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From karyotypes to precision genomics
in 9p deletion and duplication syndromes

Eleanor I. Sams,1 Jeffrey K. Ng,1 Victoria Tate,2 Ying-Chen Claire Hou,3 Yang Cao,3

Lucinda Antonacci-Fulton,4 Khadija Belhassan,3 Julie Neidich,2,3 Robi D. Mitra,1,4 F. Sessions Cole,2

Patricia Dickson,1,2 Jeffrey Milbrandt,1,4,5 and Tychele N. Turner1,*

While 9p deletion and duplication syndromes have been studied for several years, small sample sizes and minimal high-resolution data

have limited a comprehensive delineation of genotypic and phenotypic characteristics. In this study, we examined genetic data from 719

individuals in the worldwide 9p Network Cohort: a cohort seven to nine times larger than any previous study of 9p. Most breakpoints

occur in bands 9p22 and 9p24, accounting for 35% and 38% of all breakpoints, respectively. Bands 9p11 and 9p12 have the fewest break-

points, with each accounting for 0.6% of all breakpoints. The most common phenotype in 9p deletion and duplication syndromes is

developmental delay, and we identified eight known neurodevelopmental disorder genes in 9p22 and 9p24. Since it has been previously

reported that some individuals have a secondary structural variant related to the 9p variant, we examined our cohort for these variants

and found 97 events. The top secondary variant involved 9q in 14 individuals (1.9%), including ring chromosomes and inversions. We

identified a gender bias with significant enrichment for females (p ¼ 0.0006) that may arise from a sex reversal in some individuals with

9p deletions. Genes on 9p were characterized regarding function, constraint metrics, and protein-protein interactions, resulting in a

prioritized set of genes for further study. Finally, we achieved precision genomics in one child with a complex 9p structural variation

using modern genomic technologies, demonstrating that long-read sequencing will be integral for some cases. Our study is the largest

ever on 9p-related syndromes and provides key insights into genetic factors involved in these syndromes.
Introduction

In this study, we focus on 9p deletion (MIM: 158170) (also

called 9p minus) and duplication syndromes,1,2 which arise

from a deletion or duplication involving the p arm of chro-

mosome9.Thereare severalunresolved featuresof these syn-

dromes due in part to low incidence and a lack of high-reso-

lution genotype and phenotype data. We present the

largest-ever genomic assessment of 9p minus syndrome—

comprising of 719 individuals—and identify broad features

of this cohort. Through reviewing databases and the litera-

ture, we summarize phenotypic features of individuals

with 9p syndromes and characterize 9p genes and the pro-

teins they encode. Finally, we present results of a study of

one child with a complex 9p structural variation assessed

by several modern genomic technologies including short-

read whole-genome sequencing (WGS), long-read WGS,

and Bionano optical mapping. We compare these methods

with previous clinical tests for this individual (karyotype,

array, whole-exome sequencing) and show that long-read

sequencing is critical to achieving precision genomics. We

define precision genomics as ‘‘determining all possible rele-

vant genomic variation within an individual to the precise

nucleotide.’’ This term is inspired by ‘‘precision medicine,’’

which is defined by President Barack Obama of the United

States of America as ‘‘health care tailored to you’’ with a

mission statement ‘‘to enable a new era ofmedicine through
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research, technology, andpolicies that empowerpatients, re-

searchers, and providers to work together toward develop-

ment of individualized care’’ (https://obamawhitehouse.

archives.gov/precision-medicine). Ultimately, we want to

reach precision genomics to strengthen precision medicine

in syndromes arising from complex structural variations

including 9p deletion and duplication syndromes.

A critical aspect of human genetics and genomics is link-

inggenotype tophenotype. In somediseases, it is clearwhat

gene is underlying the main phenotype (e.g., CFTR [MIM:

602421] in cystic fibrosis [MIM: 219700]3), while in other

cases it is not clear. Large, often complex structural variants

present a challenge because they can be recurrent with the

same breakpoints in all or most individuals (e.g., 22q11.2

[MIM: 192430], 16p11.2 [MIM: 611913],4,5 7q11.23 Wil-

liams syndrome region [MIM: 609757])6 or they can show

heterogeneity in breakpoints. Further, one gene can

underly the majority of the phenotype (e.g., RAI1 [MIM:

607642] in Smith-Magenis syndrome [MIM: 182290]) or

several genes can contribute to various phenotypes. 9p

deletion and duplication syndromes are particularly chal-

lenging because there is heterogeneity in breakpoint loca-

tions, they typically encompass several genes, and they

have variable phenotypes.

Analysis of different cohorts of individuals with 9p copy-

number variants (CNVs) has established that the CNV

breakpoint locations are not consistent from patient to
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patient. This breakpoint variability is found when

comparing deletions with duplications as well as when

looking at each group independently. For example, one

cohort consisting of 65 individuals with 9p deletions

found 50 unique breakpoints with only 11 breakpoints

shared by at least two individuals.7 Studies comparing

the breakpoints of 9p deletions and duplications with

the presence of common 9p phenotypes in multiple co-

horts have attempted to resolve the critical region for 9p

deletion and duplication syndromes.7–17 These studies

have suggested a deletion hotspot region within 9p22–

9p23,7–11 although individuals with typical 9p deletion

phenotypes and breakpoints outside this region have

been described.13,15 When including sex reversal (MIM:

154230) in the deletion syndrome, the proposed critical re-

gion extends to 9p24.3.17 The described 9p duplication

syndrome critical region occurs at 9p22.314,16; however,

individuals with a 9p duplication and less severe pheno-

types typically have more proximal duplications occurring

between 9p12 and 9p22.1.16 Additionally, in approxi-

mately 50% of all cases of 9pminus syndrome, the affected

individual also has an associated translocation event, and

these translocations have not previously been preferen-

tially linked to any specific chromosome.18 Beyond trans-

location events, even more complex variations including

ring chromosomes2 and mosaicism have also been

observed for some rearrangements and CNVs involving

9p19 as well as trisomy 9p mosaic syndrome.20,21 Under-

standing the exact nature of the variation is essential to

identify the genes affected by the variant and to link geno-

type to phenotype.

