

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Interval Methods for Reliable Modeling,
Identification and Control of Dynamic Systems

Pre-Conference Workshop at ECC2015
14th European Control Conference

Linz, Austria, July 14th, 2015

Andreas Rauh*, Luise Senkel*, Ekaterina Auer**

*Chair of Mechatronics, University of Rostock, Germany

**Faculty of Engineering, University of Applied Sciences Wismar, Germany

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Contents

Part 1
I Fundamentals of Interval Arithmetics: Concept and Software

Demonstration
I Verified Simulation of Dynamic Systems
I Kinds of Uncertainty and their Treatment during Modeling and

Simulation
I Possibilities for Simulating Uncertain Non-Smooth Dynamic Systems

Part 2
I Control-Oriented Applications: Identification and Optimization
I Interval-Based Sliding Mode Approaches: Control and Estimation
I Application to Fuel Cell Systems for Identification and Control

1/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Part 1

1. Fundamentals of Interval Arithmetic

Presentation of the Fundamental Mathematical Concept of Interval
Arithmetic for Set-Valued Computations

2/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Presentation of the Fundamental Mathematical Concept of
Interval Arithmetic for Set-Valued Computations

Contents

Motivation

Definition of Real Intervals, Interval Vectors, Interval Matrices

Definition of Complex Intervals

Calculating with Real Intervals

Static and Dynamic System Descriptions
Overestimation: Dependency Problem and Wrapping Effect

I Monotonicity for Numerical Integration of Systems with Intervals
I Taylor Expansion and Mid-point Rule
I Affine System Representation

3/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Motivation: Uncertainty

Model Accuracy

Computation TimeImplementation Effort

Manufacturing
Tolerances

Measurement
Noise

Disturbances Input Range
and Rate
Constraints

Numerical Problems
(Rounding and
Discretization Errors,...)

Simplifications

Non-representable effects

Non-Measurable States

Real System

Static or Dynamic
Mathematical Model

Reliable Simulation
Identification
Optimization

Real-Time Control
State Observation

continuous

time-discrete

4/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Motivation: Uncertainty

Model Accuracy

Computation TimeImplementation Effort

Manufacturing
Tolerances

Measurement
Noise

Disturbances Input Range
and Rate
Constraints

Numerical Problems
(Rounding and
Discretization Errors,...)

Simplifications

Non-representable effects

Non-Measurable States

Real System

Reliable Simulation
Identification
Optimization

Real-Time Control
State Observation

ẋ (t)= f (x (t) , p(t) ,u (t)) u=u (t)

u=u (x (t))

open-loop dynamic system

closed-loop dynamic system

4/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Motivation: Uncertainty

Model Accuracy

Computation TimeImplementation Effort

Manufacturing
Tolerances

Measurement
Noise

Disturbances Input Range
and Rate
Constraints

Numerical Problems
(Rounding and
Discretization Errors,...)

Simplifications

Non-representable effects

Non-Measurable States

Real System

Reliable Simulation
Identification
Optimization

Real-Time Control
State Observation

x (tk+1)= f (x(t k) , p(t k) ,u(t k)) uk=u(t k)

uk=u(x (tk))

open-loop dynamic system

closed-loop dynamic system

4/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Motivation: Uncertainty

Model Accuracy

Computation TimeImplementation Effort

Manufacturing
Tolerances

Measurement
Noise

Disturbances Input Range
and Rate
Constraints

Numerical Problems
(Rounding and
Discretization Errors,...)

Simplifications

Non-representable effects

Non-Measurable States

Real System

Reliable Simulation
Identification
Optimization

Real-time Control
State Observation

0= f (x (t k) ,u(t k)) Static case: algebraic (nonlinear) system
of equations

4/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Motivation: Uncertainty

Model Accuracy

Computation TimeImplementation Effort

Manufacturing
Tolerances

Measurement
Noise *

Disturbances * Input Range
and Rate
Constraints

Numerical Problems
(Rounding and
Discretization Errors,...)

