
SLC25B	LGV25XL	25C	135	80	65	60	6xM6	16,5	11,5	1.600	3.000	1.280	1.200
SLC25C	LOVZJAL	SVR-	180			82	6xM6	,	,				
		25E											
SLC44A		SVR-	125			50	4 x M8						
SLC44B	LGV44XL	34C	180	116	96	80	6xM8	21	14,5	3.600	6.000	3.200	2.800
SLC44C		SVR-	225			103	6xM8		,.				
		34E											
SLC76A		SVR-	200			90	4 xM10						
SLC76B	LGV76XL	54C	300	185	160	135	6 xM10	33,5	20	10.000	10.000	7.200	6.400
SLC76C		SVR-	400			185	6 xM10						
		54E											


Lintec Antriebstechnik GmbH

PARO Linear- und Kurvenführung

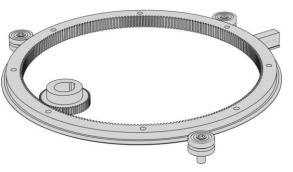
Ringbewegungskomponente


Aufbau

Bitte betrachten Sie die folgende Abbildung. Dieses System umfasst eine Doppelring RIngschiene, ein konzentrisches Lager, ein exzentrisches Lager, Laufwagen und einen Schmierstoffgeber. Zahnradzähne können in den Schienenraum innerhalb oder außerhalb der Ringe geschnitten werden, um den Antrieb kompakt und einfach zu machen. Schienen, Lager und andere Komponenten sind austauschbar mit allen internationalen Standards.

Double V-Edge Ring Rail

- Hergestellt aus hochwertigem Lagerstahl
- Durch die Tiefenhärtung in den Arbeitsflächen ergibt sich eine hohe Verschleißfestigkeit.
- Doppelte 70° V Arbeitskanten garantieren Parallelität
- · Alle Oberflächen sind geschliffen und weisen höchste Präzision auf
- · Große Auswahl an standardisierten Größen
- Kundenspezifische Montagebohrungen sind ebenfalls verfügbar


Gear Integrated Double V-Edge Ring Rail

- Hergestellt aus hochwertigem Lagerstahl
- Durch die Tiefenhärtung in den Arbeitsflächen ergibt sich eine hohe Verschleißfestigkeit.
- Doppelte 70° V Arbeitskanten garantieren Parallelität
- · Alle Oberflächen sind geschliffen und weisen höchste Präzision auf
- Große Auswahl an standardisierten Größen
- Verzahnungen sind innerhalb oder außerhalb des Distanzringes erhältlich
- Kundenspezifische Montagebohrungen sind ebenfalls verfügbar

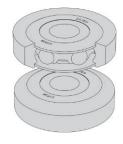
Single V-Edge Ring Rail

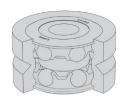
- Hergestellt aus hochwertigem Lagerstahl
- Durch die Tiefenhärtung in den Arbeitsflächen ergibt sich eine hohe Verschleißfestigkeit.
- Doppelte 70° V Arbeitskanten garantieren Parallelität
- · Alle Oberflächen sind geschliffen und weisen höchste Präzision auf
- Große Auswahl an standardisierten Größen
- Verzahnungen sind innerhalb oder außerhalb des Distanzringes erhältlich
- Kundenspezifische Montagebohrungen sind ebenfalls verfügbar

V Ring Rail Segment

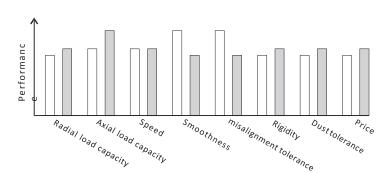
- · Alle oben genannten Ringschienen können zugeschnitten werden
- Die Maße können jeweils auf Kundenwunsch angepasst werden
- Das Double Edge-Ringschienensegment kann mit der Linear Double Edge-Schiene verbunden werden, um ein Kreisbewegungssystem zu erzeugen

Version 2019-04 www.lintec-linear.de 16

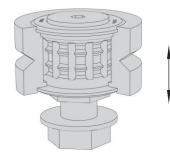



Lintec Antriebstechnik GmbH

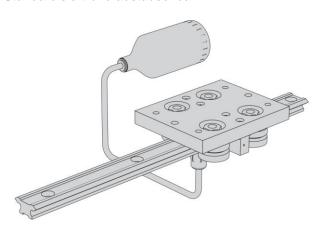
PARO Linear- und Kurvenführung

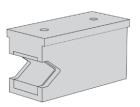

Konzentrische/ Exzentrische Lager

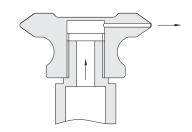
- Hergestellt aus hochwertigem Lagerstahl
- · Vollständig gehärtetes Gehäuse für hohe Verschleißfestigkeit.
- Zwillingslager und doppelreihiges Lager (siehe folgende Abbildung)
- · Lange Schrauben ist für den dicken Laufwagenblock
- Kurze Schrauben ist für den dünnen Laufwagenblock
- Konzentrische und exzentrische Schrauben im Lieferumfang.



- Twin type bearing
- Double row type bearing

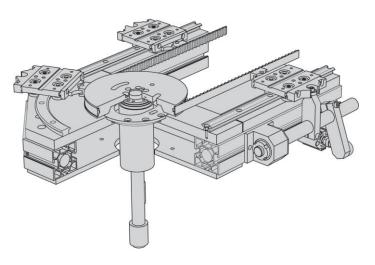

Floating Lager


- Der äußere Ring kann in axialer Richtung schweben, um eine hohe Toleranz zu gewährleisten.
- Hergestellt aus hochwertigem Lagerstahl
- · Vollständig gehärtetes Gehäuse für hohe Verschleißfestigkeit.
- · Lange Schrauben ist für den dicken Laufwagenblock
- Kurze Schrauben ist für den dünnen Laufwagenblock
- · Konzentrische und exzentrische Schrauben im Lieferumfang.



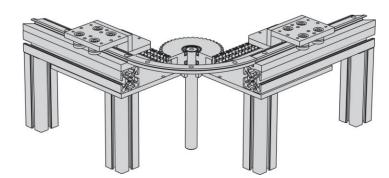
Schmierung

- Geschmierte Filzwischer berühren die Arbeitsfläche der Führung und erhöht somit die Belastbarkeit und Lebensdauer.
- Der geschmierte Filzwischer wird durch eine kleine Feder leicht angedrückt, um eine geringe Reibung mit der Arbeitsfläche der Schiene zu ermöglichen.
- Durch ein e Bohrung kann das Öl nachgefüllt werden.
- Eine Verbindung zwischen der Ableitung des Schmieröls und der Füllöffnung der Schiene könnte sehr einfach hergestellt werden.
- · Standardisiert und austauschbar.

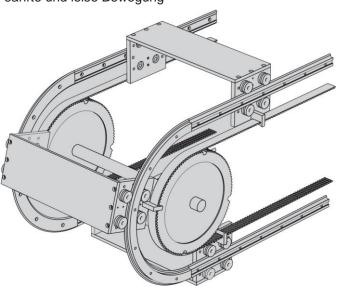

Lintec Antriebstechnik GmbH

PARO Linear- und Kurvenführung

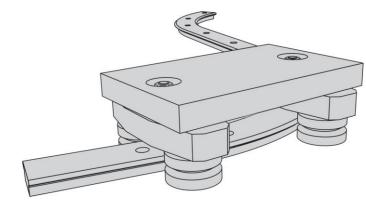
Anwendungsbeispiel


Führungs-Bewegungs-System mit Riemenantrieb

- Es sind vollständig zusammengebaute Maschinen sowie ganze Antriebskomponenten verfügbar.
- Das Positions- und Schließsystem sowie ein automatisches Schmiersystem sind bereits in der Maschine integriert
- Es wurden Schrägkugellager verwendet, die in der angetriebenen Welle unter hoher Last stets hoch präzise fungieren.
- Für die angetriebenen Wellen gilt null Axialspiel.