The most common phenotype that is seen in nearly

every individual with a 9p CNV is developmental delay

and intellectual disability (ID).8,18,22,23 Additional shared

phenotypes include hypotonia, low-set ears and abnormal

ear auricle, high/narrow palate, short/broad neck, broad

internipple distance, and the presence of a cardiac

murmur or defect.8,18,22 Some phenotypes observed in

individuals with 9p deletion and individuals with 9p

duplication appear to mirror each other,2 and some phe-

notypes are variations but not quite mirrors.8,18,22 Gener-

ally, the phenotypes in individuals with 9p CNVs are

quite variable8,18,22 depending on size and location of

the variants.12 An important phenotype to note that

often occurs in individuals with a 9p deletion is sex

reversal and other differences in sex development

(DSDs).8,12,13,17,24–30 Ambiguous genitalia are estimated

to be present in up to 70% of individuals with 9p dele-

tion.27 The 46,XY sex reversal phenotype is more

commonly found in individuals with terminal 9p dele-

tions than in those with more proximal deletions.17

Autism spectrum disorder (ASD) is another phenotype

that has been associated with 9p deletions and duplica-

tions. All ten individuals with 9p deletion described by

Hauge et al.12 were reported to display ASD or other

behavioral issues, and many additional 9p case reports

and cohorts include individuals with ASD.8,26,31–33 Com-
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parison of 9p CNV individuals with and without ASD

and the locations of their CNVs has led to the hypothesis

that there is an ASD candidate gene on 9p24.26,31,32

Despite the general genetic and phenotypic variability

seen in individuals with 9p deletions and duplications,

some progress has been made in associating common 9p

phenotypes with genes in the region. These candidates

include DMRT1 (MIM: 602424) and DMRT3 (MIM:

614754) in the DSD phenotype;17,27,29 FREM1 (MIM:

608944) implicated for trigonocephaly;19,34 FOXD4

(MIM: 601092) for speech and language deficits;12,19,26

DOCK8 (MIM: 611432) for IDs and seizure disorders that

are commonly seen in individuals with 9p CNVs;12,15,19,

29 GLDC (MIM: 238300),19 VLDLR (MIM: 192977),19 and

ZDHHC21 (MIM: 614605)10 for IDs and/or seizure disor-

ders;19 and CBWD1 (MIM: 611078), which is associated

with cobalamin deficiency (feeding difficulties, failure to

thrive, hypotonia, seizures, microcephaly, ID, and devel-

opmental delay26). KANK1 (MIM: 607704) (previously

known as ANKRD15) displays what appears to be a

maternal imprinting mechanism in which inherited cere-

bral palsy can occur when the paternal copy of the gene

is disrupted.29,31 Applying precision genomics to 9p dele-

tion and duplication syndromes can further refine these

genotype-phenotype associations and presents an oppor-

tunity to improve precision medicine in these syndromes.
Materials and methods

Assessment of 9p Network Cohort
De-identified data were accessed through the Chromosome 9p

Minus Network for 811 individuals. These data consist of details

of the 9p genomic variation, country of origin, and gender. Ana-

lyses of these characteristics were conducted using individuals

for which the relevant data were available. The genomic variation

data are on the level of broad genetic information (e.g., karyotype)

and are available for 719 individuals. Bands where the breakpoints

occurred for each individual were counted across the cohort. If

available, large structural changes on non-9p chromosome bands

were also counted in the subset of individuals. Sex chromosomes

are included in the broad genetic information for 236 individuals.
9p deletions and duplications from the literature
Genomic data were collected from the literature where approxi-

mate breakpoints are known for 53 individuals with 9p deletion

and duplication syndromes.12,14–17,19,27,29,30,33,35–48
Phenotype data from individuals with 9p deletion and

duplication syndromes
Phenotype data were collected from three papers8,18,22 assessing

individuals with 9p deletions (n ¼ 120 individuals) and one pa-

per22 assessing individuals with 9p duplications (n ¼ 99 individ-

uals). The phenotypes were categorized into the following 13 re-

gions/systems: general, head, ears, nose, mouth, neck, thorax,

back, extremities, cardiovascular, respiratory, gastrointestinal,

and urogenital. Categories were then further defined into 38 spe-

cific phenotypes and aggregated into the percentage of individuals

with each phenotype in deletions and duplications, respectively.
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9p gene constraint and dosage characteristics
For each 9p gene, the pLI score was extracted from gnomAD.49

Dosage characteristics were pulled from a previous publication as-

sessing 29,085 individuals with neurodevelopmental disorders

(NDDs) and 19,584 controls.50

Mappability on 9p and dosage of 9p in 1000 Genomes
Mappability tracks for 150-mers on build 38 of the human genome

were generated to determine the ability tomap short-read Illumina

WGS data comprised of 150 base pair reads. The autosome and sex

chromosome sequences were extracted from the GRCh38_full_

analysis_set_plus_decoy_hla.fa reference file using samtools51

faidx, then the GEMtools52 (https://github.com/Chimera-tools/

ChimPipe.git) index was utilized to index the genome, and finally,

gem-mappability was used to perform the mappability analysis.

The output file was converted from the gem mappability file to a

wig and then converted to a bigwig file (https://data.cyverse.org/

dav-anon/iplant/home/turnerlabwashu/Turner_Lab_Track_Hubs/

genomic_annotations/GRCh38_mappability_150mer.bw). CNV

across 9p in the 1000 Genomes Project data was visualized in the

UCSC genome browser53 using data from a previous publica-

tion54 available at https://github.com/KiddLab/kmer_1KG.

Known 9p gene/phenotype associations
The 435 RefSeq genes on 9p were assessed for their association

with known phenotypes by running them through GeneALa-

Cart55 (https://genealacart.genecards.org/). Genes with an elite

association were extracted from the file and underwent manual

curation via a literature review. The disease associations

were then broadly assigned into the following categories:

NDD, neurodegenerative, cancer, skeletal, immune, sex reversal,

eye, diabetes, obesity, albinism, kidney, premature menopause/

ovarian failure, muscle, arthrogryposis, head, mouth, and

blood.

Protein-protein interactions on 9p
A STRINGdb56 (https://string-db.org/) analysis was performed us-

ing all of the 9p protein-coding genes.

Genomic assessment of 9p.100.p1
Family 9p.100 consists of an unaffected father (9p.100.fa), an

unaffected mother (9p.100.mo), and a male child (9p.100.p1)

with 9p deletion and duplication syndrome. The child has

global developmental delays, hypotonia, joint hypermobility,

and immunodeficiency. He has no significant family history.