Simplifications

Non-representable effects

Non-Measurable States

Real System

Static or Dynamic
Mathematical Model

Reliable Simulation
Identification
Optimization

Real-time Control
State Observation

Intervals Intervals Intervals Intervals Intervals

Intervals

Intervals

Intervals

* - more details about
 stochastic approaches
 in Part 2

4/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Definition of Real Intervals, Interval Vectors, Interval
Matrices
Scalar Real Interval

[a] = [a; a] = [inf([a]); sup([a]))] , a ≤ a , {x ∈ R|a ≤ x ≤ a}
Interval Vector

[a] =


[a1; a1]
[a2; a2]

...
[an; an]


Interval Matrix

[A] =


[a11; a11] [a12; a12] . . . [a1n; a1n]
[a21; a21] [a22; a22] . . . [a2n; a2n]

...
...

. . .
...

[an1; an1] [an2; an2] . . . [ann; ann]


5/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Definition of Complex Intervals

ℜ {a }

ℑ {a }

a1 a1

a2

a2

[a]=[a1 ;a1]+ j [a2 ;a2]

ℜ {z }

ℑ {z }

r
m

[z]=<m ,r>

Rectangular Circular

⇒ Useful for dynamic systems with oscillatory behavior
6/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Calculating with Real Intervals - Natural Interval
Evaluation

Addition

[p; p] + [q; q] = [p+ q; p+ q]

[1; 2] + [−2; 2] = [1 + (−2); 2 + 2] = [−1; 4]

[
[−2;−1]
[0; 4]

]
+

[
[−10;−3]

[5; 8]

]
=

[
[−12;−4]
[5; 12]

]
[
[2; 3] [−4;−3]
[7; 9] [10; 15]

]
+

[
[12; 13] [−14;−13]
[17; 19] [20; 25]

]
=

[
[14; 16] [−18;−16]
[24; 28] [30; 40]

]
7/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Calculating with Real Intervals - Natural Interval
Evaluation

Subtraction

[p; p]− [q; q] = [p− q; p− q]

[1; 2]− [2; 3] = [1− 3; 2− 2] = [−2; 0]

[
[2; 3] [−4;−3]
[7; 9] [10; 15]

]
−
[
[12; 13] [−14;−13]
[17; 19] [20; 25]

]
=

[
[−11;−9] [9; 11]
[−12;−8] [−15;−5]

]

8/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Calculating with Real Intervals - Natural Interval
Evaluation

Multiplication

[p; p] · [q; q] =
[
min

{
p q, p q, p q, p q

}
; max

{
p q, p q, p q, p q

}]

[1; 2] · [2; 3] = [min{1 · 2, 1 · 3, 2 · 2, 2 · 3}; max{1 · 2, 1 · 3, 2 · 2, 2 · 3}] = [2; 6]

9/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Calculating with Real Intervals - Natural Interval
Evaluation

Division

[p]
[q] = [p] ·

[
1
q ; 1

q

]
if 0 6∈ [q]

[1; 2]

[2; 3]
= [1; 2] ·

[
1

3
;
1

2

]
=

[
1

3
; 1

]

10/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Calculating with Real Intervals - Natural Interval
Evaluation

Radius of a Real Interval

r([a]) = 1
2(a− a)

Width of an Interval

w([a]) = a− a = 2 · r([a])

Mid-point of an Interval

m([a]) = 1
2(a+ a)

⇒ For real interval vectors and matrices, these characteristics hold
component-wise

11/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Continuous- and Discrete-Time Systems — Dynamic Case

Continuous-Time System ẋ(t) = f (x(t),p,u(t))

x(t) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
, i = 1, ..., np

u(t) Input Vector: uj ∈
[
uj ; uj

]
, j = 1, ..., nu

Discrete-Time System x(tk+1) = f (x(tk),p(tk),u(tk))

x(tk) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
=⇒ Range Bounds / Tolerances

u(tk) Input Vector: uj(tk) ∈
[
uj(tk) ; uj(tk)