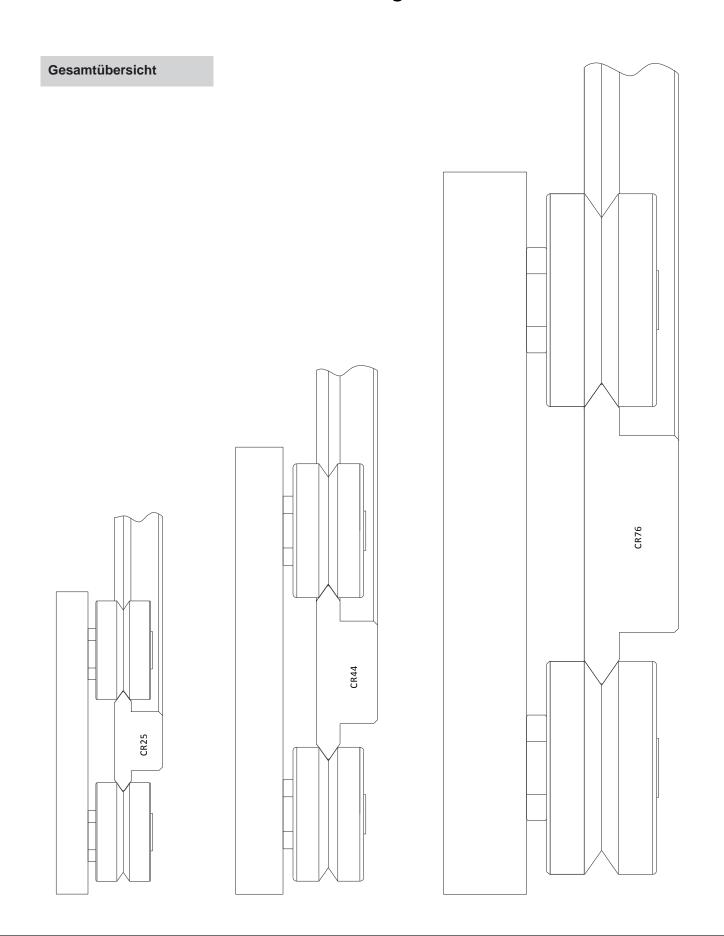

Rectangle Circle System with Chain Driven

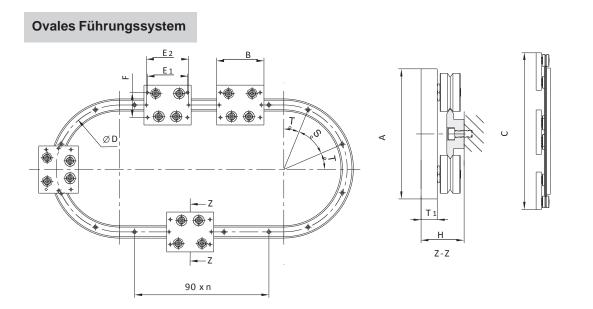
- Es sind vollständig zusammengebaute Maschinen verfügbar sowie ganze Antriebskomponenten
- Drehmomentbegrenzer zum Schutz vor Überlastung
- Für die linearen Schienen in zwei Richtungen ist jede Länge verfügbar
- · Laufwagen könnten ganz einfach hinzugefügt oder entfernt werden

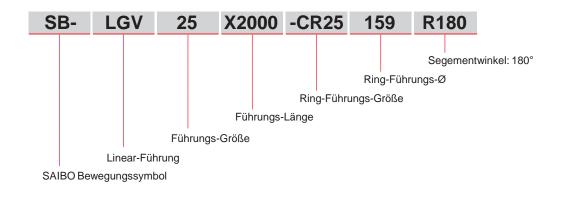

Track Motion System Mounted in Parallel

- Es sind vollständig zusammengebaute Maschinen verfügbar sowie ganze Antriebskomponenten
- Loslager auf einer Seite für tolerantes Axialspiel
- Geeignet für lange Teile und Werkzeuge
- Ein hoch beanspruchbarer Zahnriemenantrieb ermöglicht eine sanfte und leise Bewegung

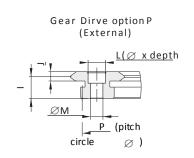
S-förmige Führung

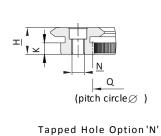

- Der Rahmen des Drehgestells wurde in verschiedenen Radien auf die S-Kurve angewandt.
- Hohe Belastbarkeit bis zu 1,000 kg.
- Eine große Plattform wurde für gestaltet, für eine große und einfache Befestigung
- Verfügbare Führungsgrößen 24, 44, 76. Maßgeschneidertes Schienendesign
- Angetriebene Ausrüstung könnte gemäß spezifischer Biegungsspur mitgeliefert werden



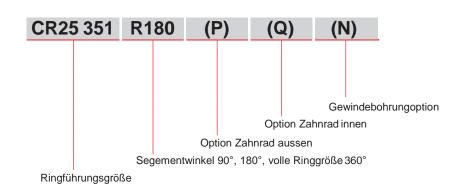

Version 2019-04 www.lintec-linear.de 18

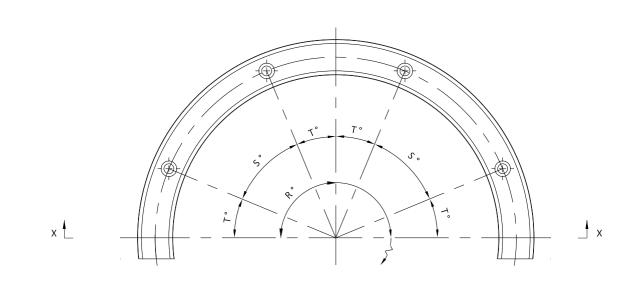
PARO Linear- und Kurvenführung

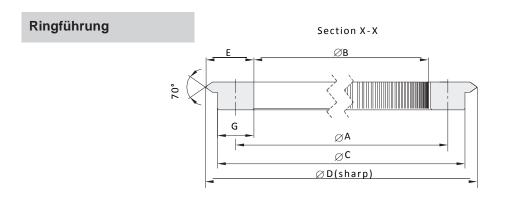


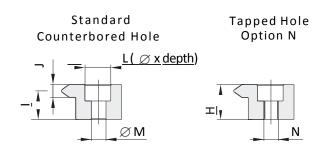


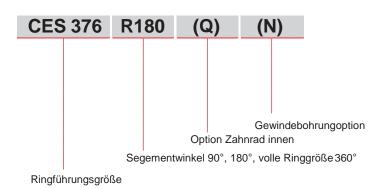
		Komponent	en						Abme	ssung	3			
Montage-Typ	Linear- Führun g	Ring- Führun g	Laufwagen	Α	В	С	D	E,	E ₂	F	Н	T ₁	S*	T°
SB-LGV25XL-CR25 159 R180		SB-CR25 159 R180	SB-SRC25 159		95	239	159	85	80				45	22,5
SB-LGV25XL-CR25 255 R180	SB-LGV25	SB-CR25 255 R180	SB-SRC25 255	80	100	335	255	80	85	50	30,5	11,5	45	22,5
SB-LGV25XL-CR25 351 R180		SB-CR25 351 R180	SB-SRC25 351		105	431	351	85	90		,-	,-	30	15
SB-LGV44XL-CR44 468 R180	CD L CV/44	SB-CR44 468 R180	SB-SRC44 468	440	145	584	468	120	125	75	20.5	445	30	15
SB-LGV44XL-CR44 612 R180	SB-LGV44	SB-CR44 612 R180	SB-SRC44 612	116	150	728	612	125	130	75	38,5	14,5	22,5	11,2 5
SB-LGV76XL-CR76 799 R180		SB-CR76 799 R180	SB-SRC76799		190	984	799	160	165				22,5	11,2 5
SB-LGV76XL-CR76 1033 R180	SB-LGV76	SB-CR76 1033 R180	SB-SRC76 1033	185	210	1.21	1.03	180	185	100	58,5	20	18	9
SB-LGV76XL-CR76 1267 R180		SB-CR 1267 R180	SB-SRC76 1267		250	1.45 2	1.26 7	205	225				18	9
SB-LGV76XL-CR76 1501 R180		SB-CR 1501 R180	SB-SRC76 1501		270	1.68 6	1.50 1	225	245				18	9

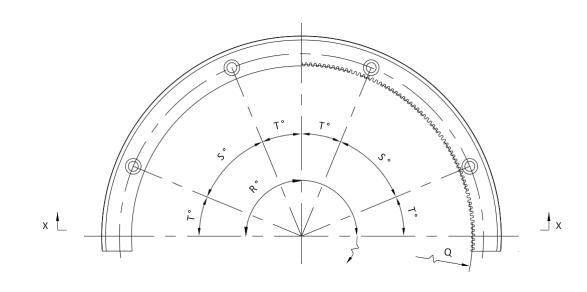


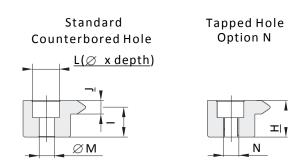



Gear Dirve option Q (Internal)

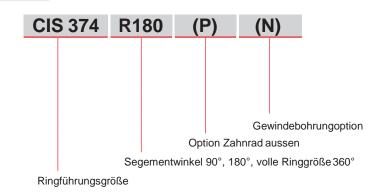


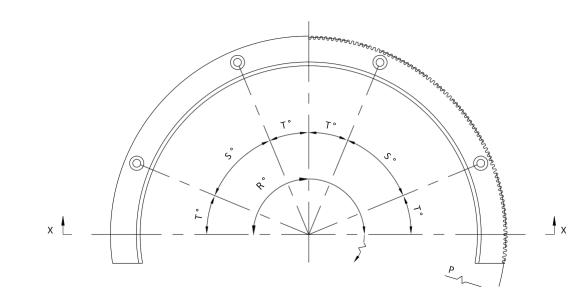



	A														Za	ahnrad au	ussen	Za	ahnrad in	nen	Anzahl	Boh	sition rung 0.2	Gewicht
Тур	Anwendbare Lager	Α	В	С	E	G	Н	I	J	K	(ØxTiefe)	M	N	Тур	Р	m	Anzahl Zähne (R=360°)	Q	m	Anzahl Zähne (R=360°)	Bohrung (R=360°)	S°	T°	(kg) (R=360°)
CR25 159	SVR-25	159	143,6	174,4	25	15	12,25	10	4,2	5,25	9x6	5,5	M8	CR25 159	172,8	0,8	216	145,6	0,8	182	8	45	22,5	0,77
CR25 255	SVR-25	255	239,6	270,4	25	15	12,25	10	4,2	5,25	9x6	5,5	M8	CR25 255	268,8	0,8	336	241,6	0,8	302	8	45	22,5	1,2
CR25 351	SVR-25	351	335,6	366,4	25	15	12,25	10	4,2	5,25	9x6	5,5	M8	CR25 351	364,8	0,8	456	337,6	0,8	422	12	30	15	1,65
CR44 468	SVR-34	468	442	494	44	26	15,5	12,5	6	7	11 x 7	7	M8	CR44 468	492	1	492	444	1	444	12	30	15	5,1
CR44 612	SVR-34	612	586	638	44	26	15,5	12,5	6	7	11 x 7	7	M8	CR44 612	636	1	636	588	1	588	16	22,5	11,25	6,7
CR76 799	SVR-54	799	748,5	849,5	76	50	24	19,5	9	12	20 x 13	11	M16	CR76799	846	1,5	564	751,5	1,5	501	16	22,5	11,25	25
CR76 1033	SVR-54	1.033	982,5	1.083,5	76	50	24	19,5	9	12	20 x 13	11	M16	CR76 1033	1.080	1,5	720	985,5	1,5	657	20	18	9	32
CR76 1267	SVR-54	1.267	1.216,5	1.317,5	76	50	24	19,5	9	12	20 x 13	11	M16	CR76 1267	1.314	1,5	876	1.219,5	1,5	813	20	18	9	41
CR76 1501	SVR-54	1.501	1.450,5	1.551,5	76	50	24	19,5	9	12	20 x 13	11	M16	CR76 1501	1.548	1,5	1.032	1.453,5	1,5	969	20	18	9	48,7



