Universitat ¢
Rostock

Traditio et Innovatio

Interval Methods for Reliable Modeling,
Identification and Control of Dynamic Systems

Pre-Conference Workshop at ECC2015
14th European Control Conference

Linz, Austria, July 14th, 2015

Andreas Rauh*, Luise Senkel*, Ekaterina Auer**

*Chair of Mechatronics, University of Rostock, Germany

**Faculty of Engineering, University of Applied Sciences Wismar, Germany

Contents

e Partl
» Fundamentals of Interval Arithmetics: Concept and Software
Demonstration
» Verified Simulation of Dynamic Systems
» Kinds of Uncertainty and their Treatment during Modeling and
Simulation
» Possibilities for Simulating Uncertain Non-Smooth Dynamic Systems
o Part 2
» Control-Oriented Applications: ldentification and Optimization
> Interval-Based Sliding Mode Approaches: Control and Estimation
» Application to Fuel Cell Systems for Identification and Control

Part 1

1. Fundamentals of Interval Arithmetic

Presentation of the Fundamental Mathematical Concept of Interval
Arithmetic for Set-Valued Computations

Presentation of the Fundamental Mathematical Concept of
Interval Arithmetic for Set-Valued Computations

Contents

e Motivation

e Definition of Real Intervals, Interval Vectors, Interval Matrices
@ Definition of Complex Intervals

e Calculating with Real Intervals

e Static and Dynamic System Descriptions
@ Overestimation: Dependency Problem and Wrapping Effect

» Monotonicity for Numerical Integration of Systems with Intervals
» Taylor Expansion and Mid-point Rule
» Affine System Representation

Motivation: Uncertainty
Manufacturing Measurement Disturbances Input Range Non-Measurable States
Tolerances Noise and Rate

\ Constraints

Real System

Non-representable effects

Reliable Simulation
Identification
Optimization

Real-Time Control

State Observation

I Model Accuracy <
Static or Dynamic
Mathematical Model
7

e ~

Simplifications

< — continuous

time-discrete

s ~

> -
Implementation Effort Computation Time

A
Numerical Problems
(Rounding and
Discretization Errors,...)

4/38

Motivation: Uncertainty
Manufacturing Measurement Disturbances Input Range Non-Measurable States
Tolerances Noise and Rate

Constraints

Real System

Reliable Simulation
Identification
Optimization

Real-Time Control

State Observation

Non-representable effects
Model Accuracy <

Simplifications

| — x(t):f(;i(t){;(t)u(t)) i:u:u(t) open-loop dynamic system

- T~ u=u(x(t)) closed-loop dynamic system
7 ~N

~ ~

» -~
Implementation Effort Computation Time
|

A\
Numerical Problems
(Rounding and
Discretization Errors,...)

4/38

Motivation: Uncertainty
Manufacturing Measurement Disturbances Input Range Non-Measurable States
Tolerances Noise and Rate

Constraints

Real System

Reliable Simulation
Identification
Optimization

Real-Time Control

State Observation

Non-representable effects
Model Accuracy <

Simplifications

— x(t,f;lrj;fr(x(tk).p(;,;r)r,rlrl(tk)) u,=u(t,) open-loop dynamic system
g VR ~

=u(x(t,)) closed-loop dynamic system

» -~
Implementation Effort Computation Time
|

A\
Numerical Problems
(Rounding and
Discretization Errors,...)

4/38

Motivation: Uncertainty

Manufacturing Measurement Disturbances Input Range Non-Measurable States
Tolerances Noise and Rate

Reliable Simulation
Identification
Optimization

Real-time Control

State Observation

Constraints

Real System

Non-representable effects
Model Accuracy <

Simplifications

< — 0=f(x(t,).u(t,)) > Static case: algebraic (nonlinear) system
— of equations
7 ~N
7 ~N
7 ~
» -
Implementation Effort Computation Time

A\
Numerical Problems
(Rounding and
Discretization Errors,...)