Previous clinical tests include a karyotype, microarray, and

whole-exome sequencing. In this study, we assessed individual

9p.100.p1 by Illumina short-read WGS, Bionano optical map-

ping, and Pacific Biosciences (PacBio) HiFi long-read WGS. Indi-

viduals 9p.100.fa and 9p.100.mo were also assessed by PacBio

HiFi long-read WGS.

Illumina WGS was performed to a coverage depth of 59.93 for

individual9p.100.p1.Readsweremapped toGRCh38_full_analysis_

set_plus_decoy_hla.fa usingbwa57memv.0.7.10-r789. Single-nucle-

otide variants (SNVs) and small insertion/deletions (indels) were de-

tected using DeepVariant58 v.1.0.0 using WGS as the model and

default settings. CNVwas detected using theQuicK-mer254 program

with GRCh38 as the reference genome. The steps included running

quicKmer2 count followed by quicKmer2 est. An additional QuicK-

mer2 analysis using the new Telomere-to-Telomere (T2T) con-

sortium reference genome file59 (https://ftp.ncbi.nlm.nih.gov/
Human
genomes/all/GCA/009/914/755/GCA_009914755.3_CHM13_T2T_

v1.1/GCA_009914755.3_CHM13_T2T_v1.1_genomic.fna.gz) was

also performed on the Illumina data. Bionano optical mapping was

carried out as described previously.33 PacBio HiFi long-read

sequencing was performed to a coverage depth of 46.12 for individ-

ual 9p.100.p1. TheCCS fastq fileswere aligned to build 38 of the hu-

man genome (GRCh38_full_analysis_set_plus_decoy_hla.fa) using

pbmm2 (https://github.com/PacificBiosciences/pbmm2) v.1.3.0

align. PacBio pbsv (https://github.com/PacificBiosciences/pbsv) v.

2.3.0 was used to call copy-number and structural variants. Read-

depth profiles were also generated using mosdepth.60 DeepVar-

iant58 v. 1.0.0, usingmodel PACBIO,was used to generate SNV/indel

GVCFfiles for each individual, and theywere joint-genotyped using

GLNexus v.1.2.7. De novo assemblies were generated using two

different assemblers (HiCanu [Canu v.2.0]61 and Hifiasm62 v.0.13-

r307) for each individual.

PCR and Sanger sequencing were performed for the regions

on both ends of the rearrangement between chromosome X

and chromosome 9 in 9p.100.p1. Primers were designed using

Primer3Plus (https://primer3plus.com) to target both rearrange-

ment breakpoint regions, for a total of two amplicons. PCR reac-

tions were performed using the primers, genomic DNA from

9p.100.p1, and Thermo Scientific Phusion High-Fidelity PCR

Master Mix with HF Buffer. The two PCR products then under-

went PCR cleanup and Sanger sequencing through Genewiz

(https://www.genewiz.com). Each product was sequenced in

both the forward and reverse directions, for a total of four

sequencing products. Sequencing results were obtained

from fasta files and aligned to the GRCh38 reference genome us-

ing the BLAST-like alignment tool (BLAT) from the UCSC

genome browser (https://genome.ucsc.edu). BLAT alignments

were further examined to confirm the rearrangement

breakpoints.
Results

Insights from the worldwide 9p Network Cohort

There are 811 individuals (Table S1) in the 9p Network

Cohort dataset from 59 different countries representing

six continents (Figure 1A). The dataset has low-resolution

genetic information for 719 individuals with structural

variants involving 9p and is seven to nine times bigger

than the largest previously studied cohorts of 9p dele-

tion18 or duplication22 syndromes. Although the genetic

information for this cohort is low resolution, the large

sample size allows us to investigate broader patterns of

structural variants involving 9p.

In the 9p Network Cohort, we found that the greatest

number of breakpoints are located in the chromosome

bands 9p24 and 9p22, with 257 (38.1%) and 233 (34.6%)

of the 674 total breakpoints listed in the dataset, respec-

tively (Figure 1B). The least common chromosome bands

for 9p breakpoints are 9p12 and 9p11, each with 4

(0.6%) of the total breakpoints in the dataset. These pat-

terns are consistent with the proposed 9p24 and 9p22 crit-

ical regions as well as with trends in breakpoint locations

in previously published cases (Figure S1). We aggregated

data from published cases and the 9p Network Cohort da-

taset to investigate which chromosome arms are most
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Figure 1. Characteristics of 9p network cohort
(A) Global location of individuals in the 9p Network Cohort. Countries represented by at least one individual in the 9p Network Cohort
are highlighted in blue. All 811 individuals in the 9p Network Cohort were used to construct the map.
(B) Chromosome band breakpoints of 9p Network Cohort CNVs. The bar plot displays the number and percentage of breakpoints within
each chromosome sub-band for CNVs listed in the 9p Network Cohort. Breakpoints are grouped by sub-band to remain consistent with
the resolution of breakpoints reported in the 9p Network Cohort.
(C) Other chromosome arms affected in individuals with 9p CNVs. The number and percentage of events involving other chromosome
arms in individuals with a 9p CNV are shown. Events include deletions, duplications, translocations, and inversions and seven individ-
uals with ring chromosome 9 (dark blue stripes).
commonly involved in secondary structural variants in in-

dividuals with 9p deletion and duplication syndromes.

This analysis revealed that 9q has the highest number of

secondary events, due in part to ring chromosome 9

(Figure 1C). Other frequently affected chromosome arms

include 1q, 8q, and 11q.

In addition to genetic data, the 9p Network Cohort

dataset also lists the gender for all 719 individuals. Of

these individuals, 406 individuals are female and 313

are male, indicating a female bias (Binomial test p ¼
0.0006). This result was surprising considering that no fe-

male bias has been previously reported in 9p deletion and

duplication syndromes. A possible explanation for the

significant bias in the 9p Network Cohort dataset is the

XY sex reversal phenotype, which is commonly observed

in individuals with 9p deletion syndrome. This pheno-

type could lead to individuals with XY sex chromosomes

being listed in the dataset as having a female gender. To

further examine this hypothesis, we subset our dataset

to include only the 236 individuals whose sex chromo-

somes are listed in their genetic information. For this

much smaller subset, 125 individuals had female sex

chromosomes and 111 had male sex chromosomes, indi-

cating no significant sex bias (Binomial test p ¼ 0.4). We

also found no significant gender bias in this group (Bino-

mial test p ¼ 0.2), although we did confirm that four of

the individuals with XY sex chromosomes had a gender
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of female. This comparison suggests that the XY sex

reversal phenotype may be responsible for a female

gender bias, but not a sex bias, in 9p deletion and dupli-

cation syndrome cohorts.

