Interval Methods for Reliable Modeling, Identification and Control of Dynamic Systems

Pre-Conference Workshop at ECC2015
14th European Control Conference

Linz, Austria, July 14th, 2015

Andreas Rauh*, Luise Senkel*, Ekaterina Auer**
*Chair of Mechatronics, University of Rostock, Germany
**Faculty of Engineering, University of Applied Sciences Wismar, Germany

Contents

- Part 1
- Fundamentals of Interval Arithmetics: Concept and Software Demonstration
- Verified Simulation of Dynamic Systems
- Kinds of Uncertainty and their Treatment during Modeling and Simulation
- Possibilities for Simulating Uncertain Non-Smooth Dynamic Systems
- Part 2
- Control-Oriented Applications: Identification and Optimization
- Interval-Based Sliding Mode Approaches: Control and Estimation
- Application to Fuel Cell Systems for Identification and Control

Part 1

1. Fundamentals of Interval Arithmetic

Presentation of the Fundamental Mathematical Concept of Interval
Arithmetic for Set-Valued Computations

Presentation of the Fundamental Mathematical Concept of Interval Arithmetic for Set-Valued Computations

Contents

- Motivation
- Definition of Real Intervals, Interval Vectors, Interval Matrices
- Definition of Complex Intervals
- Calculating with Real Intervals
- Static and Dynamic System Descriptions
- Overestimation: Dependency Problem and Wrapping Effect
- Monotonicity for Numerical Integration of Systems with Intervals
- Taylor Expansion and Mid-point Rule
- Affine System Representation

Motivation: Uncertainty

Definition of Real Intervals, Interval Vectors, Interval Matrices
Scalar Real Interval

$$
[a]=[\underline{a} ; \bar{a}]=[\inf ([a]) ; \sup ([a]))], \underline{a} \leq \bar{a}, \quad\{x \in \mathbb{R} \mid \underline{a} \leq x \leq \bar{a}\}
$$

Interval Vector

$$
[\mathbf{a}]=\left[\begin{array}{c}
{\left[\underline{a}_{1} ; \bar{a}_{1}\right]} \\
{\left[\underline{a}_{2} ; \bar{a}_{2}\right]} \\
\vdots \\
{\left[\underline{a}_{n} ; \bar{a}_{n}\right]}
\end{array}\right]
$$

Interval Matrix

$$
[\mathbf{A}]=\left[\begin{array}{cccc}
{\left[\underline{a}_{11} ; \bar{a}_{11}\right]} & {\left[\underline{a}_{12} ; \bar{a}_{12}\right]} & \ldots & {\left[\underline{a}_{1 n} ; \bar{a}_{1 n}\right]} \\
{\left[\underline{a}_{21} ; \bar{a}_{21}\right]} & {\left[\underline{a}_{22} ; \bar{a}_{22}\right]} & \ldots & {\left[\underline{a}_{2 n} ; \bar{a}_{2 n}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[\underline{a}_{n 1} ; \bar{a}_{n 1}\right]} & {\left[\underline{a}_{n 2} ; \bar{a}_{n 2}\right]} & \ldots & {\left[\underline{a}_{n n} ; \bar{a}_{n n}\right]}
\end{array}\right]
$$

Definition of Complex Intervals

Rectangular

$$
[a]=\left[a_{1} ; \bar{a}_{1}\right]+j\left[a_{2} ; \bar{a}_{2}\right]
$$

Circular

$$
[z]=<m, r>
$$

\Rightarrow Useful for dynamic systems with oscillatory behavior

Calculating with Real Intervals - Natural Interval Evaluation

Addition

$$
[\underline{p} ; \bar{p}]+[\underline{q} ; \bar{q}]=[\underline{p}+\underline{q} ; \bar{p}+\bar{q}]
$$

$$
\begin{gathered}
{[1 ; 2]+[-2 ; 2]=[1+(-2) ; 2+2]=[-1 ; 4]} \\
{\left[\begin{array}{c}
{[-2 ;-1]} \\
{[0 ; 4]}
\end{array}\right]+\left[\begin{array}{c}
{[-10 ;-3]} \\
{[5 ; 8]}
\end{array}\right]=\left[\begin{array}{c}
{[-12 ;-4]} \\
{[5 ; 12]}
\end{array}\right]} \\
{\left[\begin{array}{cc}
{[2 ; 3]} & {[-4 ;-3]} \\
{[7 ; 9]} & {[10 ; 15]}
\end{array}\right]+\left[\begin{array}{cc}
{[12 ; 13]} & {[-14 ;-13]} \\
{[17 ; 19]} & {[20 ; 25]}
\end{array}\right]=\left[\begin{array}{cc}
{[14 ; 16]} & {[-18 ;-16]} \\
{[24 ; 28]} & {[30 ; 40]}
\end{array}\right]}
\end{gathered}
$$