]
=⇒ Input Range Constraints

⇒ Calculate all reachable states

12/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Continuous- and Discrete-Time Systems — Dynamic Case

Continuous-Time System ẋ(t) = f (x(t),p,u(t))

x(t) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
, i = 1, ..., np

u(t) Input Vector: uj ∈
[
uj ; uj

]
, j = 1, ..., nu

Discrete-Time System x(tk+1) = f (x(tk),p(tk),u(tk))

x(tk) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
=⇒ Range Bounds / Tolerances

u(tk) Input Vector: uj(tk) ∈
[
uj(tk) ; uj(tk)

]
=⇒ Input Range Constraints

⇒ Calculate all reachable states

12/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Continuous- and Discrete-Time Systems — Static Case

Continuous-Time System ẋ(t) = 0 = f (x(t),p,u(t))

x(t) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
, i = 1, ..., np

u(t) Input Vector: uj ∈
[
uj ; uj

]
, j = 1, ..., nu

Discrete-Time System x(tk+1) = x(tk) = f (x(tk),p(tk),u(tk))

x(tk) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
=⇒ Range Bounds / Tolerances

u(tk) Input Vector: uj(tk) ∈
[
uj(tk) ; uj(tk)

]
=⇒ Input Range Constraints

⇒ Solve for state vector x(t) or xk resp. for 1 time step

13/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Continuous- and Discrete-Time Systems — Static Case

Continuous-Time System ẋ(t) = 0 = f (x(t),p,u(t))

x(t) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
, i = 1, ..., np

u(t) Input Vector: uj ∈
[
uj ; uj

]
, j = 1, ..., nu

Discrete-Time System x(tk+1) = x(tk) = f (x(tk),p(tk),u(tk))

x(tk) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
=⇒ Range Bounds / Tolerances

u(tk) Input Vector: uj(tk) ∈
[
uj(tk) ; uj(tk)

]
=⇒ Input Range Constraints

⇒ Solve for state vector x(t) or xk resp. for 1 time step

13/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation

Necessary: Factorizations, simplifications, reformulations as far as possible
⇒ Reduction of overestimation and computation time

Example

[f]([x]) = 2 · [x]− [x] · [x] and [x] = [−1 ; 2], Results provided by Intlab

1 [f]([x]) = 2 · [x]− [x] · [x] = [−6 ; 6]

2 [f]([x]) = 2 · [x]− [x]2 = [−6 ; 4]

3 [f]([x]) = −([x]− 1) · ([x]− 1) + 1 = [−3 ; 3]

4 [f]([x]) = −([x]− 1)2 + 1 = [−3 ; 1] (Exact evaluation)

14/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation

Necessary: Factorizations, simplifications, reformulations as far as possible
⇒ Reduction of overestimation and computation time

Example

[f]([x]) = 2 · [x]− [x] · [x] and [x] = [−1 ; 2], Results provided by Intlab
5 Higher-order Interval Evaluation for Polynomials: Taylor Expansion

(xm = mid([x])) according to

T (f) = f(xm) +

(
n−1∑
i=1

∂if(x)

∂xi

∣∣∣∣
xm

· ([x]− xm)i

i!

)
+

∂nf(x)

∂xn

∣∣∣∣
[x]

· ([x]− xm)n

n!