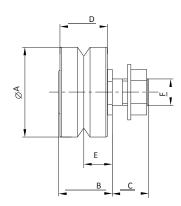
Тур	Anwendbar	A	В	С	D	E	G	н	_	J	L	М	N	Тур	2	Zahnrad i	nnen	Anzahl Bohrun	Bol	ition nrun g 0.2	Gewich t (kg)
196	e Lager		_			_					(ØxTiefe)			.,,,	Q	m	Anzah I Zähne (R=360°)	g (R=360°)	s°	Т°	(R=360°)
CES 184	SVR-25	159	142	174	184,74	20,8	16	12,25	10	4,5	10 × 5,5	5,5	M8	CES184	144	1	144	8	45	22,5	0,78
CES 280	SVR-25	255	238	270	280,74	20,8	16	12,25	10	4,5	10 × 5,5	5,5	M8	CES 280	240	1	240	8	45	22,5	1,27
CES 376	SVR-25	351	334	366	376,74	20,8	16	12,25	10	4,5	10 × 5,5	5,5	M8	CES 376	336	1	336	12	30	15	1,75
CEM 505	SVR-34	468,5	447,5	487,5	506,24	28,8	20	15,5	12,5	6	11 × 6,5	7	M8	CEM505	450	1,25	360	12	30	15	3,93
CEM 655	SVR-34	618,5	597,5	637,5	656,24	28,8	20	15,5	12,5	6	11 × 6,5	7	M8	CEM655	600	1,25	480	16	22,5	11,25	5,18
CEM 874	SVR-54	820	788	848	874,74	42,8	30	24	19,5	9	18×10,5	11	M16	CEM874	792	2	396	16	22,5	11,25	15,64



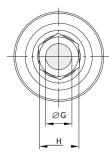

Ringführung Section X-X E ØD(sharp) 70° B ØB

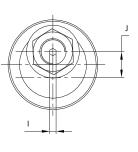
ØΑ

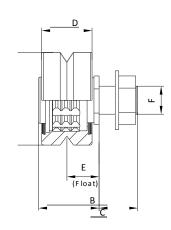
Ø C



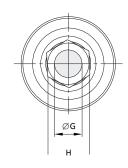
Тур	Anwendbar	A	В	С	D	E	G	н		J		M	N	Тур	Z	ahnrad a	nussen	Anzahl Bohrun			Gewich t (kg)
136	e Lager					_					_	•••		.,,,,	P	m	Anzah I Zähne (R=360°)	g (R=360°)	S°	T°	(R=360°)
CIS 182	SVR-25	165	150	182	139,26	20,8	16	12,25	10	4,5	10 x 5,5	5,5	M8	CIS 182	180	1	180	8	45	22,5	0,78
CIS 278	SVR-25	261	246	278	235,26	20,8	16	12,25	10	4,5	10 x 5,5	5,5	M8	CIS 278	276	1	276	8	45	22,5	1,27
CIS 374	SVR-25	357	342	374	331,26	20,8	16	12,25	10	4,5	10 x 5,5	5,5	M8	CIS 374	372	1	372	12	30	15	1,75
CIM 482	SVR-34	461,5	442,5	482,5	423,76	28,8	20	15,5	12,5	6	11 x 6,5	6,8	M8	CIM 482	480	1,25	384	12	30	15	3,93
CIM 627	SVR-34	606,5	587,5	627,5	568,76	28,8	20	15,5	12,5	6	11 x 6,5	6,8	M8	CIM 627	625	1,25	500	16	22,5	11,25	5,18
CIL 820	SVR-54	788	760	820	733,26	42,8	30	24	19,5	9	18 x 10,5	11	M16	CIL 820	816	2	408	16	22,5	11,25	15,64

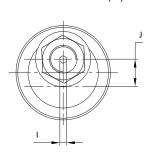



Konzentrische/exzentrische Lager Abmessungen


Konzentrisch (C)

Exzentrisch (E)

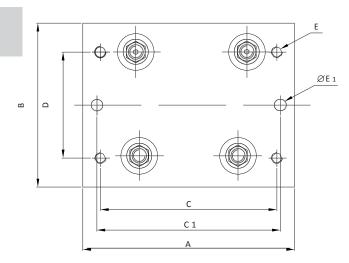


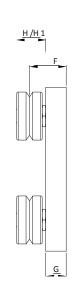

Loslager Abmessung

Konzentrisch (C)

Exzentrisch (E)

	Abmessung												lutzlast N)			dyna		che La e (C) Tr) und gkeiten	(N)	
											Dop	pel	Zwil	lings	Für de	oppelre	ihiges l	_ager	Fü	ir Zwiilli	ngslag	er
Тур	Α	В	С	D	E	F	G	н	I	J	reih s La	_	- 1	ager	Radia	l Last	Axial	Last	Radia	l Last	Axial	Last
											Radial	Axial	Radial	Axial	Co	С	Co	С	Co	С	Co	С
SVR-25C	25	40.5	44.0	4.4		N 40	8	13	3	_	4 500	400	000	200	0.040	E 04.4	004	4 040	4 222	2 227	200	704
SVR- 25DE	25	16,5	11,3	14	9	M8	8	13	3	2	1.500	400	600	320	2.646	5.214	821	1.618	1.333	3.237	326	791
SVR-34C	34	21	14,	18	11 5	M10	10	15	4	_	3.000	900	1.400	800	5.018	9.293	1.362	2.523	2.600	5.291	557	1.270
SVR- 34DE	34	21	3	10	11,5	IVIIO	10	15	4	2,5	3.000	900	1.400	000	5.016	9.293	1.302	2.525	2.600	5.291	557	1.270
SVR-54C	54	33.	10.0	28	19	M14	14	27	6	_	5.000	2.500	3.200	1.800	12.89	21 27	2.777	4.601	6.657	13.59	1.136	2.320
SVR- 54DE	54	5 5	19,8	20	19	IVI 14	14	21	O	5,5	5.000	2.500	3.200	1.000	9	3	2.111	4.001	0.057	5	1.130	2.320

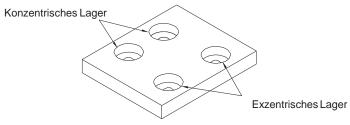

Тур					Al	omessur	ng					Statische und dyn Tragfähigl	amische (C)	Max. Nutz- last
,,	Α	В	С	D	E	■	F	G	н		J	Co	С	(N)
					Max	Min								
FSVR-25C	25	18,1	11,3	14	10,5	9	M8	8	13	3	_	6.100	4.900	1.500
FSVR-25E		10,1	11,0		10,0						2	0.100	1.000	1.000
FSVR-34C	34	23,2	14,3	18	13,5	11,5	M10	10	15	4	_	12.500	11.500	3.000
FSVR-34E	0.	20,2	1 1,0		10,0	11,0					2,5	12.000	11.000	0.000
FSVR-54C	54	37,2	19,8	28	21,6	19	M14	14	27	6	_	28.900	21.500	5.000
FSVR-54E		01,2	10,0		21,0			.,			5,5	20.000	21.000	0.000



Lintec Antriebstechnik GmbH

PARO Linear- und Kurvenführung

Standard Laufwagen Abmessung



Тур	Α	В	С	C1	D	E	E1	F	G	Н	H1	Gewicht (kg)
SRC25 159	95	80	85	80	50	4×M6	2×6	20,5	11,5	16,6	18,1	0,4
SRC25 255	100	80	80	85	50	4×M6	2×6	20,5	11,5	16,6	18,1	0,41
SRC25 351	105	80	85	90	50	4×M6	2×6	20,5	11,5	16,6	18,1	0,42
SRC44 468	145	116	120	125	75	4×M8	2×8	26	14,5	21,3	23,2	1,08
SRC44 612	150	116	125	130	75	4×M8	2×8	26	14,5	21,3	23,2	1,1
SRC76 799	190	185	160	165	100	4×M10	2×10	39	20	34,7	37,2	3,46
SRC76 1033	210	185	180	185	100	4×M10	2×10	39	20	34,7	37,2	3,66
SRC76 1267	250	185	205	225	100	4×M10	2×10	39	20	34,7	37,2	4,05
SRC76 1501	270	185	225	245	100	4 × M10	2×10	39	20	34,7	37,2	4,25

Montageanleitung

1. V track Lager match Laufwagen plate

Bitte montieren Sie das konzentrische Lager auf der einen Seite der Laufwagenplatte und das exzentrische Lager auf der anderen Seite in Fahrtrichtung. Im Falle eines Ringwagens sollte das konzentrische Lager an der Seite angebracht werden, auf der der Abstand der Befestigungsbohrungen kürzer ist. Bitte beachten Sie das Bild unten.