Calculating with Real Intervals - Natural Interval Evaluation

Subtraction

$$
[\underline{p} ; \bar{p}]-[\underline{q} ; \bar{q}]=[\underline{p}-\bar{q} ; \bar{p}-\underline{q}]
$$

$$
[1 ; 2]-[2 ; 3]=[1-3 ; 2-2]=[-2 ; 0]
$$

$$
\left[\begin{array}{cc}
{[2 ; 3]} & {[-4 ;-3]} \\
{[7 ; 9]} & {[10 ; 15]}
\end{array}\right]-\left[\begin{array}{cc}
{[12 ; 13]} & {[-14 ;-13]} \\
{[17 ; 19]} & {[20 ; 25]}
\end{array}\right]=\left[\begin{array}{cc}
{[-11 ;-9]} & {[9 ; 11]} \\
{[-12 ;-8]} & {[-15 ;-5]}
\end{array}\right]
$$

Calculating with Real Intervals - Natural Interval Evaluation

Multiplication

$$
[\underline{p} ; \bar{p}] \cdot[\underline{q} ; \bar{q}]=[\min \{\underline{p} \underline{q}, \underline{p} \bar{q}, \bar{p} \underline{q}, \bar{p} \bar{q}\} ; \max \{\underline{p} \underline{q}, \underline{p} \bar{q}, \bar{p} \underline{q}, \bar{p} \bar{q}\}]
$$

$[1 ; 2] \cdot[2 ; 3]=[\min \{1 \cdot 2,1 \cdot 3,2 \cdot 2,2 \cdot 3\} ; \max \{1 \cdot 2,1 \cdot 3,2 \cdot 2,2 \cdot 3\}]=[2 ; 6]$

Calculating with Real Intervals - Natural Interval Evaluation

Division

$$
\frac{[p]}{q q}=[p] \cdot\left[\frac{1}{q} ; \frac{1}{q}\right] \quad \text { if } \quad 0 \notin[q]
$$

$$
\frac{[1 ; 2]}{[2 ; 3]}=[1 ; 2] \cdot\left[\frac{1}{3} ; \frac{1}{2}\right]=\left[\frac{1}{3} ; 1\right]
$$

Calculating with Real Intervals - Natural Interval Evaluation

Radius of a Real Interval

$$
r([a])=\frac{1}{2}(\bar{a}-\underline{a})
$$

Width of an Interval

$$
w([a])=\bar{a}-\underline{a}=2 \cdot r([a])
$$

Mid-point of an Interval

$$
m([a])=\frac{1}{2}(\underline{a}+\bar{a})
$$

\Rightarrow For real interval vectors and matrices, these characteristics hold component-wise

Continuous- and Discrete-Time Systems - Dynamic Case

Continuous-Time System $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{p}, \mathbf{u}(t))$
$\mathbf{x}(t) \quad$ State Vector
p Vector of Uncertain Parameters: $p_{i} \in\left[\underline{p}_{i} ; \bar{p}_{i}\right], i=1, \ldots, n_{p}$ $\mathbf{u}(t)$ Input Vector: $u_{j} \in\left[\underline{u}_{j} ; \bar{u}_{j}\right], j=1, \ldots, n_{u}$

Continuous- and Discrete-Time Systems - Dynamic Case

Continuous-Time System $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{p}, \mathbf{u}(t))$
$\mathbf{x}(t) \quad$ State Vector
$\mathbf{p} \quad$ Vector of Uncertain Parameters: $p_{i} \in\left[\underline{p}_{i} ; \bar{p}_{i}\right], i=1, \ldots, n_{p}$
$\mathbf{u}(t)$ Input Vector: $u_{j} \in\left[\underline{u}_{j} ; \bar{u}_{j}\right], j=1, \ldots, n_{u}$

Discrete-Time System $\mathbf{x}\left(t_{k+1}\right)=\mathbf{f}\left(\mathbf{x}\left(t_{k}\right), \mathbf{p}\left(t_{k}\right), \mathbf{u}\left(t_{k}\right)\right)$
$\mathbf{x}\left(t_{k}\right) \quad$ State Vector
$\mathbf{p} \quad$ Vector of Uncertain Parameters: $p_{i} \in\left[\underline{p}_{i} ; \bar{p}_{i}\right]$
\Longrightarrow Range Bounds / Tolerances
$\mathbf{u}\left(t_{k}\right)$ Input Vector: $u_{j}\left(t_{k}\right) \in\left[\underline{u}_{j}\left(t_{k}\right) ; \bar{u}_{j}\left(t_{k}\right)\right]$
\Longrightarrow Input Range Constraints
\Rightarrow Calculate all reachable states

Continuous- and Discrete-Time Systems - Static Case

Continuous-Time System $\dot{\mathbf{x}}(t)=\mathbf{0}=\mathbf{f}(\mathbf{x}(t), \mathbf{p}, \mathbf{u}(t))$
$\mathbf{x}(t) \quad$ State Vector
p Vector of Uncertain Parameters: $p_{i} \in\left[\underline{p}_{i} ; \bar{p}_{i}\right], i=1, \ldots, n_{p}$ $\mathbf{u}(t)$ Input Vector: $u_{j} \in\left[\underline{u}_{j} ; \bar{u}_{j}\right], j=1, \ldots, n_{u}$