Phenotypic characteristics of individuals with 9p

deletions and duplications

Since we did not have phenotype information for the 9p

Network Cohort, a literature search was performed to char-

acterize common phenotypes in 9p deletion and duplica-

tion syndromes (Table 1). From thismeta-analysis of 219 in-

dividuals, the most frequently observed phenotype is

developmental delay (100% in deletions, 99% in duplica-

tions). There are nine shared phenotypes between individ-

uals with a deletion or duplication including develop-

mental delays (100% in deletions, 99% in duplications),

hypotonia (65.7% in deletions, 61.8% in duplications),

low-set ears (85.1% in deletions, 67.1% in duplications),

abnormal auricles (51% in deletions, 83.1% in duplica-

tions), high/narrow palates (87.7% in deletions, 62.2% in

duplications), short/broad necks (93.7% in deletions,

68.8% in duplications), broad internipple distances

(92.3% in deletions, 44% in duplications), single palmar

crease (69.8% in deletions, 90.6% in duplications), and car-

diac murmurs/deficits (48.6% in deletions, 26.7% in dupli-

cations). There are also mirrored phenotypes including up-

ward slanting palpebral fissures in deletions and downward
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Table 1. Summary of 9p deletion and duplication syndrome phenotypic workups with more than 25 individuals

Region/system
affected Specific phenotype

Publications studying individuals
with deletions (percentage of
individuals with phenotype)

Publication studying individuals
with duplications (percent of
individuals with phenotype)

Phenotype
comparisons
of deletions
and
duplications

Swinkels et al.8 Huret et al.18

and Young et al.22 (n ¼ 120) Young et al.22 (n ¼ 99)

General developmental delay 100.0 99.0 shared

speech delay 100.0 NA

motor delay 100.0 NA

hypotonia 65.7 61.8 shared

Head trigonocephaly 84.3 NA

midface hypoplasia 82.4 NA

upward slanting palpebral fissures 63.2 NA mirror

downward slanting
palpebral fissures

15.0 61.2 mirror

short palpebral fissures 88.5 NA

epicanthal fold 65.6 NA

high, arched eyebrows 60.0 NA

amblyopia 33.3 NA

Ears low-set 85.1 67.1 shared

abnormal auricle 51.0 83.1 shared

posteriorly angulated 45.5 NA

small (<p3) 40.0 NA

Nose short/flat 85.1 NA

anteverted nostrils 88.7 NA

Mouth thin upper lip 92.3 NA

long philtrum 93.1 NA mirror

flat philtrum 46.2 NA

high/narrow palate 87.7 62.2 shared

irregular teeth 30.0 NA

micro/retrognathia 77.3 NA

Neck short/broad 93.7 68.8 shared

Thorax broad internipple distance 92.3 44.0 shared

Back scoliosis 41.2 NA

Extremities tapering fingers 63.6 NA

single palmar crease 69.8 90.6 shared

hyperconvex nails 66.7 NA

flat feet 72.7 NA

hyperlax joints 50.0 NA

Cardiovascular cardiac murmur/deficit 48.6 26.7 shared

Respiratory frequent colds/infections 81.8 NA

Gastrointestinal inguinal hernia 27.7 NA

omphalocele 15.4 NA

Urogenital renal abnormalities 7.7 NA

abnormal genitals 36.7 NA

NA, not available.

Human Genetics and Genomics Advances 3, 100081, January 13, 2022 5



Figure 2. 9p Genes with an associated disease/disorder
The genome browser view shows 9p genes with a manually curated disorder/disease association according to MalaCards. Genes are
broadly categorized based on the general region/system affected and are more specifically grouped within each category. Specific groups
within each category are indicated by different colors as follows: blood: all¼ black; brain: NDD¼ red, neurodegenerative¼ blue; cancer:
all ¼ black; head: general ¼ black, eyes ¼ red, eyes/general ¼ blue, mouth/general ¼ gold, eyes/mouth ¼ gray; immune system: all ¼
black; musculoskeletal: skeletal ¼ red, muscle ¼ blue; urogenital: infertility ¼ black, sex reversal ¼ red, premature menopause/ovarian
failure ¼ blue, kidney ¼ gold; other: arthrogryposis ¼ black, diabetes ¼ red, obesity ¼ blue, albinism ¼ gold. NDD, neurodevelopmental
disorder.
slanting palpebral fissures in duplications as well as

long philtrum in deletions and short philtrum in

duplications.

Characteristics of genes on the p arm of chromosome 9

Weexamined the 435RefSeq genes on9p for constraint and

dosage features (Table S2). There were 27 constrained genes

(BNC2 [MIM: 608669]; CDC37L1 [MIM: 610346]; CLTA

[MIM: 118960]; CNTFR [MIM: 118946]; ELAVL2 [MIM:

601673]; MLLT3 [MIM: 159558]; NFIB [MIM: 600728];

NOL6 [MIM: 611532]; PAX5 [MIM: 167414]; PSIP1 [MIM:

603620]; PTPRD [MIM: 601598]; RFX3 [MIM: 601337];

RNF38 [MIM: 612488]; RPS6 [MIM: 180460]; RUSC2

[MIM: 611053]; SHB [MIM: 600314]; SMARCA2 [MIM:

600014]; SMU1 [MIM: 617811]; TAF1L [MIM: 607798];

TEK [MIM: 600221]; TESK1 [MIM: 601782]; TLN1 [MIM:

186745]; TOPORS [MIM: 609507]; UBAP1 [MIM: 609787];

UBE2R2 [MIM: 612506]; UHRF2 [MIM: 615211]; and VCP

[MIM: 611745])with apLI>0.9,which indicates that domi-

nant disruption of these genesmayhave phenotypic conse-

quences.Wenote here that a pLI>0.9maybe too restrictive
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when considering recessive disruption and that a different

pLI cutoff could be considered for recessive genes in the

future. This will be possible to explore further with preci-

sion genomics in 9p deletion and duplication syndromes.