Laufwagenplatte in Kreisbewegung

2. Montage der Führung

Der Laufwagen sollte vom Ende der Bahn aus montiert werden. Bitte achten Sie darauf, dass bei der Montage keine Überlastung auftritt.

3. Stellen Sie den Abstand zwischen Lager und Schiene ein

- · Konzentrische Lager zuerst anziehen
- Dann das exzentrische Lager mit dem Sechskantschlüssel am Ende des Bolzens drehen, um den Abstand zwischen Schiene und Lager einzustellen.
- Justieren Sie den Abstand auf Null
- Schieben Sie den Laufwagen händisch so weit weg, dass ein leichter Rutschwiderstand entsteht

Der korrekte Zustand ist dann erreicht, wenn die Bewegungskraft den empfohlenen Wert erreicht. Die Werte sind in der Tabelle angegeben. Die Last wird mit dem Zug-Druck-Messgerät in die Laufrichtung des Laufwagens gebracht.

Empfohlene Last durch das Zug-Druck-Messgerät

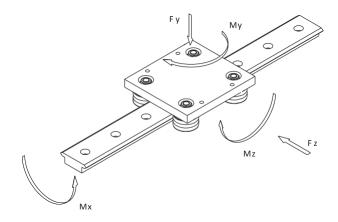
V-Führungslager Größe	Nutzlast (N)
25	4
44	8
76	12

Halten Sie die Position des exzentrischen Lagers und ziehen Sie die Mutter an.

Wichtig

Eine angemessene Vorlast sorgt für die Starrheit des Systems. Übermäßige Vorspannung verringert jedoch die Lebensdauer des Systems. Seien Sie daher bitte vorsichtig.

Lintec Antriebstechnik GmbH


PARO Linear- und Kurvenführung

Belastung/Kalkulation der Lebensdauer

Aufgrund der Härte des Schienenschachts und der Ermüdungsanalyse der Schienen und Rollen wird klar, dass die Lebensdauer der Schiene nicht die Lebensdauer des Systems bestimmt. Es wird durch die Lebens- dauer der Roller bestimmt. Die Tragfähigkeit des Bewegungsführungs- systems variiert hauptsächlich durch die Größe des Lagers und der Schiene, geschmiert oder nicht, und die Größe und Richtung der Last. Andere Faktoren umfassen Geschwindigkeit und Beschleunigung und Umgebung usw. Um die Systemlebensdauer zu berechnen, sollte zuerst der Ladefaktor LF berechnet werden. Hier bieten wir zwei Methoden zur Berechnung des Ladefaktors.

Standardberechnung für 4 Lagerlaufwagen

Wenn das System SAIBO Standard 4 Lagerlaufwagen verwendet, kann die untenstehende Formel verwendet werden.

LF - Lastfaktor

$$L_{\mathbf{F}} = \frac{Fy}{Fy_{\text{max}}} + \frac{Fz}{Fz_{\text{max}}} + \frac{Mx}{Mx_{\text{max}}} + \frac{Mz}{My_{\text{max}}} + \frac{Mz}{Mz_{\text{max}}}$$

Fy – Tatsächliche Belastung in Y-Richtung (N).

Fz – Tatsächliche Belastung in Z-Richtung (N).

Mx – Tatsächliches Moment in X-Richtung (Nm).

My – Tatsächliches Moment in Y-Richtung (Nm).

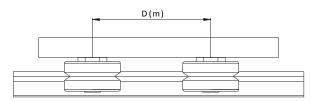
Mz – Tatsächliches Moment in Z-Richtung (Nm).

Die folgenden Parameter können der Tabelle der Belastbarkeit entnommen werden

Fy_{max} – Maximale Belastbarkeit in Y-Richtung (N).

Fz_{max} – Maximale Belastbarkeit in Z-Richtung (N).

Mx_{max} - Maximale Momentkapazität in X-Richtung (Nm).

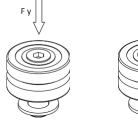

My_{max} – Maximale Momentkapazität in Y-Richtung (Nm).

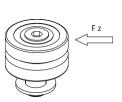
Mz_{max} – Maximale Momentkapazitätin Z-Richtung (Nm).

Maximale Belastbarkeit

Laufwagen Linearführung

Lauf-	Doj			s System nd Zwillings	slager				tes System gslager					es System iges Lager	
wage	Fy	Fz	Mx	My	Mz	Fy	Fz	Mx	Му	Mz	Fy	Fz	Mx	Му	Mz
n Typ	N	N	Nm	Nm	Nm	N	N	Nm	Nm	Nm	N	N	Nm	Nm	Nm
SLC25	400	400	4.5	200 xD	200 x D	1.280	1.200	14	600 xD	640 x D	1.600	3.000	18	1.500 xD	800 xD
SLC44	800	800	16	400 xD	400 xD	3.200	2.800	65	1.400 xD	1.600 x D	3.600	6.000	73	3.000 xD	1.800 xD
SLC76	1.800	1.800	64	900 xD	900 xD	7.200	6.400	250	3.200 xD	3.600 xD	10.000	10.000	360	5.000 xD	5.000 xD




Laufwagen Ringführung

	Dopp	Trock pelreihige	kenes Sys s- und Z		ger			niertes S illingslag					niertes S Ireihiges		
Laufwage n Typ	Fy	Fz	Mx	Му	Mz	Fy	Fz	Mx	Му	Mz	Fy	Fz	Mx	Му	Mz
,p	N	N	Nm	Nm	Nm	N	N	Nm	Nm	Nm	N	N	Nm	Nm	Nm
SRC25 159	400	400	4,5	8,5	8,5	1.280	1.200	14	25	27	1.600	3.000	18	64	33
SRC25 255	400	400	4,5	8	8	1.280	1.200	14	23	25	1.600	3.000	18	60	31
SRC25 351	400	400	4,5	8,5	8,5	1.280	1.200	14	24	27	1.600	3.000	18	63	33
SRC44 468	800	800	16	28	28	3.200	2.800	64	95	110	3.600	6.000	73	210	120
SRC44 612	800	800	16	29	29	3.200	2.800	64	100	115	3.600	6.000	73	220	130
SRC76 799	1.800	1.800	64	85	85	7.200	6.400	250	300	340	10.000	10.000	360	470	470
SRC76 1033	1.800	1.800	64	105	105	7.200	6.400	250	360	410	10.000	10.000	360	570	570
SRC76 1267	1.800	1.800	64	120	120	7.200	6.400	250	420	480	10.000	10.000	360	670	670
SRC76 1501	1.800	1.800	64	140	140	7.200	6.400	250	480	550	10.000	10.000	360	770	770

Individual V track Lager calculation

Wenn das System keinen SAIBO Standard 4 Lagerlaufwagen verwendet, ist es notwendig, den Belastungsfaktor jedes Lagers zu berechnen. Die größte Belastung des Lagers bestimmt die Lebensdauer des Systems.

Lintec Antriebstechnik GmbH

PARO Linear- und Kurvenführung

 $\mathbf{LF} = \frac{\mathbf{F}\mathbf{y}}{\mathbf{F}\mathbf{y}_{\text{max}}} + \frac{\mathbf{F}\mathbf{z}}{\mathbf{F}\mathbf{z}_{\text{max}}}$

LF - Lastfaktor

LF sollte für jede Lastkombination kleiner als 1,0 sein

Fy – atsächliche axiale Belastung. (N).

Fz – Tatsächliche radiale Belastung. (N).

Die folgenden Parameter können der Tabelle Belastbarkeit entnommen werden

 Fy_{max} – Max axial load (N).

 Fz_{max} – Max radial load (N).

Belastbarkeit

		Doppelreih	iges Lager		Jed	es der zwei	Zwillingsla	ger
Lage	Radia	l Last	Axial	Last	Radia	l Last	Axial	Last
r Typ	Со	С	Co	С	Co	С	Со	С
SVR-25C	2.646	5.214	821	1.618	1.333	3.237	326	791
SVR-25E	2.040	5.214	021	1.010	1.333	3.231	320	791
SVR-34C	5.018	9.293	1.362	2.523	2.600	5.291	557	1.270
SVR-34E	5.016	9.293	1.302	2.525	2.000	5.291	557	1.270
SVR-54C	12.899	21.373	2.777	4.601	6.657	13.595	1.136	2.320
SVR-54E	12.099	21.373	2.111	4.001	0.037	13.393	1.130	2.320

Kalkulation der Lebensdauer Nachdem der Lastfaktors LF herausgefunden wurde, kann die Lebensdauer in km durch die Auswahl einer von zwei Formeln berechnet werden. Das grundlegende Leben kann der folgenden Tabelle entnommen werden.

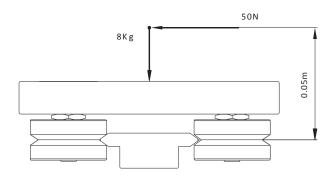
Trockenes System

Lebensdauer (km) =
$$\frac{\text{Mindestlebensdauer}}{(0.03 + 0.97 \cdot \text{LF} \cdot \text{f})^2}$$

Geschmiertes System

Lebensdauer (km) =
$$\frac{\text{Mindestlebensdauer}}{(0,03 + 0,97 \cdot \text{LF} \cdot \text{f})^3}$$

Mindestlebensdauer


Lager Typ	Dry system	Schmierungd system
SVR-25	100	150
SVR-34	100	150
SVR-54	150	250

f – Reduktionskoeffizient der Anwendung und Umgebung.