Continuous- and Discrete-Time Systems - Static Case
Continuous-Time System $\dot{\mathbf{x}}(t)=\mathbf{0}=\mathbf{f}(\mathbf{x}(t), \mathbf{p}, \mathbf{u}(t))$
$\mathbf{x}(t)$ State Vector
p Vector of Uncertain Parameters: $p_{i} \in\left[\underline{p}_{i} ; \bar{p}_{i}\right], i=1, \ldots, n_{p}$ $\mathbf{u}(t)$ Input Vector: $u_{j} \in\left[\underline{u}_{j} ; \bar{u}_{j}\right], j=1, \ldots, n_{u}$

Discrete-Time System $\mathbf{x}\left(t_{k+1}\right)=\mathbf{x}\left(t_{k}\right)=\mathbf{f}\left(\mathbf{x}\left(t_{k}\right), \mathbf{p}\left(t_{k}\right), \mathbf{u}\left(t_{k}\right)\right)$
$\mathbf{x}\left(t_{k}\right) \quad$ State Vector
p Vector of Uncertain Parameters: $p_{i} \in\left[\underline{p}_{i} ; \bar{p}_{i}\right]$
\Longrightarrow Range Bounds / Tolerances
$\mathbf{u}\left(t_{k}\right) \quad$ Input Vector: $u_{j}\left(t_{k}\right) \in\left[\underline{u}_{j}\left(t_{k}\right) ; \bar{u}_{j}\left(t_{k}\right)\right]$
\Longrightarrow Input Range Constraints
\Rightarrow Solve for state vector $\mathbf{x}(t)$ or \mathbf{x}_{k} resp. for 1 time step

Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation
Necessary: Factorizations, simplifications, reformulations as far as possible \Rightarrow Reduction of overestimation and computation time

Example

$[f]([x])=2 \cdot[x]-[x] \cdot[x]$ and $[x]=[-1 ; 2]$, Results provided by Intlab
(1) $[f]([x])=2 \cdot[x]-[x] \cdot[x]=[-6 ; 6]$
(3) $[f]([x])=2 \cdot[x]-[x]^{2}=[-6 ; 4]$

- $[f]([x])=-([x]-1) \cdot([x]-1)+1=[-3 ; 3]$
(-) $[f]([x])=-([x]-1)^{2}+1=[-3 ; 1]$ (Exact evaluation)

Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation
Necessary: Factorizations, simplifications, reformulations as far as possible \Rightarrow Reduction of overestimation and computation time

Example

$[f]([x])=2 \cdot[x]-[x] \cdot[x]$ and $[x]=[-1 ; 2]$, Results provided by Intlab
(5) Higher-order Interval Evaluation for Polynomials: Taylor Expansion $\left(x_{m}=\operatorname{mid}([x])\right)$ according to

$$
T(f)=f\left(x_{m}\right)+\left(\left.\sum_{i=1}^{n-1} \frac{\partial^{i} f(x)}{\partial x^{i}}\right|_{x_{m}} \cdot \frac{\left([x]-x_{m}\right)^{i}}{i!}\right)+\left.\frac{\partial^{n} f(x)}{\partial x^{n}}\right|_{[x]} \cdot \frac{\left([x]-x_{m}\right)^{n}}{n!}
$$

Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation
Necessary: Factorizations, simplifications, reformulations as far as possible \Rightarrow Reduction of overestimation and computation time

Example

$[f]([x])=2 \cdot[x]-[x] \cdot[x]$ and $[x]=[-1 ; 2]$, Results provided by Intlab
(- Taylor Expansion with $x_{m}=\operatorname{mid}([x])=0.5$

$$
\begin{aligned}
& {[f]([x])=f\left(x_{m}\right)+\left.\frac{\partial f}{\partial x}\right|_{x_{m}} \cdot\left([x]-x_{m}\right)+\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{[x]} \cdot \frac{\left([x]-x_{m}\right)^{2}}{2!}} \\
& f\left(x_{m}\right)=2 \cdot 0.5-0.5^{2}=0.75 \\
& \left.\frac{\partial f}{\partial x}\right|_{x_{m}} \cdot\left([x]-x_{m}\right)=\left.(2-2 \cdot x)\right|_{x_{m}} \cdot\left([x]-x_{m}\right)=[-1.5 ; 1.5]
\end{aligned}
$$

Overestimation: Dependency Problem

Example

$[f]([x])=2 \cdot[x]-[x] \cdot[x]$ and $[x]=[-1 ; 2]$, Results provided by Intlab
(- Taylor Expansion with $x_{m}=\operatorname{mid}([x])=0.5$

$$
\begin{aligned}
& {[f]([x])=0.75+[-1.5 ; 1.5]+\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{[x]} \cdot \frac{\left([x]-x_{m}\right)^{2}}{2!}=} \\
& \left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{[x]} \cdot \frac{\left([x]-x_{m}\right) \cdot\left([x]-x_{m}\right)}{2!}=-2 \cdot \frac{\left([x]-x_{m}\right) \cdot\left([x]-x_{m}\right)}{2!}= \\
& \quad-1 \cdot[-1.5 ; 1.5] \cdot[-1.5 ; 1.5]=[-2.25 ; 2.25]
\end{aligned}
$$

\Rightarrow Taylor expansion will be demonstrated later with two software libraries