To further understand these genes and potential pheno-

typic consequences, we looked for enrichment of deletions

or duplications in a dataset of 29,085 individuals with

NDDs and 19,584 controls.50 Six of the pLI >0.9 genes

were enriched for deletions in individuals with NDDs

(CDC37L1, NFIB, PTPRD, RFX3, SMARCA2, UHRF2), and

all 27 were enriched for duplications in individuals with

NDDs (BNC2, CDC37L1, CLTA, CNTFR, ELAVL2, MLLT3,

NFIB, NOL6, PAX5, PSIP1, PTPRD, RFX3, RNF38, RPS6,

RUSC2, SHB, SMARCA2, SMU1, TAF1L, TEK, TESK1, TLN1,

TOPORS, UBAP1, UBE2R2, UHRF2, VCP). This observation

suggests that the dosage of these genes may play a role in

NDDs. The mappability of most of 9p is quite high for

short-read WGS data, indicating that the detection of

CNV should be robust (Figure S2). Copy-number assess-

ments generated from short-read WGS data in individuals

from the 1000 Genomes Project54 reveal that the copy
022
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Figure 3. Protein-protein interaction analysis of chromosome arms
(A) The bar plot shows the ratio of observed edges (interactions) versus expected interactions between proteins from genes on each chro-
mosome arm (p < 1.0 3 10�16). Chromosome arms with a ratio of zero did not have enough data to perform the analysis. The p arm of
chromosome 9 (boxed in red) shows the highest observed versus expected interaction ratio.
(B) The interaction network for proteins from 9p is shown. Note that there is a cluster of interactions between the IFNA (interferon) pro-
teins, which are involved in immune system function.
number of the majority of 9p is not variable in the popula-

tion (Figure S2).

To expand beyond NDDs, a search for other gene/disease

associationswas carried out (Table S3; Figure 2). This analysis

revealed two genes in blood phenotypes (JAK2 [MIM:

147796], B4GALT1 [MIM: 137060]); 17 genes in NDDs

(KANK1, SMARCA2, VLDLR, SLC1A1 [MIM: 133550], RIC1

[MIM: 610354], GLDC, MPDZ [MIM: 603785], NFIB,

ADAMTSL1 [MIM: 609198], PLAA [MIM: 603873], IFT74

[MIM: 608040], B4GALT1, GALT [MIM: 606999], PIGO

[MIM: 614730], RUSC2, GNE [MIM: 603824], EXOSC3

[MIM: 606489]); five genes in neurodegenerative disorders

(C9ORF72 [MIM: 614260], APTX [MIM: 606350], MYORG

[MIM: 618255], SIGMAR1 [MIM: 601978],VCP); eight genes

in cancer (JAK2,MLLT3,MIR31 [MIM: 612155],MTAP [MIM:

156540],CDKN2A [MIM: 600160],CDKN2B [MIM: 600431],

FANCG [MIM: 602956], PAX5); eight genes in head-related

phenotypes (KCNV2 [MIM: 607604], FREM1, ADAMTSL1,

TEK, DDX58 [MIM: 609631], TOPORS, B4GALT1, IL11RA

[MIM: 600939]); three genes in immune phenotypes

(DOCK8, DOCK8-AS1, RMRP [MIM: 157660]); nine genes

in musculoskeletal phenotypes (KLHL9 [MIM: 611201],

DDX58, UBAP1, SIGMAR1, TPM2 [MIM: 190990], GBA2

[MIM: 609471], NPR2 [MIM: 607072], GNE, RMRP); ten

genes in urogenital phenotypes (DMRT1, DMRT2 [MIM:

604935], SLC1A1, FREM1, BNC2, ADAMTSL1, TEK, DNAI1

[MIM: 604366], GALT, GRHPR [MIM: 604296]); and four

genes involved in other phenotypes (GLIS3 [MIM: 610192],

a gene known to exhibit imprinting, GLDC, TYRP1 [MIM:

115501], TPM2). Importantly, 29 of these genes are known

to be involved in autosomal recessive conditions, including

DNAI1 in primary ciliary dyskinesia and GALT in galacto-

semia. Fourteen of these autosomal recessive genes are asso-
Human
ciatedwithneurological phenotypes (e.g.,KANK1 in cerebral

palsy and MPDZ in congenital hydrocephalus), which may

contribute to atypical or severe NDD phenotypes in some

patients with 9p CNVs. Disruption of these genes can thus

potentially unmask recessive traits and contribute to pheno-

typic variability and should be explored in patients with

complex presentations.

We performed a STRINGdb56 analysis using all of the 9p

protein-coding genes (n ¼ 207) to better understand the

degree of interaction between the proteins encoded by

genes on 9p. There were 57 expected edges (interactions)

between the proteins, and we found that there are 177

observed interactions between the 207 proteins from 9p,

indicating an observed-versus-expected ratio of 3.11. This

represents a significant enrichment of interactions be-

tween proteins on 9p (p < 1.0 3 10�16) (Figure 3A). The

interaction network driving this enrichment involves the

IFNA genes (Figure 3B). These interferon genes are clus-

tered together on 9p and are involved in immune func-

tion. We also looked at the observed-versus-expected inter-

actions between proteins on every other chromosome arm.

Some chromosome arms were not able to be assessed using

this approach due to a lack of gene density on the arm

(13p, 14p, 15p, 21p, 22p, Yp, Yq). We observed that the

level of interaction enrichment was the highest for 9p

(Figure 3A).

Precision genomics for 9p.100.p1

Several genomic technologies were utilized to determine

which could fully resolve the structural variation in an indi-

vidual (9p.100.p1)withacomplexstructuralvariationon9p

(Figure 4). Previous clinical karyotype testing identified a

large 9p deletion and a translocation of chromosome 14
Genetics and Genomics Advances 3, 100081, January 13, 2022 7
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Figure 4. Precision genomics for
9p.100.p1
(A) Summary of structural variations and
resolutions using different genomic tech-
nologies.
(B) Schematic of structural variations
related to 9p in the individual.
(C) In the left panel, the copy-number esti-
mates are shown for the p arm of chromo-
some 9 and identify a large deletion fol-
lowed by a mosaic duplication. In the
right panel, a zoom-in of the region near
the telomere of chromosome 9p is shown
to harbor a small deletion followed by a
diploid segment and then a small part of
the large deletion.
(D) Shown is the resolved variations,
including orientation, for the small
diploid segment on the telomeric end of
9p. This was resolved using a de novo as-
sembly built with long-read sequencing.
on the chromosome 9 containing the deletion (Figure 4A).