Keine Vibration oder Erschütterung, niedrige Geschwindigkeit (< 1m/s), niedrige Frequenz der Verschiebungsrichtung, saubere Umwelt.	1,0 –1,5
Leichte Vibration oder Erschütterung, mittlere Geschwindigkeit (1–2,5 m/s), mittlere Frequenz der Verschiebungsrichtung, etwas Schmutz.	1,5 –2,0
Starke Vibration oder Erschütterung, hohe Geschwindigkeit (> 2,5 m/s), hohe Frequenz der Verschiebungsrichtung, stark verschmutzt.	2,0 -3,5

Berechnungsbeispiel

Eine Maschine verwendet SB-LGV25 Spacer Bahn und den Standard-Laufwagen. Das Gewicht des Laufwagens und des Werkstücks beträgt 8 kg. Wenn sich der Laufwagen bewegt, wird eine externe Last von 50 N ausgeübt, wie unten gezeigt. Die Arbeitsumgebung ist sauber und es gibt keine Vibrationen oder Erschütterungen.

Formel zur Berechnung des Lastfaktors LF

$$\mathbf{LF} = \frac{\mathbf{F}\mathbf{y}}{\mathbf{F}\mathbf{y}_{\text{max}}} + \frac{\mathbf{M}\mathbf{x}}{\mathbf{F}\mathbf{E}_{\text{max}}} + \frac{\mathbf{M}\mathbf{x}}{\mathbf{M}\mathbf{x}_{\text{max}}} + \frac{\mathbf{M}\mathbf{y}}{\mathbf{M}\mathbf{y}_{\text{max}}} + \frac{\mathbf{M}\mathbf{z}}{\mathbf{M}\mathbf{z}_{\text{max}}}$$

Fy = 8 kg x 9.8 (gravity) = 78.40 N

Fz = 50 N

 $Mx = 50 \times 0.05 = 2.5 \text{ Nm}$

My = 0

Mz = 0

Lintec Antriebstechnik GmbH

Schwerlast Linearführung

Entnehmen Sie die Parameter für Fy_{max} , Fz_{max} , Mx_{max} , My_{max} , Mz_{max} der Tabelle und setzen Sie sie in die Formel:

$$\mathbf{L}_{\mathbf{F}} = \frac{78.4}{1280} + \frac{50}{1200} + \frac{2.5}{14} + \frac{0}{My_{\text{max}}} + \frac{0}{Mz_{\text{max}}} = 0,2816$$

Die Kalkulation der Lebensdauer (km) kann anhand folgender Formel werden:

Trockenes System

Lebensdauer (km) =
$$\frac{\text{Mindestlebensdauer}}{(0.03 + 0.97 \cdot \text{LF} \cdot \text{f})^2}$$

Die Mindestlebensdauer bträgt 100 km.

Nach der Beschreibung der Arbeitsbedingungen, setzen Sie für f = 1,3

Lebensdauer (km) =
$$\frac{100}{(0.03 + 0.97 \cdot 0.2816 \cdot 1.3)^2}$$
 = 674 km

Geschmiertes System

Die Mindestlebensdauer beträgt 150 km, f=1.1

Lebensdauer (km) =
$$\frac{\text{Mindestlebensdauer}}{(0.03 + 0.97 \cdot \text{LF} \cdot \text{f})^2}$$

Lebensdauer (km) =
$$\frac{150}{(0.03 + 0.97 \cdot 0.2816 \cdot 1.1)^2}$$
 = 4.155 km

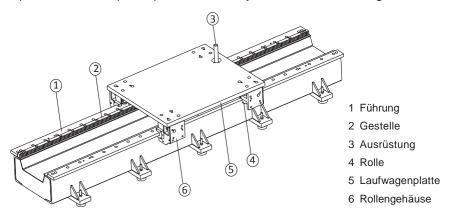
Aus diesem Beispiel wird deutlich, dass die Schmierung für die Lebensdauer des Systems sehr wichtig ist. Bitte achten Sie darauf, das Schmiersystem für Ihr System zu installieren.

Aufbau

Das SAIBO Schwerlast-Linearsystem bietet eine präzise, stabile und reibungsarme Linearführung für Schwerlastanwendungen. Typische Anwendungen sind der bewegliche Rahmen von Portalrobotern, der bewegliche Laufwagen von Gelenkarmrobotern für die Industrie wie das Logistik und Handhabungssystem, die flexible Produktionseinheit, die Automobilproduktionslinie usw.

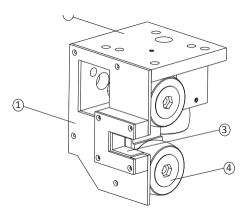
SAIBO bietet nicht nur Einzelteile, sondern auch maßgeschneiderte Systemlösungen. Unsere erfahrenen Ingenieure unterstützen Sie gerne beim Entwurf, Bau und Service Ihrer automatischen Anlagen.

Merkmale


- 1. Hohe Belastbarkeit
- 2. Modular aufgebaute Komponenten lassen sich leicht in unterschiedliche Strukturen einbauen
- 3. Führung und Gestelle lassen sich zu langen Systemen verbinden
- 4. Schmierschlauch im Rollengehäuse integriert

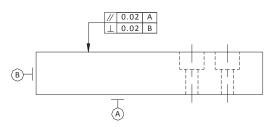
Schwerlast Linearführung

Standard system

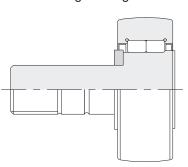

Je nach Tragfähigkeit bietet SAIBO 3 Standardgrößen an. Mit den einzelnen Komponenten dieser 3-Größen-Systeme können Kunden die Spannweite, die Laufwagengrößen und die Montageanweisungen einfach anpassen. Die Hauptkomponenten des Systems sind unten aufgelistet.

Rollengehäuse

Das Rollengehäuse ist nach einem modularen Konzept aufgebaut. Es ermöglicht den Kunden, die Spannweite, die Größe der Laufwagen und die Richtung der Montage anzupassen.


Im Rollengehäuse sind die Wischerschmiersysteme integriert. Nach der Installation wird nur die Düse des automatischen Schmiersystems an den Bohrungen der Schmierschrauben befestigt, die automatische Schmierung des gesamten Systems wird dadurch funktionieren.

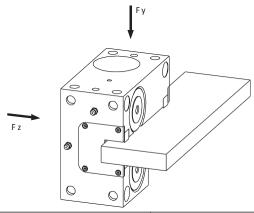
- 1 Wischerabdeckung
- 2 Rollengehäuse
- 3 Filzwischer
- 4 Rolle


Führung

Die Eisenbahn besteht aus kohlenstoffhaltigem Stahl DIN 100Cr6. Die Arbeitsfläche ist auf über 50HRC gehärtet. Genauere Angaben sind auf dem unteren Bild. Die maximale Länge beträgt 2000 mm, aber es kann leicht an jede Länge angepasst werden.

Rollen

Die Rolle besteht aus einem doppelreihigem Rollenlager für höchste Präzision. Es ist hochbelastbar. Hochleistungsfähiges Lithiumseifenfett wird vor der Lieferung in das Lager eingefüllt. Die äußere Oberfläche des Rollers ist kugelförmig und der Radius beträgt 500 mm.



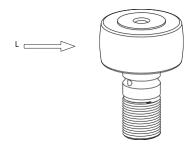
Belastbarkeit

Die innere Rolle ist ohne Aufteilungen und hat somit die größtmögliche Anzahl von Rollelementen. Aus diesem Grund ist es sehr belastbar. Entsprechend der entworfenen Mindestlebensdauer von 1.000 km ist die Tragfähigkeit der Rollen wie folgt aufgelistet:

Rollen Größe	Rollen Belastbarkeit (N)		
Rollen Groise	Dynamic	Static	
62	41.000	59.300	
72	58.000	75.300	
90	75.000	102.300	

Wenn man das Rollengehäuse, die Erschütterung der Anwendung und den Sicherheitsfaktor betrachtet, muss die Tragfähigkeit jedes Rollengehäuses auf die folgenden Werte reduziert werden.

Rollen Größe	Rollen Belastbarkeit (N)		
Rollett Groise	Fy	Fz	
62	13.000	13.000	
72	17.000	17.000	
90	33.000	33.000	



Lintec Antriebstechnik GmbH

Schwerlast Linearführung

Belastung/Kalkulation der Lebensdauer

Nachdem die Größe des Systems ausgewählt wurde, ist eine Verifikationsberechnung erforderlich. Aufgrund der Härte der Schienen und der Ermüdungsanalyse der Schienen und Rollen bestimmt die Lebensdauer der Schienen nicht die Lebensdauer des Systems. Es wird durch die Lebensdauer der belasteten Rolle bestimmt. Die Systemlebensdauer entspricht somit der kürzesten Lebensdauer der Rolle.

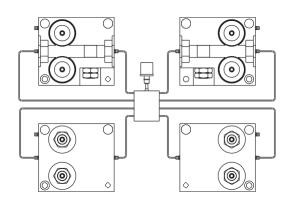
$$LF = \frac{L}{L_{max}}$$
 (LF sollte geringer als 1.0 sein)

L - Tatsächliche Last (N)

L_{max} – Tragfähigkeit für das grundlegende Leben 1.000 km (N)

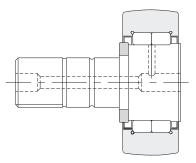
Walzgröße	L _{max} -Belastbarkeit für das grundlegende Leben 1,000 km (N)	
62	41.000	
72	58.000	
90	75.000	

Die Kalkulation der Lebensdauer für die Rolle kann anhand folgender Formel berechnet werden: :


Lebensdauer (km) =
$$\frac{1,000}{(0.03 + 0.97 \cdot LF \cdot f)^3}$$

f Reduktionskoeffizient der Anwendung und Umgebung.