Overestimation: Dependency Problem

Example

$[f]([x])=2 \cdot[x]-[x] \cdot[x]$ and $[x]=[-1 ; 2]$, Results provided by Intlab
(- Taylor Expansion with $x_{m}=\operatorname{mid}([x])=0.5$

$$
\begin{aligned}
& {[f]([x])=0.75+[-1.5 ; 1.5]+\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{[x x} \cdot \frac{\left([x]-x_{m}\right)^{2}}{2!}=} \\
& \left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{[x]} \cdot \frac{\left([x]-x_{m}\right) \cdot\left([x]-x_{m}\right)}{2!}=-2 \cdot \frac{\left.\cdot(x x]-x_{m}\right) \cdot\left([x]-x_{m}\right)}{2!}= \\
& \quad-1 \cdot[-1.5 ; 1.5] \cdot[-1.5 ; 1.5]=[-2.25 ; 2.25]
\end{aligned}
$$

$$
[x]^{2}= \begin{cases}{[\min (\underline{a a}, \overline{a \bar{a}}) ; \max (\underline{a a}, \overline{a \bar{a}})]} & \text { if } 0 \notin[x] \\ {[0 ; \max (\underline{a a}, \overline{a a})]} & \text { if } 0 \in[x]\end{cases}
$$

$$
\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{[x]} \cdot \frac{\left([x]-x_{m}\right)^{2}}{2!}=-2 \cdot \frac{\left([x]-x_{m}\right)^{2}}{2!}=-1 \cdot[-1.5 ; 1.5]^{2}=[-2.25 ; 0]
$$

\Rightarrow Taylor expansion will be demonstrated later with two software libraries

Overestimation: Dependency Problem

Example

$[f]([x])=2 \cdot[x]-[x] \cdot[x]$ and $[x]=[-1 ; 2]$, Results provided by Intlab
(6) Taylor Expansion with $x_{m}=\operatorname{mid}([x])=0.5$

$$
\begin{aligned}
& {[f]([x])=f\left(x_{m}\right)+\left.\frac{\partial f}{\partial x}\right|_{x_{m}} \cdot\left([x]-x_{m}\right)+\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{[x]} \cdot \frac{\left([x]-x_{m}\right)^{2}}{2!}=} \\
& f\left(x_{m}\right)=2 \cdot 0.5-0.5^{2}=0.75 \\
& \left.\frac{\partial f}{\partial x}\right|_{x_{m}} \cdot\left([x]-x_{m}\right)=\left.(2-2 \cdot x)\right|_{x_{m}} \cdot\left([x]-x_{m}\right)=[-1.5 ; 1.5] \\
& \left.\frac{\partial^{\prime} f}{\partial x^{2}}\right|_{[x]} \cdot\left(\frac{\left([x]-x_{m}\right)^{2}}{2!}=-2 \cdot \frac{\left([x]-x_{m}\right)^{2}}{2!}=-1 \cdot[-1.5 ; 1.5]^{2}=[-2.25 ; 0]\right. \\
& \Rightarrow[f]([x])=0.75+[-1.5 ; 1.5]+[-2.25 ; 0]=[-3 ; 2.25]
\end{aligned}
$$

\Rightarrow Taylor expansion will be demonstrated later with two software libraries

Overestimation: Dependency Problem

Special Case of Taylor Expansion: Mid-point Rule

$$
f(x) \subseteq f_{m}([x])=f\left(x_{m}\right)+\left.\frac{\partial f}{\partial x}\right|_{[x]}\left([x]-x_{m}\right)
$$

Special Case of Taylor Expansion: Mid-point Rule

$$
f(x) \subseteq f_{m}([x])=f\left(x_{m}\right)+\left.\frac{\partial f}{\partial x}\right|_{[x]}\left([x]-x_{m}\right)
$$

Special Case of Taylor Expansion: Mid-point Rule

$$
f(x) \subseteq f_{m}([x])=f\left(x_{m}\right)+\left.\frac{\partial f}{\partial x}\right|_{[x]}\left([x]-x_{m}\right)
$$

Special Case of Taylor Expansion: Mid-point Rule

$$
f(x) \subseteq f_{m}([x])=f\left(x_{m}\right)+\left.\frac{\partial f}{\partial x}\right|_{[x]}\left([x]-x_{m}\right)
$$

Special Case of Taylor Expansion: Mid-point Rule

$$
f(x) \subseteq f_{m}([x])=f\left(x_{m}\right)+\left.\frac{\partial f}{\partial x}\right|_{[x]}\left([x]-x_{m}\right)
$$

Monotonicity

Consider: Interval-Valued Function given by $F=x+x \cdot x$

- Two intervals $\left[x_{1}\right]=[-2 ; 4]$ and $\left[x_{2}\right]=[-1 ; 4]$ with $\left[x_{1}\right] \subset\left[x_{2}\right]$
- $F\left(\left[x_{1}\right]\right)=[-2 ; 4]+[-2 ; 4] \cdot[-2 ; 4]=[-2 ; 4]+[-8 ; 16]=[-10 ; 20]$
- $F\left(\left[x_{2}\right]\right)=[-1 ; 4]+[-1 ; 4] \cdot[-1 ; 4]=[-1 ; 4]+[-4 ; 16]=[-5 ; 20]$
- Consequence $F\left(\left[x_{2}\right]\right) \subset F\left(\left[x_{1}\right]\right) \Rightarrow F$ is an inclusion monotonic function
- 4 basic arithmetic operators are also inclusion monotonic