14/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation

Necessary: Factorizations, simplifications, reformulations as far as possible
⇒ Reduction of overestimation and computation time

Example

[f]([x]) = 2 · [x]− [x] · [x] and [x] = [−1 ; 2], Results provided by Intlab

5 Taylor Expansion with xm = mid([x]) = 0.5

[f]([x]) = f(xm) + ∂f
∂x

∣∣∣
xm

· ([x]− xm) + ∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)2

2!

f(xm) = 2 · 0.5− 0.52 = 0.75
∂f
∂x

∣∣∣
xm

· ([x]− xm) = (2− 2 · x)|xm
· ([x]− xm) = [−1.5 ; 1.5]

14/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Example

[f]([x]) = 2 · [x]− [x] · [x] and [x] = [−1 ; 2], Results provided by Intlab

5 Taylor Expansion with xm = mid([x]) = 0.5

[f]([x]) = 0.75 + [−1.5 ; 1.5] + ∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)2

2! =

∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)·([x]−xm)

2! = −2 · ([x]−xm)·([x]−xm)
2! =

−1 · [−1.5 ; 1.5] · [−1.5 ; 1.5] = [−2.25 ; 2.25]

⇒ Taylor expansion will be demonstrated later with two software libraries

15/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Example

[f]([x]) = 2 · [x]− [x] · [x] and [x] = [−1 ; 2], Results provided by Intlab

5 Taylor Expansion with xm = mid([x]) = 0.5

[f]([x]) = 0.75 + [−1.5 ; 1.5] + ∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)2

2! =

∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)·([x]−xm)

2! = −2 · ([x]−xm)·([x]−xm)
2! =

−1 · [−1.5 ; 1.5] · [−1.5 ; 1.5] = [−2.25 ; 2.25]

[x]2 =

{
[min(aa, aa) ; max(aa, aa)] if 0 /∈ [x]

[0 ; max(aa, aa)] if 0 ∈ [x]

∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)2

2! = −2 · ([x]−xm)2

2! = −1 · [−1.5 ; 1.5]2 = [−2.25 ; 0]

⇒ Taylor expansion will be demonstrated later with two software libraries
15/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Example

[f]([x]) = 2 · [x]− [x] · [x] and [x] = [−1 ; 2], Results provided by Intlab

5 Taylor Expansion with xm = mid([x]) = 0.5

[f]([x]) = f(xm) + ∂f
∂x

∣∣∣
xm

· ([x]− xm) + ∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)2

2! =

f(xm) = 2 · 0.5− 0.52 = 0.75
∂f
∂x

∣∣∣
xm

· ([x]− xm) = (2− 2 · x)|xm
· ([x]− xm) = [−1.5 ; 1.5]

∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)2

2! = −2 · ([x]−xm)2

2! = −1 · [−1.5 ; 1.5]2 = [−2.25 ; 0]

⇒ [f]([x]) = 0.75 + [−1.5 ; 1.5] + [−2.25 ; 0] = [−3 ; 2.25]

⇒ Taylor expansion will be demonstrated later with two software libraries

15/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

[x]

[
f
](
[x

]) [f]([x])=−([x]−1)2+1

16/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

[x]

[
f
](
[x

])

[f]([x])=2[x]−[x][x]

[f]([x])=−([x]−1)2+1

16/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

[x]

[
f
](
[x

])

[f]([x])=2[x]−[x][x]

[f]([x])=2[x]−[x]2

[f]([x])=−([x]−1)2+1

16/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

[x]

[
f
](
[x

])

[f]([x])=2[x]−[x][x]

[f]([x])=2[x]−[x]2

[f]([x])=−([x]−1)([x]−1)+1

[f]([x])=−([x]−1)2+1

16/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

[x]

[
f
](
[x

])

[f]([x])=2[x]−[x][x]

[f]([x])=2[x]−[x]2

[f]([x])=−([x]−1)([x]−1)+1

Taylor Expansion

[f]([x])=−([x]−1)2+1

16/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Special Case of Taylor Expansion: Mid-point Rule

f (x) ⊆ fm ([x]) = f (xm) +
∂f

∂x

∣∣∣∣
[x]

([x]− xm)

f (x)

xmx x

f (x)

f (xm)

f (x)

[f ex]([x])

Approximation of the solution of the function

Exact enclosure

f (x)