Prior clinical microarray analysis identified a large 9p dele-

tion and amosaic 9p duplication (Figure 4A). The final clin-

ical test was whole-exome sequencing, which identified a

large 9p deletion (Figure 4A). Three newer genomic technol-

ogies were utilized in this study to gather additional data (Il-

lumina short-readWGS, Bionanoopticalmapping, andPac-

Bio HiFi long-read WGS) (Figure 4A). Bionano optical

mapping was the least informative because this technology

doesnotprovide actual sequencedata, sowe instead focused

primarily on the final resolution of the complex variation

through the use of short-read and long-read WGS (Figures

4A and 4B).

The estimated copy number was calculated across the

genome using short-read WGS, which revealed a large dele-

tion and a mosaic duplication on chromosome 9

(Figure 4C). Attempts at finding the expected translocation

breakpoint involving chromosomes 9 and 14, known from

karyotype analysis, instead revealed a breakpoint involving
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chromosomes 9 and X. A deeper exam-

ination of the estimated copy number

near the telomere on chromosome 9

found a small deletion followed by a

segment with copy number 2 followed

by the large deletion (Figure 4C). The

exact base pairs at the border of this

diploid region could not be determined

using short-read WGS. To explore this

variation further, the de novo assembly

built from long-read WGS was queried

to look for the sequences in the diploid

segment (see Figure S3 for details on

assembly comparisons). A contig

was identified that revealed that one

copy of this segment was on the X

chromosome (Figure 4D), and Sanger

sequencing confirmed the rearrange-
ment breakpoints. The expected structure for the

chromosomes 9 and X rearrangement in 9p.100.p1 involves

an insertion of the region chr9:135,780–272,997 at

chrX:106,377,425. Importantly, the chromosome 9 region

is inverted relative to the chromosome X sequence. The

BLAT alignment for the first PCR product covers

chrX:106,377,216–106,377,425 and chr9:272,759–272,998,

and the alignment of the reverse product for this

region covers chrX:106,377,193–106,377,425 and chr9:

272,797–272,998. The BLATalignment for the forward prod-

uct of the second rearrangement breakpoint covers

chrX:106,377,430–106,377,786 and chr9:135,779–136,

055, and the reverse product alignment covers chrX:

106,377,430–106,377,744 and chr9:135,779–136,090. These

alignments support the expected rearrangement coordinates

and directionality. To summarize, the minimal technologies

needed to resolve all variations in this individual (i.e., preci-

sion genomics) were a karyotype to find the 9/14 transloca-

tion since chromosome 14 had no large dosage changes,



either microarray or short-read WGS to find the mosaic 9p

duplication, and long-read WGS to find the complex varia-

tion near the telomere on chromosome 9.

Since the field is moving toward using newer reference

genomes (i.e., T2T genome59), copy-number estimates

from short-read WGS were also assessed using T2T refer-

ence, and the overall results were the same (Figure S4). A

query of the sequence at breakpoints derived by long-

read WGS was also compared with the T2T reference

genome, and there was a slight shift of coordinates, as ex-

pected, when comparing any two genome builds

(Figure S4). Overall, the comparison with T2T may be use-

ful for resolving variations in some individuals in the

future but did not change the overall interpretation for

this individual.

With the precise variation determined for 9p.100.p1, the

genes located within each variant were identified (Table 2).

Important genes within the variant regions include

DOCK8, implicated in immune phenotypes, and DOCK8,

GLDC, KANK1, VLDLR, and MPDZ, implicated in NDDs.

Other genes of interest include CDC37L1, PTPRD, RFX3,

SMARCA2, and UHRF2, which all have a pLI >0.9 and are

enriched for deletions/duplications in individuals with

NDDs (Table 2). As a research study, we are also working

on the process of reporting research results back to partici-

pants who would like access to the detailed genomic infor-

mation.A concise one-page reportwas determined tobe the

best strategy for relaying the precision genomics research

results. This report (Figure S5) clearly notes that this is a

research report and has three main features: a schematic

of the variation, a table of the precise breakpoints, and a

table of the genes affected in each of the variant regions

on chromosome 9. This approach could be a template for

other research studies involving complex structural

variations.
Discussion

In this study, we present an analysis of the largest cohort of

individuals with 9p deletions and duplications studied to

date. We first assessed the genomic variation in this cohort

to determine if there are any trends in the 9p breakpoint re-

gion and confirmed 9p22 and 9p24 as the regions with the

most breakpoints, as previously described in studies seven

to nine times smaller than the present study. We then as-

sessed the genomic variations to determine if there were

any trends in the chromosome arms involved in secondary

structural variations. A similar investigation of structural

variation patterns in other phenotypes and syndromes

has proven crucial to improving clinical management and

developing therapeutic applications. For example, many

cases of chronic myeloid leukemia (CML) are driven by a

fusion protein derived from a translocation between chro-

mosomes 9 and 22 (MIM: 608232). Importantly, identifica-

tion of this variation pattern, known as ‘‘The Philadelphia

Chromosome,’’63 has enabled successful targeting by clin-
Human
ical therapeutics (MIM: 608232). In contrast to The Phila-

delphia Chromosome and CML, we found that the pattern

of breakpoints and chromosome arms affected by second-

ary structural variants in 9p deletion and duplication syn-

dromes is more heterogeneous. This reinforces the genetic

and clinical complexities of these syndromes and the

need for a precision genomics approach.

While DSDs have been reported in 9p deletion and

duplication syndromes, we identify for the first time a sig-

nificant gender bias in the full cohort with an enrichment

for females. Among those with available sex chromosome

information, we found individuals in the cohort with a

gender of female and a sex chromosome complement of

XY as expected in some DSDs. To make this a comprehen-

sive study of phenotypes and genes in 9p deletion and

duplication syndromes, we performed a meta-analysis of

phenotypes observed in 9p deletion and duplication syn-

dromes and found shared, similar, mirrored, and differing

phenotypes. Several gene features were also considered for

prioritization including constraint, enrichment for dele-

tions/duplications in NDDs, and prior established disease

associations. These are useful resources for the assessment

of 9p-related structural variations. Recently developed

genomic technologies are revolutionizing the way we

assess syndromes with complex structural variations. We

applied several of these technologies in this study to an in-

dividual with a complex 9p deletion, duplication, and

associated translocation.We found that the classical karyo-

type is essential, that either a microarray or short-read

WGS is critical to identify the mosaic duplication, and

that long-read sequencing is the only technology able to

resolve the intricate complexities of this variation.