Consequence for Calculating with Intervals

- Splitting of large intervals
- Hull of all evaluations with the subintervals
- Tighter range bounds than with original interval

Monotonicity

Consider: Interval-Valued Function given by $F=x+x \cdot x$

- Two intervals $\left[x_{1}\right]=[-2 ; 4]$ and $\left[x_{2}\right]=[-1 ; 4]$ with $\left[x_{1}\right] \subset\left[x_{2}\right]$
- $F\left(\left[x_{1}\right]\right)=[-2 ; 4]+[-2 ; 4] \cdot[-2 ; 4]=[-2 ; 4]+[-8 ; 16]=[-10 ; 20]$
- $F\left(\left[x_{2}\right]\right)=[-1 ; 4]+[-1 ; 4] \cdot[-1 ; 4]=[-1 ; 4]+[-4 ; 16]=[-5 ; 20]$
- Consequence $F\left(\left[x_{2}\right]\right) \subset F\left(\left[x_{1}\right]\right) \Rightarrow F$ is an inclusion monotonic function
- 4 basic arithmetic operators are also inclusion monotonic

Monitonicity of a Function Using Derivatives

$$
\begin{aligned}
& \left.\frac{\partial F}{\partial \mathbf{x}}\right|_{x \in[x]}<0 \Rightarrow F \in[F(\bar{x}) ; F(\underline{x})] \\
& \left.\frac{\partial F}{\partial \mathbf{x}}\right|_{x \in[x]}>0 \Rightarrow F \in[F(\underline{x}) ; F(\bar{x})]
\end{aligned}
$$

Overestimation: Wrapping Effect —Example

Discrete System Model

$$
[\mathbf{x}]\left(t_{k+1}\right)=\mathbf{A} \cdot[\mathbf{x}]\left(t_{k}\right) \text { with }[\mathbf{x}]\left(t_{0}\right)=\left[\begin{array}{lll}
{[-1 ;} & 1 \\
{[-1 ;} & 1
\end{array}\right] \text { and } \mathbf{A}=\frac{1}{2} \sqrt{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Aim

Evaluation of interval enclosure $[\mathbf{x}]\left(t_{k+1}\right)$

Problem in Engineering Tasks

Uncertainty in parameters, significantly larger than representation errors of floating-point values (rounding errors)

Overestimation: Wrapping Effect - Example

$$
[\mathbf{x}]\left(t_{k+1}\right)=\mathbf{A} \cdot[\mathbf{x}]\left(t_{k}\right) \text { with }[\mathbf{x}]\left(t_{0}\right)=\left[\begin{array}{ll}
{[-1 ;} & 1 \\
{[-1 ; 1}
\end{array}\right] \text { and } \mathbf{A}=\frac{1}{2} \sqrt{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

- Exact recursive evaluation
\Rightarrow Rotation of 45° due to structure of system matrix \mathbf{A}

Overestimation: Wrapping Effect - Example

$$
[\mathbf{x}]\left(t_{k+1}\right)=\mathbf{A} \cdot[\mathbf{x}]\left(t_{k}\right),[\mathbf{x}]\left(t_{0}\right)=\left[\begin{array}{cc}
{[-1 ; 1]} \\
{[-1 ; 1}
\end{array}\right], \quad \mathbf{A}=\mathbf{A}_{k}=\frac{1}{2} \sqrt{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

- Traditional recursive interval evaluation (using e.g. Intlab)

$$
\begin{aligned}
& {[\mathbf{x}]\left(t_{1}\right)=\mathbf{A}[\mathbf{x}]\left(t_{0}\right)} \\
& {[\mathbf{x}]\left(t_{2}\right)=\mathbf{A}[\mathbf{x}]\left(t_{1}\right)}
\end{aligned}
$$

$$
[\mathbf{x}]\left(t_{k+1}\right)=\mathbf{A}[\mathbf{x}]\left(t_{k}\right)
$$

\Rightarrow Exponential growth of the enclosing interval boxes

Overestimation: Wrapping Effect - Example

$$
[\mathbf{x}]\left(t_{k+1}\right)=\mathbf{A} \cdot[\mathbf{x}]\left(t_{k}\right),[\mathbf{x}]\left(t_{0}\right)=\left[\begin{array}{cc}
{[-1 ; 1]} \\
{[-1 ; 1]}
\end{array}\right], \quad \mathbf{A}=\mathbf{A}_{k}=\frac{1}{2} \sqrt{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