17/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Special Case of Taylor Expansion: Mid-point Rule

f (x) ⊆ fm ([x]) = f (xm) +
∂f

∂x

∣∣∣∣
[x]

([x]− xm)

f (x)

xmx x

f (x)

f (xm)

f (x)

[f nat]([x])

[f ex]([x])
tangent

Approximation of the solution of the function

Exact enclosure

Natural evaluated enclosure

f (x)

17/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Special Case of Taylor Expansion: Mid-point Rule

f (x) ⊆ fm ([x]) = f (xm) +
∂f

∂x

∣∣∣∣
[x]

([x]− xm)

f (x)

xmx x

f (x)

f (xm)

f (x)

[f nat]([x])

[f mp]([x])

[f ex]([x])

Approximation of the solution of the function

Exact enclosure

Natural evaluated enclosure

Enclosure evaluated by mid-point rule

f (x)

17/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Special Case of Taylor Expansion: Mid-point Rule

f (x) ⊆ fm ([x]) = f (xm) +
∂f

∂x

∣∣∣∣
[x]

([x]− xm)

f (x)

xmx x

f (x)

f (xm)

f (x)

[f nat]([x])

[f mp]([x])

[f ex]([x])
tangent

Approximation of the solution of the function

Exact enclosure

Natural evaluated enclosure

Enclosure evaluated by mid-point rule

Constructed range of function value
using mid-point rule and tangent on f (xm)

f (x)

17/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Special Case of Taylor Expansion: Mid-point Rule

f (x) ⊆ fm ([x]) = f (xm) +
∂f

∂x

∣∣∣∣
[x]

([x]− xm)

f (x)

xmx x

f (x)

f (xm)

f (x)

[f nat]([x])

[f mp]([x])

[f ex]([x])
tangent

Approximation of the solution of the function
by using the smallest and largest slope depicted by
the triangles

Exact enclosure

Natural evaluated enclosure

Enclosure evaluated by mid-point rule

Constructed range of function value
using mid-point rule and tangent on f (xm)

f (x)

17/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Monotonicity

Consider: Interval-Valued Function given by F = x+ x · x
Two intervals [x1] = [−2; 4] and [x2] = [−1; 4] with [x1] ⊂ [x2]

F ([x1]) = [−2; 4] + [−2; 4] · [−2; 4] = [−2; 4] + [−8; 16] = [−10; 20]
F ([x2]) = [−1; 4] + [−1; 4] · [−1; 4] = [−1; 4] + [−4; 16] = [−5; 20]
Consequence F ([x2]) ⊂ F ([x1]) ⇒ F is an inclusion monotonic
function

4 basic arithmetic operators are also inclusion monotonic

Consequence for Calculating with Intervals

Splitting of large intervals

Hull of all evaluations with the subintervals

Tighter range bounds than with original interval

18/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Monotonicity

Consider: Interval-Valued Function given by F = x+ x · x
Two intervals [x1] = [−2; 4] and [x2] = [−1; 4] with [x1] ⊂ [x2]

F ([x1]) = [−2; 4] + [−2; 4] · [−2; 4] = [−2; 4] + [−8; 16] = [−10; 20]
F ([x2]) = [−1; 4] + [−1; 4] · [−1; 4] = [−1; 4] + [−4; 16] = [−5; 20]
Consequence F ([x2]) ⊂ F ([x1]) ⇒ F is an inclusion monotonic
function

4 basic arithmetic operators are also inclusion monotonic

Monitonicity of a Function Using Derivatives

∂F

∂x

∣∣∣∣
x∈[x]

< 0 ⇒ F ∈ [F (x);F (x)]

∂F

∂x

∣∣∣∣
x∈[x]

> 0 ⇒ F ∈ [F (x);F (x)]

19/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Wrapping Effect —Example

Discrete System Model

[x](tk+1) = A · [x](tk) with [x](t0) =

[
[−1 ; 1]
[−1 ; 1]

]
and A =

1

2

√
2

[
1 1
−1 1

]