Keine Vibration oder Erschütterung, niedrige Geschwindigkeit (< 1m/s), niedrige Frequenz der Verschiebungsrichtung, saubere Umwelt.	1,0 – 1,2
Leichte Vibration oder Erschütterung, mittlere Geschwindigkeit (1–2,5 m/s), mittlere Frequenz der Verschiebungsrichtung, etwas Schmutz.	1,2-5,0
Starke Vibration oder Erschütterung, hohe Geschwindigkeit (> 2,5 m/s), hohe Frequenz der Verschiebungsrichtung, stark verschmutzt.	1,5 – 2,5


Führung

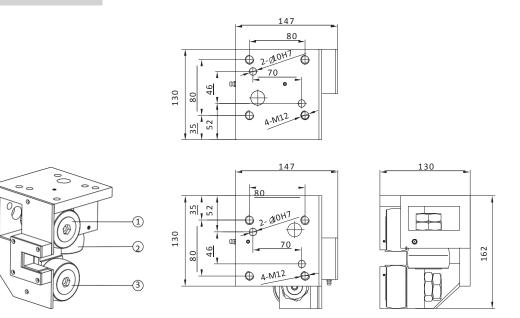
Durch die Schmierung wird die Reibung reduziert und somit die Lebensdauer des Systems erhöht. Die Schmierung findet im Walzgehäuse statt, in dem ölgetränkte Filzabstreifer auf der laufenden Arbeitsfläche der Schiene entlang laufen. Es sollte alle 100 km im laufenden Betrieb geölt werden. Dafür wird auf eine sehr einfache Art und Weise Öl aus der Düse außerhalb in das Rollengehäuse gefüllt. Dafür sollte Mineralöl verwendet werden. Wenn der Filzabstreifer verschleißt, sollte er unver- züglich ausgewechselt werden. Falls erforderlich, kann die Düse wie unten gezeigt an das automatische Ölsystem angeschlossen werden.

Rollen

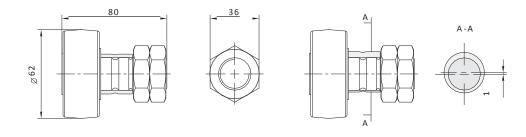
Vor der Lieferung wird Lithiumseifenfett in das Lager eingefüllt, das besonders hoch belastbar ist. Wir empfehlen eine Nachschmierung der Rolle nach 1000 km Arbeit. In jedem Rollengehäuse sind alle Schmierlöcher der drei Rollen durch einen Schlauch mit dem Rollengehäuse verbunden. So lässt sich das Öl/Fett einfach durch eines der Löcher außerhalb füllen, sodass jedes Lager einfach geschmiert wird. Je nach Fetteigenschaften kann die Rolle bei einer Temperatur zwischen 30°C and 120°C verwendet werden.working conditions.

Getriebe und Gestell

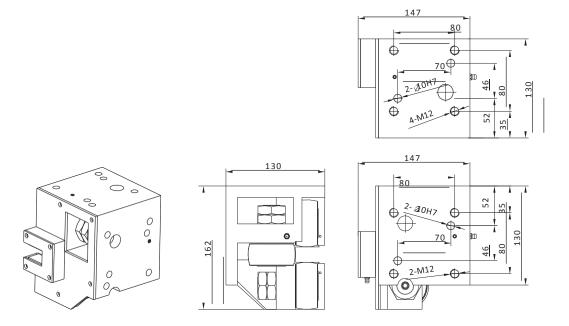
Getriebe und Gestell müssen alle 100 km geschmiert werden. Wir empfehlen Mineralöl mit einer hohen Viskosität und einer hohen Belastbarkeit.


Version 2019-04 www.lintec-linear.de 29

Schwerlast Linearführung

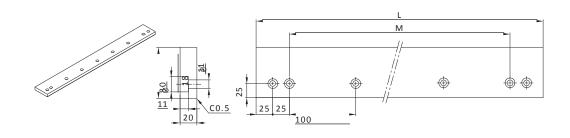

Größe 62

Rollengehäuse



	Konzentrische/Exzentrische Rollenposition			Belastbarkeit (N)	
Rollengehäuse	Position 1	Position(2)	Position 3	Dynamik bei konzentrischer Rolle	Dynamik bei exzentrische r Rolle
SB-HV62-RH62.1R	konzentrisch	exzentrisch	exzentrisch	13.000	4.000
SB-HV62-RH62.2R	exzentrisch	konzentrisch	exzentrisch	13.000	4.000
SB-HV62-RH62.3R	exzentrisch	exzentrisch	konzentrisch	13.000	4.000

Rolle

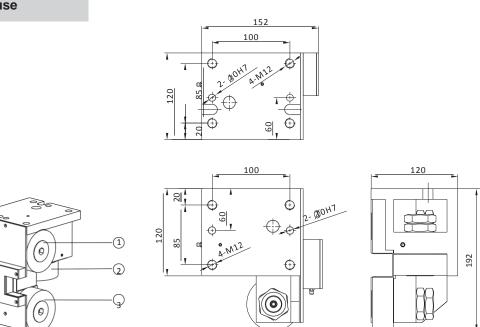


Tim	Belastbarkeit (N) Rolle		
Тур	Dynamisch	Statisch	
SB-HV62-RC62	41.000	59.300	
SB-HV62-RE62	41.000	59.300	

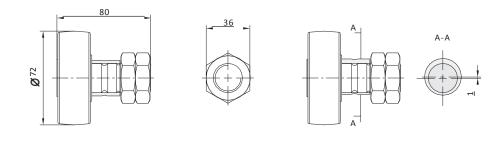
	Konzentrische/Exzentrische Rollenposition			Belastbarkeit (N)	
Rollengehäuse	Position ①	Position 2	Position 3	Dynamik bei konzentrischer Rolle	Dynamik bei exzentrischer Rolle
SB-HV62-RH62.1L	konzentrisch	exzentrisch	exzentrisch	13.000	4.000
SB-HV62-RH62.2L	exzentrisch	konzentrisch	exzentrisch	13.000	4.000
SB-HV62-RH62.3L	exzentrisch	exzentrisch	konzentrisch	13.000	4.000

Führung

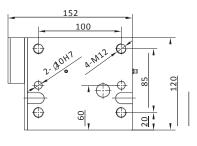
Тур	L*	M
SB-HV62-004	2.000	1.900

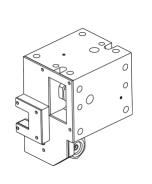

^{*} Führungs können verbunden werden

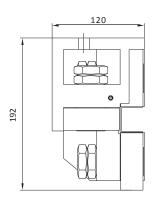
Schwerlast Linearführung

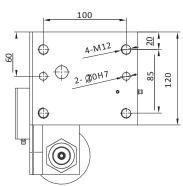

Größe 72

Rollengehäuse

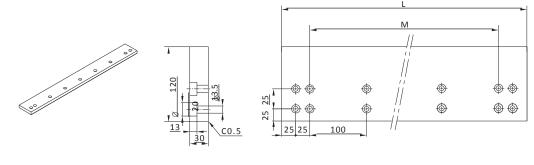



	Konzentrische/Exzentrische Rollenposition			Belastbarkeit (N)	
Rollengehäuse	Position 1	Position 2	Position 3	Dynamik bei konzentrischer Rolle	Dynamik bei exzentrische r Rolle
SB-HV72-RH72.1R	konzentrisch	exzentrisch	exzentrisch	17.000	5.000
SB-HV72-RH72.2R	exzentrisch	konzentrisch	exzentrisch	17.000	5.000
SB-HV72-RH72.3R	exzentrisch	exzentrisch	konzentrisch	17.000	5.000


Rolle

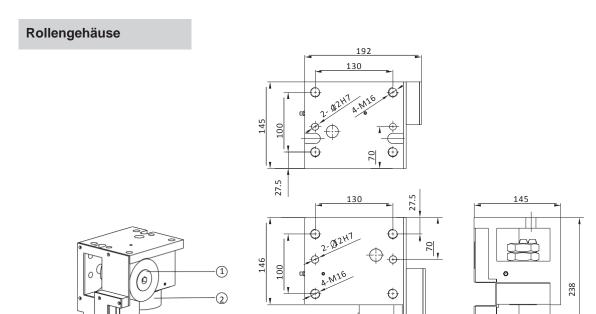


Tim	Belastbarkeit (N) Rolle		
Тур	Dynamisch	Statisch	
SB-HV72-RC72	58.000	75.300	
SB-HV72-RE72	58.000	75.300	

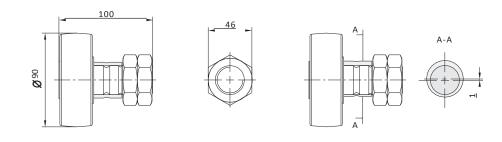


	Konzentris	che/Exzentrische Rolle	Belastbarkeit (N)		
Rollengehäuse	Position ①	tion ① Position ② Position ③		Dynamik bei konzentrischer Rolle	Dynamik bei exzentrischer Rolle
SB-HV72-RH72.1L	konzentrisch	exzentrisch	exzentrisch	17.000	5.000
SB-HV72-RH72.2L	exzentrisch	konzentrisch	exzentrisch	17.000	5.000
SB-HV72-RH72.3L	exzentrisch	exzentrisch	konzentrisch	17.000	5.000