- Intelligent recursive evaluation (affine): Modified system matrix $\tilde{\mathbf{A}}_{k}=\mathbf{A} \tilde{\mathbf{A}}_{k-1}$

$$
[\mathbf{x}]\left(t_{1}\right)=\mathbf{A}[\mathbf{x}]\left(t_{0}\right)=\tilde{\mathbf{A}}_{0}[\mathbf{x}]\left(t_{0}\right)
$$

$$
[\mathbf{x}]\left(t_{2}\right)=\mathbf{A} \tilde{\mathbf{A}}_{0}[\mathbf{x}]\left(t_{0}\right)=\tilde{\mathbf{A}}_{1}[\mathbf{x}]\left(t_{0}\right)
$$

$$
[\mathbf{x}]\left(t_{k+1}\right)=\mathbf{A} \tilde{\mathbf{A}}_{k-1}[\mathbf{x}]\left(t_{0}\right)=\tilde{\mathbf{A}}_{k}[\mathbf{x}]\left(t_{0}\right)
$$

\Rightarrow Significant reduction of the wrapping effect for linear systems

Affine System Representation for Discrete Systems

Advantages

- Directly mapping of interval variables to their initial intervals in each time step
- No dependencies between intervals \Rightarrow no interval box rotations

Discretization depends on

- Additive interval or multiplicatively coupled parameter interval
- Input variable constant or changing
- Explicit or implicit Euler method

Affine System Representation for a SISO System

Case 1: Additive interval uncertainty $[a], u\left(t_{k}\right) \neq$ const, step size $T=1$ $f\left(y\left(t_{k}\right),\left[u\left(t_{k}\right)\right]\right)=2 \cdot[y]\left(t_{k}\right)+1 \cdot u\left(t_{k}\right)+3 \cdot[a]$

$$
[\mathbf{x}]\left(t_{k+1}\right)=\underbrace{\left[\begin{array}{l}
{[y]\left(t_{k+1}\right)} \\
{[a]\left(t_{k+1}\right)}
\end{array}\right]}_{\text {extended state vector } \mathbf{x}\left(t_{k+1}\right)}=\underbrace{\left[\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right]}_{\mathbf{M}} \cdot \underbrace{\left[\begin{array}{l}
{[y]\left(t_{k}\right)} \\
{[a]\left(t_{k}\right)}
\end{array}\right]}_{\mathbf{x}\left(t_{k}\right)}+\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cdot u\left(t_{k}\right)}_{\boldsymbol{\rho}\left(t_{k}\right)}
$$

E.g. Explicit Euler Discetization (time discretization error neglected)

$$
[\mathbf{x}]\left(t_{k+1}\right)=\mathbf{M}\left(t_{k+1}\right) \cdot[\mathbf{x}]\left(t_{0}\right)+\gamma\left(t_{k+1}\right) \quad \text { with }
$$

$$
\begin{aligned}
\mathbf{M}\left(t_{k}\right) & =\mathbf{M} \quad \Rightarrow \quad \mathbf{M}\left(t_{k+1}\right)=\mathbf{M} \cdot \mathbf{M}\left(t_{k}\right) \\
\gamma\left(t_{k+1}\right) & =\mathbf{M}\left(t_{k}\right) \cdot \gamma\left(t_{k}\right)+T \cdot \boldsymbol{\rho}\left(t_{k}\right)
\end{aligned}
$$

initial conditions $\mathbf{x}\left(t_{0}\right)=\left[\begin{array}{l}{[y]\left(t_{0}\right)} \\ {[a]\left(t_{0}\right)}\end{array}\right], \quad \mathbf{M}\left(t_{0}\right)=\mathbf{I}^{2 \times 2}, \quad \gamma\left(t_{0}\right)=\mathbf{0}$

Affine System Representation for a SISO System

Case 2: Additive interval uncertainty $[a], u=$ const, step size $T=1$

$$
\begin{aligned}
f(y(t),[u(t)]) & =2 \cdot[y](t)+1 \cdot u(t)+3 \cdot[a] \\
{[\mathbf{x}]\left(t_{k+1}\right) } & =\underbrace{\left[\begin{array}{ccc}
{[y]\left(t_{k+1}\right)} \\
{[a]\left(t_{k+1}\right)} \\
u\left(t_{k+1}\right)
\end{array}\right]}_{\text {extended state vector } \mathbf{x}\left(t_{k+1}\right)}=\underbrace{\left[\begin{array}{lll}
2 & 3 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{M}} \cdot \underbrace{\left[\begin{array}{c}
{[y]\left(t_{k}\right)} \\
{[a]\left(t_{k}\right)} \\
u\left(t_{k}\right)
\end{array}\right]}_{\mathbf{x}\left(t_{k}\right)}
\end{aligned}
$$

Explicit Euler Discetization (time discretization error neglected)

$$
[\mathbf{x}]\left(t_{k+1}\right)=\mathbf{M}\left(t_{k+1}\right) \cdot[\mathbf{x}]\left(t_{0}\right) \quad \text { with }
$$

$$
\begin{aligned}
& \mathbf{M}\left(t_{k}\right)=\mathbf{M} \Rightarrow \mathbf{M}\left(t_{k+1}\right)=\mathbf{M} \cdot \mathbf{M}\left(t_{k}\right) \\
& {[\mathbf{x}]\left(t_{0}\right)=\left[\begin{array}{c}
{[y]\left(t_{0}\right)} \\
{[a]\left(t_{0}\right)} \\
u\left(t_{0}\right)
\end{array}\right]}
\end{aligned}
$$