Aim

Evaluation of interval enclosure [x](tk+1)

Problem in Engineering Tasks

Uncertainty in parameters, significantly larger than representation errors of
floating-point values (rounding errors)

20/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Wrapping Effect — Example

[x](tk+1) = A · [x](tk) with [x](t0) =

[
[−1 ; 1]
[−1 ; 1]

]
and A =

1

2

√
2

[
1 1
−1 1

]
x2

x1

x2

x1

x2

x1

t=t0 t=t1 t=t2

Exact recursive evaluation

⇒ Rotation of 45◦ due to structure of system matrix A
21/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Wrapping Effect — Example

[x](tk+1) = A · [x](tk), [x](t0) =

[
[−1 ; 1]
[−1 ; 1]

]
, A = Ak = 1

2

√
2

[
1 1
−1 1

]
x2

x1

x2

x1

x2

x1

t=t0 t=t1 t=t2

x2

x1

x2

x1

x2

x1

Traditional recursive interval
evaluation (using e.g. Intlab)

[x](t1) = A [x](t0)

[x](t2) = A [x](t1)

...

[x](tk+1) = A [x](tk)

⇒ Exponential growth of the enclosing interval boxes
22/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Wrapping Effect — Example

[x](tk+1) = A · [x](tk), [x](t0) =

[
[−1 ; 1]
[−1 ; 1]

]
, A = Ak = 1

2

√
2

[
1 1
−1 1

]
x2

x1

x2

x1

x2

x1

t=t0 t=t1 t=t2

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

Intelligent recursive evaluation
(affine): Modified system matrix
Ãk = AÃk−1

[x](t1) = A [x](t0) = Ã0 [x](t0)

[x](t2) = AÃ0 [x](t0) = Ã1 [x](t0)

...

[x](tk+1) = AÃk−1 [x](t0) = Ãk [x](t0)

⇒ Significant reduction of the wrapping effect for linear systems
23/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Affine System Representation for Discrete Systems

Advantages

Directly mapping of interval variables to their initial intervals in each
time step

No dependencies between intervals ⇒ no interval box rotations

Discretization depends on

Additive interval or multiplicatively coupled parameter interval

Input variable constant or changing

Explicit or implicit Euler method

24/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Affine System Representation for a SISO System
Case 1: Additive interval uncertainty [a], u(tk) 6= const, step size T = 1

f(y(tk), [u(tk)]) = 2 · [y](tk) + 1 · u(tk) + 3 · [a]

[x](tk+1) =

[
[y](tk+1)
[a](tk+1)

]
︸ ︷︷ ︸

extended state vector x(tk+1)

=

[
2 3
0 1

]
︸ ︷︷ ︸

M

·
[
[y](tk)
[a](tk)

]
︸ ︷︷ ︸

x(tk)

+

[
1
0

]
· u(tk)︸ ︷︷ ︸

ρ(tk)

E.g. Explicit Euler Discetization (time discretization error neglected)

[x](tk+1) = M(tk+1) · [x](t0) + γ(tk+1) with

M(tk) = M ⇒ M(tk+1) = M ·M(tk)

γ(tk+1) = M(tk) · γ(tk) + T · ρ(tk)

initial conditions x(t0) =

[
[y](t0)
[a](t0)

]
, M(t0) = I2×2 , γ(t0) = 0

25/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Affine System Representation for a SISO System
Case 2: Additive interval uncertainty [a], u=const, step size T = 1

f(y(t), [u(t)]) = 2 · [y](t) + 1 · u(t) + 3 · [a]

[x](tk+1) =

[y](tk+1)
[a](tk+1)
u(tk+1)


︸ ︷︷ ︸

extended state vector x(tk+1)

=

2 3 1
0 1 0
0 0 1


︸ ︷︷ ︸

M

·

[y](tk)[a](tk)
u(tk)


︸ ︷︷ ︸

x(tk)

Explicit Euler Discetization (time discretization error neglected)

