## 1x1, 1x2, 2x2, 1x4, for special fibers (SF Series)

## Overview

The SF-series are opto-mechanical switches for the most demanding applications in fiber optic sen- sor systems and instrumentation. The switch is available in $1 \times 1,1 \times 2,2 \times 2$ and $1 \times 4$ variants and offers solid state reliability, accurate precision and fast response time. The switch mechanism is available in either latching or non latching variants and has a very fast response time below 1 ms and below 1.5 dB insertion loss. The single mode switch is available for a number of specialty fibers covering design wavelengths such as $488 \mathrm{~nm}, 515 \mathrm{~nm}, 633 \mathrm{~nm}, 680 \mathrm{~nm}, 780 \mathrm{~nm}, 830 \mathrm{~nm}, 980 \mathrm{~nm}$ and 1064 nm .

The miniature package withstands rugged environments and is well suited for direct mounting on printed circuit boards. The switch is qualified according to Telcordia GR 1221.

## Features

- reliable
- specialty fibers
- 1.5 dB insertion loss
- 1 ms response time
- low PDL
- 60 dB crosstalk
- miniature size
- $2 \times 2,2 \times 1,1 \times 1$ variants


## Applications

- Instrumentation
- Source selection


## Description

The Mems-Switches are composed of an optical subsystem and an electrical driver interface. The optical switching function is realized by a silicon MEMS chip, on which a mirror can be moved in and out of the optical path by electrostatic actuation. In the latching SF-L variants a bistable suspension mechanism keeps the last selected state in power off. In the non-latching SF-N variants the switch returns into the bar state when electrical power is removed.

To operate the switch 5 V and 0 V are applied on the supply pins, which are used by the internal DC- DC converter to supply a high voltage for the actuator control. CMOS or TTL logic levels on the con- trol pins switch the high voltage on the electrostatic actuator. To set the switch state in the latching variant, pin 2 respectively pin 3 are set to logic high ( 5 V ) for 10 ms and the corresponding switch state is selected. At rest pins 3 and 4 should be pulled to 0 V and must not be floating.

In the non-latching variant only pin 2 is used to set the state of the switch. To set the cross state pin 3 must be at logic high. When pin 3 goes to logic low, or at power off, the switch returns into the bar state. Technology by Sercalo.

## BAR STATE (0 V)



CROSS STATE (5 V)


## 1x1, 1x2, 2x2, 1x4, for special fibers (SF Series)

Technical Specifications

${ }^{1}$ value excluding connectors. Add 0.25 dB to account for temperature and wavelength dependent loss.
${ }^{2}$ value for constant temperature and polarisation

## PIN Location



Figure 1: Pin layout SF-N2x2: non-latching
15 V supply
2 bar select
3 cross select
4 ground 0 V
5 sensor output
6 sensor output


Figure 2: Pin layout MO1x2: latching with position monitor. Without monitor, pins 5,6 are omitted.

## 1x1, 1x2, 2x2, 1x4, for special fibers (SF Series)



Figure 3: Pin layout SF1x4: latching. In the non-latching variant pins S4, S5, S6 are omitted.

Ordering Information


HUBER+SUHNER Cube Optics AG
Eindhoven-Allee 3
55129 Mainz, Germany
+49-6131-4995-100
sales.cubo@hubersuhner.com
www.hubersuhner.com
www.cubeoptics.com