Affine System Representation - Comparison

Implicit Euler Method $\left(u\left(t_{k+1}\right)=u\left(t_{k}\right)=\right.$ const $)$

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), u(t))=\mathbf{A} \mathbf{x}(t)+\mathbf{b} u(t) \\
& \Rightarrow \mathbf{f}\left(\mathbf{x}\left(t_{k+1}\right), u\left(t_{k+1}\right)\right) \approx \frac{\mathbf{x}\left(t_{k+1}\right)-\mathbf{x}\left(t_{k}\right)}{T} \\
& \mathbf{x}\left(t_{k+1}\right)=(\mathbf{I}-T \cdot \mathbf{A})^{-1} \cdot\left(\mathbf{x}\left(t_{k}\right)+T \cdot \mathbf{b} \cdot u\left(t_{k+1}\right)\right) \\
& \underbrace{\left[\begin{array}{l}
\mathbf{x}\left(t_{k+1}\right) \\
u\left(t_{k+1}\right)
\end{array}\right]}_{\tilde{\mathbf{x}}\left(t_{k+1}\right)}=\underbrace{\left[\begin{array}{cc}
(\mathbf{I}-T \cdot \mathbf{A})^{-1} & (\mathbf{I}-T \cdot \mathbf{A})^{-1} \cdot T \cdot \mathbf{b} \\
\mathbf{0}^{T}
\end{array}\right]}_{\tilde{\mathbf{A}}} \cdot \underbrace{\left[\begin{array}{l}
\mathbf{x}\left(t_{k}\right) \\
u\left(t_{k}\right)
\end{array}\right]}_{\tilde{\mathbf{x}}\left(t_{k}\right)}
\end{aligned}
$$

Affine System Representation - Comparison

Explicit Euler Method $\left(u\left(t_{k+1}\right)=u\left(t_{k}\right)=\right.$ const $)$

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), u(t))=\mathbf{A} \mathbf{x}(t)+\mathbf{b} u(t) \\
& \Rightarrow \mathbf{f}\left(\mathbf{x}\left(t_{k}\right), u\left(t_{k}\right)\right) \approx \frac{\mathbf{x}\left(t_{k+1}\right)-\mathbf{x}\left(t_{k}\right)}{T} \\
& \mathbf{x}\left(t_{k+1}\right)=(\mathbf{I}+T \cdot \mathbf{A}) \cdot \mathbf{x}\left(t_{k}\right)+T \cdot \mathbf{b} \cdot u\left(t_{k}\right) \\
& \underbrace{\left[\begin{array}{l}
\mathbf{x}\left(t_{k+1}\right) \\
u\left(t_{k+1}\right)
\end{array}\right]}_{\tilde{\mathbf{x}}\left(t_{k+1}\right)}=\underbrace{\left[\begin{array}{cc}
(\mathbf{I}+T \cdot \mathbf{A}) & T \cdot \mathbf{b} \\
\mathbf{0}^{T} & 1
\end{array}\right]}_{\tilde{\mathbf{A}}} \cdot \underbrace{\left[\begin{array}{l}
\mathbf{x}\left(t_{k}\right) \\
u\left(t_{k}\right)
\end{array}\right]}_{\tilde{\mathbf{x}}\left(t_{k}\right)}
\end{aligned}
$$

Affine System Representation for a One-Mass Oscillator

Affine System Representation for a One-Mass Oscillator

$$
\begin{gathered}
m \cdot \ddot{x}(t)+c \cdot x(t)+k \cdot x(t)=F(t) \\
{\left[\begin{array}{l}
\dot{\ddot{x}}(t) \\
\ddot{x}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right]\left[\begin{array}{l}
x(t) \\
\dot{x}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] F(t)}
\end{gathered}
$$

Euler Discretization with constant input variable

$$
\begin{aligned}
& \tilde{\mathbf{x}}\left(t_{k+1}\right)=\tilde{\mathbf{A}} \cdot \tilde{\mathbf{x}}\left(t_{k}\right) \\
& \tilde{\mathbf{x}}\left(t_{1}\right)=\tilde{\mathbf{A}} \cdot \tilde{\mathbf{x}}\left(t_{0}\right) \\
& \tilde{\mathbf{x}}\left(t_{2}\right)=\tilde{\mathbf{A}} \cdot \tilde{\mathbf{x}}\left(t_{1}\right)=\tilde{\mathbf{A}} \cdot\left(\tilde{\mathbf{A}} \cdot \tilde{\mathbf{x}}\left(t_{0}\right)\right)=\tilde{\mathbf{A}}^{2} \cdot \tilde{\mathbf{x}}\left(t_{0}\right) \\
& \vdots \\
& \tilde{\mathbf{x}}\left(t_{k+1}\right)=\tilde{\mathbf{A}}
\end{aligned}
$$

Affine System Representation for a One-Mass Oscillator

$$
\begin{gathered}
m \cdot \ddot{x}(t)+c \cdot x(t)+k \cdot x(t)=F(t) \\
{\left[\begin{array}{l}
\dot{\ddot{x}}(t) \\
\ddot{x}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right]\left[\begin{array}{l}
x(t) \\
\dot{x}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] F(t)}
\end{gathered}
$$