The early studies of 9p deletion and duplication syn-

dromes relied on the use of karyotyping,1 which does not

have the resolution to define CNV breakpoints beyond

the chromosome band and can fail to detect microdele-

tions andmicroduplications.26 The absence of high-resolu-

tion alignments and precise breakpoint analysis is one fac-

tor that has contributed to the difficulty in establishing

genotype-phenotype correlations with 9p CNVs.9,64 The

advancements of modern sequencing technologies pro-

vide an opportunity to precisely resolve breakpoints to

the exact base,33 thus allowing for a better characterization

of 9p CNVs both in terms of genomic variation and pheno-

types. The power of long-read sequencing technologies

(e.g., Oxford Nanopore Technologies and PacBio) is

enabling complete genomic variant resolution within indi-

viduals,65,66 as shown in the present study. In addition,

advancing the bioinformatic assessment of long-read

sequencing data is also providing insight into methylation

and will be useful for examining imprinted genes on 9p.67

These types of technologies will be critical to the growing

understanding of 9p CNVs, especially when many affected

individuals present with complex rearrangements.

Another recent use of modern high-resolution sequencing

technologies by Ng et al.33 for a patient with a complex re-

arrangement involving a 9p deletion and a 13q duplication
Genetics and Genomics Advances 3, 100081, January 13, 2022 9



Table 2. Genes involved in the structural variation identified in 9p.100.p1

Variant Gene names Variation notes

Genes implicated as
having a possible 9p
phenotype

Genes with deletion
nominal
enrichment in NDDs

Genes with
duplication nominal
enrichment in NDDs

Genes with
pLI > 0.9

Genes with known
phenotype
(category)

9p- deletion1 CBWD1, DDX11L5,
FAM138C, FOXD4,
MIR1302-9, PGM5P3-
AS1, WASHC1

FOXD4 (speech and
language
development)

None none none none

9p piece with one
copy now on the X
chromosome, overall
diploid

CBWD1, DOCK8,
DOCK8-AS1

both the CBWD1 and
DOCK8 genes are
broken even though
this full piece of DNA
is diploid and moved
to the X chromosome

DOCK8 (ID, seizures,
autism)

DOCK8 none none DOCK8 (immune)

9p- deletion2 AK3, CD274,
CDC37L1, CDC37L1-
DT, DMAC1, DMRT1,
DMRT2, DMRT3,
DOCK8, ERMP1,
GLDC, GLIS3, GLIS3-
AS1, IL33, INSL4,
INSL6, JAK2, KANK1,
KCNV2, KDM4C,
KIAA2026,
LINC01230,
LINC01231, MIR101-
2, MIR4665, MLANA,
PDCD1LG2, PLGRKT,
PLPP6, PTPRD,
PTPRD-AS1, PUM3,
RANBP6, RCL1, RFX3,
RFX3-AS1, RIC1,
RLN1, RLN2, SLC1A1,
SMARCA2, SPATA6L,
TPD52L3, UHRF2,
VLDLR, VLDLR-AS1

KANK1 (cerebral
palsy), DMRT3
(disorders of sex
development),
DMRT1 (disorders of
sex development),
GLDC (intellectual
disability, seizures),
DOCK8 (intellectual
disability, seizures,
autism), VLDLR
(intellectual disability,
seizures, cerebellar
hypoplasia/ataxia)

AK3, CD274,
CDC37L1, CDC37L1-
DT, DMAC1, DMRT1,
DMRT2, DMRT3,
DOCK8, DOCK8-AS1,
ERMP1, GLDC, GLIS3,
GLIS3-AS1, IL33,
INSL4, INSL6, JAK2,
KANK1, KCNV2,
KDM4C, KIAA2026,
LINC01230,
LINC01231, MIR101-
2, MIR4665, MLANA,
PDCD1LG2, PLGRKT,
PLPP6, PTPRD,
PTPRD-AS1, PTPRD-
AS2, PUM3, RANBP6,
RCL1, RFX3, RFX3-
AS1, RIC1, RLN1,
RLN2, SLC1A1,
SMARCA2, SPATA6L,
TPD52L3, UHRF2,
VLDLR, VLDLR-AS1

AK3, CD274,
CDC37L1, CDC37L1-
DT, DMAC1, DMRT1,
DMRT2, DMRT3,
ERMP1, GLDC, GLIS3,
GLIS3-AS1, IL33,
INSL4, INSL6, JAK2,
KANK1, KCNV2,
KDM4C, KIAA2026,
LINC01230,
LINC01231, MIR101-
2, MIR4665, MLANA,
PDCD1LG2, PLGRKT,
PLPP6, PTPRD,
PTPRD-AS1, PTPRD-
AS2, PUM3, RANBP6,
RCL1, RFX3, RFX3-
AS1, RIC1, RLN1,
RLN2, SLC1A1,
SMARCA2, SPATA6L,
TPD52L3, UHRF2,
VLDLR, VLDLR-AS1

CDC37L1, PTPRD,
RFX3, SMARCA2,
UHRF2

DMRT1 (sex reversal),
DMRT3 (sex reversal),
DOCK8 (immune),
DOCK8-AS1
(immune), GLDC
(NDD, obesity), GLIS3
(diabetes), JAK2
(cancer), KANK1
(NDD), KCNV2 (eye),
SLC1A1 (kidney,
NDD), SMARCA2
(NDD), VLDLR (NDD)

9p- mosaic
duplication

PTPRD,
LOC105375972,
PTPRD-AS2, TYRP1,
LURAP1L-AS1,
LURAP1L, SNORD137,
MPDZ

of the genes in the
region,
LOC105375972,
PTPRD-AS2, TYRP1,
LURAP1L-AS1,
LURAP1L, SNORD137,
and MPDZ are fully
duplicated

PTPRD,
LOC105375972,
PTPRD-AS2, TYRP1,
LURAP1L, LURAP1L-
AS1, SNORD137,
MPDZ

PTPRD,
LOC105375972,
PTPRD-AS2, TYRP1,
LURAP1L, LURAP1L-
AS1, SNORD137,
MPDZ

PTPRD TYRP1 (albinism),
MPDZ (NDD)
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that translocated onto the chromosome 9 containing the

deletion allowed for the resolution of breakpoints to the

single-nucleotide level.33 Analysis of single-nucleotide res-

olution breakpoints provides the ability to precisely resolve

the genomic region associated with patient phenotypes

and ultimately identify genes affected by the genomic

variation.