[x](tk+1) = M(tk+1) · [x](t0) with

M(tk) = M ⇒ M(tk+1) = M ·M(tk)

[x](t0) =

[y](t0)[a](t0)
u(t0)


26/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Affine System Representation — Comparison

Implicit Euler Method (u(tk+1) = u(tk) = const)

ẋ(t) = f(x(t), u(t)) = Ax(t) + bu(t)

⇒f(x(tk+1), u(tk+1)) ≈
x(tk+1)− x(tk)

T
x(tk+1) = (I− T ·A)−1 · (x(tk) + T · b · u(tk+1))[

x(tk+1)
u(tk+1)

]
︸ ︷︷ ︸

x̃(tk+1)

=

[
(I− T ·A)−1 (I− T ·A)−1 · T · b

0T 1

]
︸ ︷︷ ︸

Ã

·
[
x(tk)
u(tk)

]
︸ ︷︷ ︸

x̃(tk)

27/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Affine System Representation — Comparison

Explicit Euler Method (u(tk+1) = u(tk) = const)

ẋ(t) = f(x(t), u(t)) = Ax(t) + bu(t)

⇒f(x(tk), u(tk)) ≈
x(tk+1)− x(tk)

T
x(tk+1) = (I+ T ·A) · x(tk) + T · b · u(tk)[

x(tk+1)
u(tk+1)

]
︸ ︷︷ ︸

x̃(tk+1)

=

[
(I+ T ·A) T · b

0T 1

]
︸ ︷︷ ︸

Ã

·
[
x(tk)
u(tk)

]
︸ ︷︷ ︸

x̃(tk)

28/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Affine System Representation for a One-Mass Oscillator

m

k c

x

F

m · ẍ(t) + c · x(t) + k · x(t) = F (t)[
ẋ(t)
ẍ(t)

]
=

[
0 1

− k
m − c

m

] [
x(t)
ẋ(t)

]
+

[
0
1
m

]
F (t)

29/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Affine System Representation for a One-Mass Oscillator

m · ẍ(t) + c · x(t) + k · x(t) = F (t)[
ẋ(t)
ẍ(t)

]
=

[
0 0

− k
m − c

m

] [
x(t)
ẋ(t)

]
+

[
0
1
m

]
F (t)

Euler Discretization with constant input variable

x̃(tk+1) = Ã · x̃(tk)

x̃(t1) = Ã · x̃(t0)
x̃(t2) = Ã · x̃(t1) = Ã · (Ã · x̃(t0)) = Ã2 · x̃(t0)
...
x̃(tk+1) = Ãk · x̃(t0)

Example in MATLAB

30/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Affine System Representation for a One-Mass Oscillator

m · ẍ(t) + c · x(t) + k · x(t) = F (t)[
ẋ(t)
ẍ(t)

]
=

[
0 0

− k
m − c

m

] [
x(t)
ẋ(t)

]
+

[
0
1
m

]
F (t)

Euler Discretization with constant input variable

x̃(tk+1) = Ã · x̃(tk)

x̃(t1) = Ã · x̃(t0)
x̃(t2) = Ã · x̃(t1) = Ã · (Ã · x̃(t0)) = Ã2 · x̃(t0)
...
x̃(tk+1) = Ãk · x̃(t0) Example in MATLAB

30/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Part 1

1. Fundamentals of Interval Arithmetic

Software Demonstration

31/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Software Demonstration of Interval Arithmetics

Intlab: INTerval LABoratory — Matlab toolbox for Reliable
Computing

C-XSC — C++ Class Library

Importance of Verified Computing

Floating-point arithmetics on today’s computer is always affected by a
maximum accuracy
⇒ rounded results differ at most by 1 unit in the last place from the
exact result

After further calculations, the result may be wrong because of
rounding ⇒ Results have to be verified