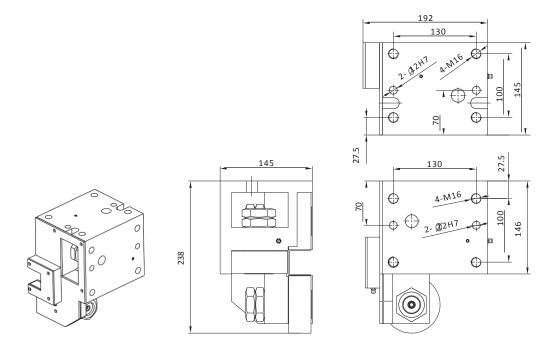
Führung


Тур	L*	M	
SB-HV72-004	2.000	1.900	

^{*} Führungs können verbunden werden

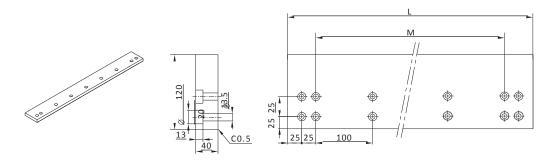

Schwerlast Linearführung

Größe 90



	Konzentris	che/Exzentrische Rolle	Belastbarkeit (N)		
Rollengehäuse	Position 1	Position(2)	Position3	Dynamik bei konzentrischer Rolle	Dynamik bei exzentrische r Rolle
SB-HV90-RH90.1R	konzentrisch	exzentrisch	exzentrisch	33.000	8.000
SB-HV90-RH90.2R	exzentrisch	konzentrisch	exzentrisch	33.000	8.000
SB-HV90-RH90.3R	exzentrisch	exzentrisch	konzentrisch	33.000	8.000

Rolle



Tim	Belastbarkeit (N) Rolle				
Тур	Dynamisch	Statisch			
SB-HV90-RC90	75.000	102.300			
SB-HV90-RE90	75.000	102.300			

	Konzentris	che/Exzentrische Rolle	Belastbarkeit (N)		
Rollengehäuse	Position ①	Position 2 Position 2		Dynamik bei konzentrischer Rolle	Dynamik bei exzentrischer Rolle
SB-HV90-RH90.1L	konzentrisch	exzentrisch	exzentrisch	33.000	8.000
SB-HV90-RH90.2L	exzentrisch	konzentrisch	exzentrisch	33.000	8.000
SB-HV90-RH90.3L	exzentrisch	exzentrisch	konzentrisch	33.000	8.000

Führung

Тур	L*	М	
SB-HV90-004	2.000	1.900	

^{*} Führungs können verbunden werden

Lintec Antriebstechnik GmbH

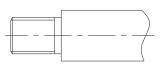
Wellen

SAIBO Welle wird mit einem linearen Lager verwendet, um eine höchst präzise lineare Bewegung sicherzustellen. Die Qualität und Genauigkeit der Welle beeinflusst auf direktem Wege die Leistung des linearen Lagers. SAIBO legt das Augenmerk der Produktion der Produkte auf die Qualität und Genauigkeit.

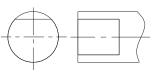
Material

- Stahl mit hohem Kohlenstoffgehalt: DIN 100Cr6
- Qualitätskohlenstoffstahl: DIN CK45
- Rostfreier Stahl: SUS440C
- · Oberfläche könnte bei Bedarf verchromt werden.

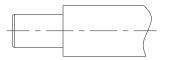
Härte

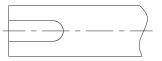

Die Wärmebehandlung findet auf der Oberfläche der Welle statt und ergibt eine Tiefe, die ausreicht um der SAIBO-Welle eine ausgezeichnete Verschleißfestigkeit zu verleihen. Die Oberflächenhärte erreicht mindestens 58HRC. Um eine noch bessere Verschleißfestigkeit zu erhalten, können wir die Oberfläche auf Wunsch auch noch verchromen.

Rauheit der Oberfläche

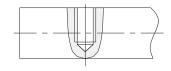

SAIBO verwendet ein spezielles präzises Schleifverfahren, um eine Oberflächenrauhigkeit von weniger als Ra 0,40 zu erreichen.

Maschinelle Bearbeitung:


SAIBO führt eine Vielzahl hochpräziser Bearbeitungsprozesse durch, um kundenspezifische Wellen zu erzeugen. Wie beispielsweise Bohrloch und Klopfen. Bitte sehen Sie sich das Bild unten an.

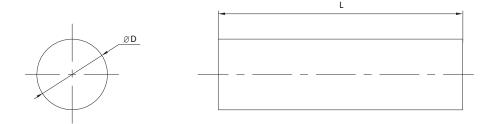

Axialgewinde

Hobeln


Zapfen drehen

Keilnuten

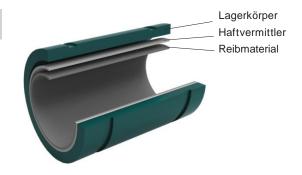
Axial-Innengewinde


Radial-Gewinde

Lintec Antriebstechnik GmbH

Linear-Gleitlager

Größe


Außend	urchmesser	Max. Länge L				
D	Toleranz g6*					
3	-2/-8	300			0,06	
4		500			0,10	
5	-4 -12	1.000			0,16	
6	-12		3.000		0,22	
8	-5			4.000	0,40	
10	-14			4.000	0,62	
12				4.000	0,89	
13	-6			4.000	1,05	
15	-17			4.000	1,40	
16				4.000	1,59	
20				4.000	2,48	
25	-7			4.000	3,88	
30	-20			4.000	5,58	
35				4.000	7,60	
40	-9			4.000	9,92	
50	-25			4.000	15,50	
60	-10			4.000	22,33	
80	-29			4.000	39,69	

^{*} Andere Toleranzen als g6 sind auf Anfrage erhältlich.

Selbstschmierendes Linear Lager

Die Anwendung von SAIBO selbstschmierenden linearen Lagern um- fasst eine breite Palette von Industriezweigen, wie zum Beispiel medizi- nische Ausrüstung, Lebensmittel- und Verpackungsausrüstung, Fitness- geräte und Präzisions-Stanzmaschinen.

Aufbau

- 1. Lagerkörper: Farbige anodisierte Aluminiumlegierung
- 2. Bindemittel: Ausgezeichnete Bindungsleistung, besteht auch in hohen Temperaturen
- 3. Reibmaterial: PTFE und mit reibungsarmen Material gefüllt

PTFE Merkmale

PTFE überzeugt mit ausgezeichneten physikalischen und chemischen Leistungen und wurde nach mehreren Jahrzehnten der Anwendung zugelassen. In der linearen Bewegung wählt SAIBO PTFE als Reibematerial, da es folgende Vorteile mit sich bringt:

- Selbstschmierend
- Besteht hohe und niedrige Temperaturen (240° C ~ + 260° C)
- Weich und kann Vibrationen absorbieren

Reibmaterial Merkmal

Nach vielen Jahren voller Forschung und Untersuchungen entwickelt SAIBO die Leistung und Qualität dieses Mischreibungsmaterials so weit voran, dass es nun eines der besten der Welt ist. PTFE und sein Mischreibungsmaterial haben folgende Eigenschaften:

- Anti-Reibung
- Good Ladekapazität
- Hervorragende Klebeeigenschaften mit PTF

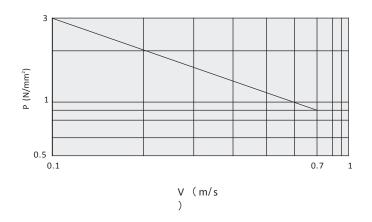
Version 2019-04 www.lintec-linear.de 34

Lintec Antriebstechnik GmbH

Linear-Gleitlager

Vorteil

Im folgenden vergleichen wir SAIBO selbstschmierende Linearlager mit traditionellen Linearlagern mit Stahlkugel.


	SAIBO selbstschmierende Linearlager	Linearlager mit Stahlkugel	
Belastbarkeit	4-20-fach höhere Tragfähigkeit als Stahlkugel-Linearlager	Genügt für leichte Belastung	
Geschwindigkeit	Geringe und Mittlere Geschwindigkeit	Mittlere und hohe Geschwindigkeit	
Reibungskoeffizient	0,03 – 0,20	0,002 - 0,003	
Geräusch	leise	laut	
Schmierung	nicht nötig	nötig	
Korrosionsbeständigkeit	gut	keine	
Anti-vibration and shock	gut	keine	
Austauschbarkeit	gut	gut	
Laufweg	Linear, rotierend oder in Kombination	nur linear	
Akzeptable Welle	Harte oder weiche Welle	Harte Welle	
Maschinelle Bearbeitung	Kann bearbeitet werden	Kann nicht bearbeitet werden	

PV Faktor

Der Druckgeschwindigkeit Faktor(PV) ist ein Schlüsselparameter bei der Konstruktion und Auswahl des selbstschmierenden Linearlagers von SAIBO. Der PV kann die Reibleistung zwischen Druck und Geschwindigkeit des Systems definieren.PTFEMischung hat eine intrinsische begrenzende PV-Bewertung, während das System unter bestimmten Bedingungen läuft. Einfach ausgedrückt, je mehr Last auf das System angewendet wird, desto langsamer muss es sich bewegen, um eine Überschreitung der PV-Grenze zu vermeiden. Das Umgekehrte gilt auch, mehr Geschwindigkeit, weniger verfügbare Belastbarkeit. Überlastung und Überschreitung der Höchstgeschwindigkeit verursachen Reibungswärme und beschleunigen den Verschleiß.