Euler Discretization with constant input variable

$$
\tilde{\mathbf{x}}\left(t_{k+1}\right)=\tilde{\mathbf{A}} \cdot \tilde{\mathbf{x}}\left(t_{k}\right)
$$

$\tilde{\mathbf{x}}\left(t_{1}\right)=\tilde{\mathbf{A}} \cdot \tilde{\mathbf{x}}\left(t_{0}\right)$
$\tilde{\mathbf{x}}\left(t_{2}\right)=\tilde{\mathbf{A}} \cdot \tilde{\mathbf{x}}\left(t_{1}\right)=\tilde{\mathbf{A}} \cdot\left(\tilde{\mathbf{A}} \cdot \tilde{\mathbf{x}}\left(t_{0}\right)\right)=\tilde{\mathbf{A}}^{2} \cdot \tilde{\mathbf{x}}\left(t_{0}\right)$
$\tilde{\mathbf{x}}\left(t_{k+1}\right)=\tilde{\mathbf{A}}^{k} \cdot \tilde{\mathbf{x}}\left(t_{0}\right)$
Example in MATLAB

Part 1

1. Fundamentals of Interval Arithmetic

Software Demonstration

Software Demonstration of Interval Arithmetics

- Intlab: INTerval LABoratory - Matlab toolbox for Reliable Computing
- C-XSC - C++ Class Library

Importance of Verified Computing

- Floating-point arithmetics on today's computer is always affected by a maximum accuracy
\Rightarrow rounded results differ at most by 1 unit in the last place from the exact result
- After further calculations, the result may be wrong because of rounding \Rightarrow Results have to be verified

INTerval LABoratory

Development by Prof. Dr. Siegfried M. Rump, Hamburg University of Technology
http://www.ti3.tu-harburg.de/rump/intlab/

Standard interval arithmetic

- Arithmetic operators $+,-, \cdot, /$
- Real and complex intervals

Automatic Differentiation

- Forward mode: forward substitution to find the derivatives
- Compute derivatives using the chain rule for composite functions
- Calculate an enclosure of the true derivative of an interval function

INTerval LABoratory
 http://www.ti3.tu-harburg.de/rump/intlab/

Verified Functions for Linear Systems of Equations

- Solution of linear systems of equations in a verified way
- Computation of an enclosure of the solution hull
- Aim: produce a tight bound on the true solution

Rounding Mode

- Function setround (y): changes the rounding mode of the processor to the nearest (0), round down (-1), round up (1)
- Function getround outputs the current rounding mode

INTerval LABoratory

http://www.ti3.tu-harburg.de/rump/intlab/

Verified Functions for Linear Systems of Equations

- Solution of linear systems of equations in a verified way
- Computation of an enclosure of the solution hull
- Aim: produce a tight bound on the true solution

Rounding Mode

- Function setround (y): changes the rounding mode of the processor to the nearest (0), round down (-1), round up (1)
- Function getround outputs the current rounding mode

Matlab Example: intlab_fundamentals.m and taylor_expansion.m

C-XSC

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Information

- C++ Class Library for Extended Scientific Computing
- Compatible to Windows, Linux, Mac Os

Data Types

- real, interval, complex, cinterval (complex interval)
- rvector, ivector, cvector, civector (complex interval vector)
- rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)

C-XSC

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Data Types

- real, interval, complex, cinterval (complex interval)
- rvector, ivector, cvector, civector (complex interval vector)
- rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)

Rounding Mode

- by-default: all operations are only one rounding away from the exact result
- Modes: long fix-point accumulator for dot product computations (default), pure floating point operations, DotK algorithm (based on so-called error free transformations)

C-XSC

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Data Types fundamentals.cpp

- real, interval, complex, cinterval (complex interval)
- rvector, ivector, cvector, civector (complex interval vector)
- rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)

Rounding Mode

- by-default: all operations are only one rounding away from the exact result
- Modes: long fix-point accumulator for dot product computations (default), pure floating point operations, DotK algorithm (based on so-called error free transformations)

FADBAD++

http://www.fadbad.com/fadbad.html\#General_introduction

General

- Flexible Automatic Differentiation using templates and operator overloading in C++
- Implementing the forward, backward and Taylor methods utilizing C++ templates and operator overloading
- Differentiate a $\mathrm{C}++$ function by replacing all occurrences of the original arithmetic type with the AD-template version
- Possible to generate high-order derivatives

FADBAD++

http://www.fadbad.com/fadbad.html\#General_introduction

General taylor_expansion_FF.cpp and taylor_expansion_T.cpp

- Flexible Automatic Differentiation using templates and operator overloading in C++
- Implementing the forward, backward and Taylor methods utilizing C++ templates and operator overloading
- Differentiate a $\mathrm{C}++$ function by replacing all occurrences of the original arithmetic type with the AD-template version
- Possible to generate high-order derivatives

Advantage of Using C++ instead of Intlab

Interface to rapid control prototyping environments is possible

Thank you for your attention!

All presentations, examples and selected publications will be available at
http://www.com.uni-rostock.de/ecc15/
in the 1st week of August

User: ECC15
Password: intervals-are-fun