32/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

INTerval LABoratory

Development by Prof. Dr. Siegfried M. Rump, Hamburg University of
Technology
http://www.ti3.tu-harburg.de/rump/intlab/

Standard interval arithmetic

Arithmetic operators +,−, ·, /
Real and complex intervals

Automatic Differentiation

Forward mode: forward substitution to find the derivatives

Compute derivatives using the chain rule for composite functions

Calculate an enclosure of the true derivative of an interval function

33/38

http://www.ti3.tu-harburg.de/rump/intlab/

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

INTerval LABoratory
http://www.ti3.tu-harburg.de/rump/intlab/

Verified Functions for Linear Systems of Equations

Solution of linear systems of equations in a verified way

Computation of an enclosure of the solution hull

Aim: produce a tight bound on the true solution

Rounding Mode

Function setround(y): changes the rounding mode of the processor
to the nearest (0), round down (-1), round up (1)

Function getround outputs the current rounding mode

34/38

http://www.ti3.tu-harburg.de/rump/intlab/

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

INTerval LABoratory
http://www.ti3.tu-harburg.de/rump/intlab/

Verified Functions for Linear Systems of Equations

Solution of linear systems of equations in a verified way

Computation of an enclosure of the solution hull

Aim: produce a tight bound on the true solution

Rounding Mode

Function setround(y): changes the rounding mode of the processor
to the nearest (0), round down (-1), round up (1)

Function getround outputs the current rounding mode

Matlab Example: intlab fundamentals.m and taylor expansion.m

34/38

http://www.ti3.tu-harburg.de/rump/intlab/

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

C-XSC
http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Information

C++ Class Library for Extended Scientific Computing

Compatible to Windows, Linux, Mac Os

Data Types

real, interval, complex, cinterval (complex interval)

rvector, ivector, cvector, civector (complex interval vector)

rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)

35/38

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

C-XSC
http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Data Types

real, interval, complex, cinterval (complex interval)

rvector, ivector, cvector, civector (complex interval vector)

rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)

Rounding Mode

by-default: all operations are only one rounding away from the exact
result

Modes: long fix-point accumulator for dot product computations
(default), pure floating point operations, DotK algorithm (based on
so-called error free transformations)

35/38

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

C-XSC
http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Data Types fundamentals.cpp

real, interval, complex, cinterval (complex interval)

rvector, ivector, cvector, civector (complex interval vector)

rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)

Rounding Mode

by-default: all operations are only one rounding away from the exact
result

Modes: long fix-point accumulator for dot product computations
(default), pure floating point operations, DotK algorithm (based on
so-called error free transformations)

35/38

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

FADBAD++
http://www.fadbad.com/fadbad.html#General_introduction

General

Flexible Automatic Differentiation using templates and operator
overloading in C++

Implementing the forward, backward and Taylor methods utilizing
C++ templates and operator overloading

Differentiate a C++ function by replacing all occurrences of the
original arithmetic type with the AD-template version

Possible to generate high-order derivatives

36/38

http://www.fadbad.com/fadbad.html#General_introduction

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

FADBAD++
http://www.fadbad.com/fadbad.html#General_introduction

General taylor expansion FF.cpp and taylor expansion T.cpp

Flexible Automatic Differentiation using templates and operator
overloading in C++

Implementing the forward, backward and Taylor methods utilizing
C++ templates and operator overloading

Differentiate a C++ function by replacing all occurrences of the
original arithmetic type with the AD-template version

Possible to generate high-order derivatives

Advantage of Using C++ instead of Intlab

Interface to rapid control prototyping environments is possible

37/38

http://www.fadbad.com/fadbad.html#General_introduction

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Thank you for your attention!

All presentations, examples and selected publications will be
available at

http://www.com.uni-rostock.de/ecc15/

in the 1st week of August

User: ECC15
Password: intervals-are-fun

http://www.com.uni-rostock.de/ecc15/

	Motivation
	Arithmetics
	System Formulations
	Problem: Overestimation and How to Reduce