Another area for future development is the linking of ge-

notypes with phenotypes in individuals with 9p deletion

and duplication syndromes. Many approaches can be uti-

lized including critical region delineation. However, we

also highlight the application of machine learning to com-

plex biological problems and suggest it as a strategy to

combine all of the genomic and phenotypic data. The

application of novel genomic technologies with deep phe-

notyping on a large cohort of individuals would be the

ideal input to these types of models.

Considerable progress has been made in the assessment

of 9p deletion and duplication syndromes. However, it is

still challenging to predict an affected individual’s pheno-

types with the currently available data. Part of this pheno-

typic unpredictability is attributable to the low genomic

resolution possible with older genotyping methods. Cur-

rent technological advances in genomics are providing

strategies to detect all forms of variations in the genome

at a large scale and a reasonable cost. For example, in 9p

deletion syndrome, these technologies can identify the

precise breakpoints of the event, detect potentially rele-

vant variations on the remaining allele, and look at the

remainder of the genome for other relevant events (e.g.,

a second hit). Utilizing this information across many indi-

viduals with 9p deletion and duplication syndromes and

combining it with leading edge analyses of phenotypic

data (e.g., the parsing of electronic health records) will

enable the delineation of complete genotype-phenotype

correlations. This combined work will bring the dream of

precision genomics to reality in 9p deletion and duplica-

tion syndromes.
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GEMtools, https://github.com/Chimera-tools/ChimPipe.git

Mappability 150-mer for b38, https://data.cyverse.

org/dav-anon/iplant/home/turnerlabwashu/Turner_Lab_

Track_Hubs/genomic_annotations/GRCh38_mappability_

150mer.bw

1000 Genomes copy-number tracks, https://github.com/

KiddLab/kmer_1KG

GeneALaCart, https://genealacart.genecards.org/

STRINGdb, https://string-db.org/

T2T reference genome, https://ftp.ncbi.nlm.nih.gov/

genomes/all/GCA/009/914/755/GCA_009914755.3_CHM

13_T2T_v1.1/GCA_009914755.3_CHM13_T2T_v1.

1_genomic.fna.gz

pbmm2, https://github.com/PacificBiosciences/pbmm2

pbsv, https://github.com/PacificBiosciences/pbsv.

Primer3Plus, https://primer3plus.com.

Genewiz, https://www.genewiz.com.

UCSC genome browser, https://genome.ucsc.edu

dbGaP, https://www.ncbi.nlm.nih.gov/gap/

OMIM, https://omim.org/
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Gürbüz, C., Karataş, G., and Tükün, A. (2016). Unusual chro-

mosomal rearrangement resulted in interstitial monosomy

9p: case report. Cytogenet Genome Res 148, 19–24. https://

doi.org/10.1159/000444872.

42. Hulick, P.J., Noonan, K.M., Kulkarni, S., Donovan, D.J., Lis-

tewnik, M., Ihm, C., Stoler, J.M., and Weremowicz, S. (2009).

Cytogenetic and array-CGH characterization of a complex

de novo rearrangement involving duplication and deletion

of 9p and clinical findings in a 4-month-old female. Cytoge-

net Genome Res 126, 305–312. https://doi.org/10.1159/

000251966.

43. Schlade-Bartusiak, K., Tucker, T., Safavi, H., Livingston, J., van

Allen, M.I., Eydoux, P., and Armstrong, L. (2013). Indepen-

dent post-zygotic breaks of a dicentric chromosome result in

mosaicism for an inverted duplication deletion 9p and termi-

nal deletion 9p. Eur J Med Genet 56, 229–235. https://doi.org/

10.1016/j.ejmg.2013.01.013.

44. Nakayama, T., Nabatame, S., Saito, Y., Nakagawa, E., Shimo-

jima, K., Yamamoto, T., Kaneko, Y., Okumura, K., Fujie, H., Ue-

matsu, M., et al. (2012). 8p deletion and 9p duplication in two

children with electrical status epilepticus in sleep syndrome.

Seizure 21, 295–299. https://doi.org/10.1016/j.seizure.2012.

01.002.

45. Martı́n-De Saro, M.D., Valdés-Miranda, J.M., Plaza-Benhumea,
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SUPPLEMENTAL FIGURE LEGENDS 

Figure S1: Genome Browser View of 9p CNVs. The genome browser view encompasses the 

p arm of chromosome 9 (top). 9p deletions (red) and duplications (blue) are shown for 53 

individuals with previously published breakpoint coordinates (bottom). The paper or the Coriell 

database (https://www.coriell.org/1/NIGMS/Collections/Chromosomal-Abnormalities) from which 

the data were obtained is also listed on the diagram. 

Figure S2: Genome Browser View of Copy Number Estimates in 1000 Genomes and 

Mappability on 9p. Shown are the range of copy number estimates in populations from the 1000 

Genomes Project49 (AFR = African, AMR = Ad Mixed American, EAS = East Asian, EUR = 

European, SAS = South Asian). At the bottom of the browser is the visualization of the mappability 

for 150 mers where the higher values indicate better mappability. 

Figure S3: Assembly Characteristics for 9p.100.p1 Using HiCanu and Hifiasm. A) Four 

different HiCanu de novo assemblies (one SMRT cell, two SMRT cells, three SMRT cells, four 

SMRT cells) are characterized in this figure. The NG values are shown for each assembly and 

show the best gains in NG size at three SMRT cells. B) Four different Hifiasm de novo assemblies 

(one SMRT cell, two SMRT cells, three SMRT cells, four SMRT cells) are characterized in this 

figure. The NG values are shown for each assembly and show the best gains in NG size at two 

SMRT cells 

Figure S4: Comparison of Copy Number Assessment Using GRCh38 Versus T2T Reference 

Genomes. A) Copy number estimates on 9p using GRCh38 as the reference (top) and T2T as 

the reference (bottom). B) Copy number estimates on a zoom in region on the telomeric portion 

of 9p using GRCh38 as the reference (top) and T2T as the reference (bottom). C) de novo 

assembly resolution of complex 9p variation using GRCh38 as the reference (top) and T2T as the 

reference (bottom). 



Figure S5: Example 9p Project Research Report. Shown is a project report for 9p.100.p1. This 

report summarizes in one page the complete resolution of the 9p variation in this individual.  
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