Max. PV Wert: 0,7 N/mm² × m/s
Belastbarkeit: 20 N/mm² (MPa)
Max. Geschwindigkeit: 1,5 m/s
Arbeitstemperatur: -50° C ~ + 260° C
Reibungskoeffizient: 0,03 ~ 0,2

Die folgende Tabelle zeigt den PV-Grenzwert bei einer Betriebsbedingung von 20° C der SAIBO selbstschmierende Linearlager.

Schmierung

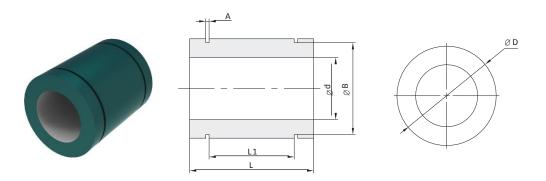
PTFE und seine Mischung haben selbschmierende Eigenschaften. Aus diesem Grund wird es hauptsächlich verwendet, wenn die Umgebung der Anwendung kein zusätzliches Öl anfordert. Wenn es die Bedingungen erlauben, kann die Schmierung die Reibung um mindestens 30% reduzieren. Das ist sehr hilfreich, um die Lebensdauer des Lagers zu verlängern.

Empfohlene Schmierung: Öl oder Fett auf Petroleumbasis. Achtung: PTFE-Schmierung ist verboten.

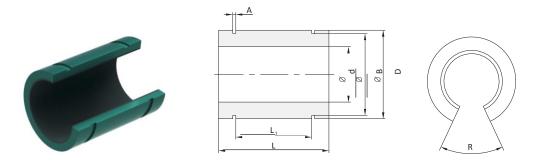
Accaptable shaft

Die Bedingungen für die SAIBO selbstschmierenden Linearlager sind in dem Fall nicht unbedingt für die Welle gültig. Unter Berücksichtigung der Verschleißrate empfehlen wir die Einstellungen für die beste Leistung der Welle wie folgt:

Rauheit der Oberfläche: Ra 0.4 Härte: 55HRC



Lintec Antriebstechnik GmbH

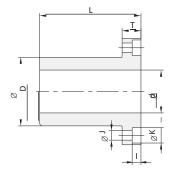

Linear-Gleitlager

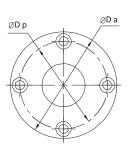
Standard Typ

T		Belastbarkeit					
Тур	d	D	L	Α	В	L	(N)
SLL06	6	12	19	1,15	11,50	11,30	2.280
SLL08	8	15	24	1,15	14,30	15,20	3.840
SLL10	10	19	29	1,35	18,00	19,30	5.800
SLL12	12	21	30	1,35	20,00	20,30	7.200
SLL13	13	23	32	1,35	22,00	20,30	8.320
SLL16	16	28	37	1,65	26,60	23,20	11.840
SLL20	20	32	42	1,65	30,30	27,20	16.800
SLL25	25	40	59	1,85	38,00	37,20	29.500
SLL30	30	45	64	1,85	42,50	40,70	38.400
SLL35	35	52	70	2,20	49,00	44,80	49.000
SLL38	38	57	76	2,20	54,50	54,30	57.760
SLL40	40	60	80	2,20	57,00	56,10	64.000
SLL50	50	80	100	2,70	76,50	68,60	100.000
SLL60	60	90	110	3,15	86,50	78,70	132.000
SLL80	80	120	140	4,15	116,00	97,20	224.000
SLL100	100	150	175	4,15	145,00	117,20	350.000
SLL120	120	180	200	4,15	175,00	150,30	480.000
SLL150	150	210	240	5,15	204,00	160,30	720.000

Offener Typ

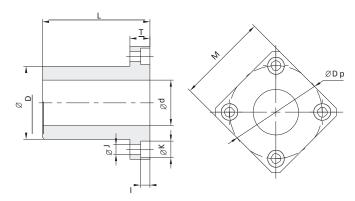
Tim	Abmessung							Belastbarkeit
Тур	d	D	L	Α	В	L	R	(N)
SLL06 OP	6	12	19	1,15	11,50	11,30	60°	2.280
SLL08 OP	8	15	24	1,15	14,30	15,20	60°	3.840
SLL10 OP	10	19	29	1,35	18,00	19,30	80°	5.800
SLL12 OP	12	21	30	1,35	20,00	20,30	80°	7.200
SLL13 OP	13	23	32	1,35	22,00	20,30	80°	8.320
SLL16 OP	16	28	37	1,65	26,60	23,20	80°	11.840
SLL20 OP	20	32	42	1,65	30,30	27,20	60°	16.800
SLL25 OP	25	40	59	1,85	38,00	37,20	50°	29.500
SLL30 OP	30	45	64	1,85	42,50	40,70	50°	38.400
SLL35 OP	35	52	70	2,20	49,00	44,80	50°	49.000
SLL38 OP	38	57	76	2,20	54,50	54,30	50°	57.760
SLL40 OP	40	60	80	2,20	57,00	56,10	50°	64.000
SLL50 OP	50	80	100	2,70	76,50	68,60	50°	100.000
SLL60 OP	60	90	110	3,15	86,50	78,70	50°	132.000
SLL80 OP	80	120	140	4,15	116,00	97,20	50°	224.000
SLL100 OP	100	150	175	4,15	145,00	117,20	50°	350.000
SLL120 OP	120	180	200	4,15	175,00	150,30	80°	480.000
SLL150 OP	150	210	240	5,15	204,00	160,30	80°	720.000




Lintec Antriebstechnik GmbH

Linear-Gleitlager

Runder Flansch



Abmessung Belastbarkeit Тур (N) d D L Da J Dp SLL06 FC 6 12 19 28 8 20 3,50 6,00 3,10 2.280 8 24 32 3.840 SLL08 FC 15 24 3,50 3,10 SLL10 FC 10 29 40 9 29 4,50 7,50 4,10 5.800 19 SLL12 FC 12 30 42 32 4,50 7,50 4,10 7.200 21 SLL13 FC 13 23 32 33 4,50 4,10 8.320 43 9 7,50 16 37 SLL16 FC 48 38 4,50 7,50 4,10 11.840 SLL20 FC 42 5,10 20 32 54 11 43 5,50 9,00 16.800 SLL25 FC 25 40 62 11 51 5,50 5,10 29.500 9,00 SLL30 FC 30 45 74 14 6,60 6,10 11,00 38.400 SLL35 FC 35 82 14 6,60 11,00 6,10 49.000 SLL40 FC 40 60 96 78 9,00 8,10 64.000 SLL50 FC 50 80 116 18 9,00 14,00 8,10 100.000 SLL60 FC 60 132.000 24 112 11,00 11,10 SLL80 FC 140 120 24 11,00 224.000

Eckiger Flansch

Tim	Abmessung								Belastbarkeit	
Тур	d	D	L	Т	M	Dp	J	K	I	(N)
SLL06 FN	6	12	19	8	22	20	3,50	6,00	3,10	2.280
SLL08 FN	8	15	24	8	25	24	3,50	6,00	3,10	3.840
SLL10 FN	10	19	29	9	30	29	4,50	7,50	4,10	5.800
SLL12 FN	12	21	30	9	32	32	4,50	7,50	4,10	7.200
SLL13 FN	13	23	32	9	34	33	4,50	7,50	4,10	8.320
SLL16 FN	16	28	37	9	37	38	4,50	7,50	4,10	11.840
SLL20 FN	20	32	42	11	42	43	5,50	9,00	5,10	16.800
SLL25 FN	25	40	59	11	50	51	5,50	9,00	5,10	29.500
SLL30 FN	30	45	64	14	58	60	6,60	11,00	6,10	38.400
SLL35 FN	35	52	70	14	64	67	6,60	11,00	6,10	49.000
SLL40 FN	40	60	80	18	75	78	9,00	14,00	8,10	64.000
SLL50 FN	50	80	100	18	92	98	9,00	14,00	8,10	100.000
SLL60 FN	60	90	110	24	106	112	11,00	17,00	11,10	132.000
SLL80 FN	80	120	140	24	136	142	11,00	17,00	11,10	224.000

Lintec Antriebstechnik GmbH

Notizen	
	Lintec Antriebstechnik GmbH Lohmühlenweg 1 97447 Gerolzhofen
	Tel.: +49 (0) 9382 9799 0 Fax: +49 (0) 9382 9799 29
	www.lintec-linear.de info@lintec-linear.de
	WUXI SAIBO INDUSTRY CO LIMITED
	6-701 XIHU EAST ROAD, WUXI 214011, CHINA Tel.: +86510-8230 0095
	Fax: +865108230 0096 www.saibo-bearing.com info@saibo- bearing.com
	Alle Rechte vorbehalten.
	Aufgrund der ständigen Weiterentwicklung der Produkte

SAIBO GmbH

Heide 37 51399 Burscheid

Tel.: +49 (0) 21 746 66 1910 Fax: +49 (0) 21 746 66 1909

www.saibo.de info@saibo.de

WUXI SAIBO INDUSTRY CO LIMITED

6-701 XIHU EAST ROAD, WUXI 214011,

CHINA Tel.: +865108230 0095

Fax: +865108230 0096

www.saibo-bearing.com
info@saibo-bearing.com