4/38

Motivation: Uncertainty

Intervals Intervals Intervals Intervals Intervals
Manufacturing Measurement Disturbances * Input Range Non-Measurable States
Tolerances Noise * and Rate

Constraints

Real System
Non-representable effects Intervals

Model Accuracy <
Simplifications Intervals

Static or Dynamic
Mathematical Model
7

Reliable Simulation
Identification
Optimization = <u—

Real-time Control

State Observation _ ~
7 ~
»~ -~
Implementation Effort Computation Time
|
\]
Numerical Problems * - more details about

stochastic approaches

(Rounding and in Part 2

Discretization Errors,...)
Intervals

4/38

Arithmetics

Definition of Real Intervals, Interval Vectors, Interval
Matrices

Scalar Real Interval

[a] = [a;a] = [inf([a]);sup([a]))] , a <@, {z €Rla <z <a}
Interval Vector

[Q1§51]
[as; @2]
[a] =
Interval Matrix
lay;a11] [age;@2] .. [y, @10
[agy;@21] [agg;@22] ... [@gy,;@2n)
[A] = . .
[in;anl] [gnQ;aTL?] [an;ann]

Arithmetics

Definition of Complex Intervals

Rectangular Circular
Sla| 3(z]
A A

a, &o m ‘\

N4
a, a, g SR(“] SR[z]
4,
lal=la,;a]+ jlay:a,]

= Useful for dynamic systems with oscillatory behavior

Arithmetics

Calculating with Real Intervals - Natural Interval
Evaluation

[p;Pl + [¢:9] = [p+ ;P + 7

Addition J

[1;2] 4+ [=2;2] = [1 + (=2);2 + 2] = [-1;4]
o s - o

;3] [-4-3]| | |[12:13] [-14;—-13]
[[7;9] [10;15]]+[[17;19] [20;25]]

[14;16] [—18; —16]

- [[24;28] [30; 40]]

7/38

Arithmetics

Calculating with Real Intervals - Natural Interval
Evaluation

Subtraction
[p;pl — g =lp—aP—4l J

[1;2] = [2:3] = [1 = 3;2 = 2] = [-2;0]

23] [~4;-3]] [[1213] [-14;-13]] _ [[-11;-9] [9;11]
[[7; 9] [10; 15]] N [[17; 19] [20; 25] } - [[—12; —8] [—15; —5]]

Arithmetics

Calculating with Real Intervals - Natural Interval
Evaluation

Multiplication
;] [¢:q) = [min{pq,pq,Pq,pq} ; max{pq,pq,pq,Pq}] J

[1;2] - [2;3] = [min{1-2,1-3,2-2,2-3};max{1-2,1-3,2-2,2-3}] = [2;6]

Arithmetics

Calculating with Real Intervals - Natural Interval

Evaluation

Division
_:[p].{%;ﬂ if 0¢q] }

M:[m}- E %] = E;l}

Arithmetics

Calculating with Real Intervals - Natural Interval
Evaluation

Radius of a Real Interval

r(la]) = 3(@ - a)

Width of an Interval
w(la]) =a—a=2-r([a])

Mid-point of an Interval

m([a]) = 3(a+a)

= For real interval vectors and matrices, these characteristics hold
component-wise

11/38

System Formulations

Continuous- and Discrete-Time Systems — Dynamic Case

Continuous-Time System x(t) = f (x(t), p, u(t))
x(t) State Vector
9] Vector of Uncertain Parameters: p; € []_)z. ; T%] yi=1,.,np

u(t) Input Vector: u; € [u; 5 ;] ,j=1,...,n4

12/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to R

Continuous- and Discrete-Time Systems — Dynamic Case

Continuous-Time System x(t) = f (x(t), p, u(t))
x(t) State Vector
9] Vector of Uncertain Parameters: p; € [1_91. ; 2_%} i=1,..,np

u(t) Input Vector: u; € [u; 5 ;] ,j=1,...,n4

Discrete-Time System x(ty11) = f (x(tx), p(tx), u(t))
x(ty) State Vector

p Vector of Uncertain Parameters: p; € []_?i ; E‘}

—> Range Bounds / Tolerances
u(ty) Input Vector: u;(ty) € [gj(tk) s 5 (t)]
— Input Range Constraints

= Calculate all reachable states

12/38

System Formulations

Continuous- and Discrete-Time Systems — Static Case

Continuous-Time System x(t) = 0 = f (x(t), p, u(t))
x(t) State Vector
9] Vector of Uncertain Parameters: p; € [Ei ; ﬁi] vi=1,...,np
u(t) Input Vector: u; € [yj ; ﬂj] ,Jg=1,...,ny

13/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to R

Continuous- and Discrete-Time Systems — Static Case

Continuous-Time System x(t) = 0 = f (x(t), p, u(t))
x(t) State Vector
P Vector of Uncertain Parameters: p; € [21' ; ﬁz} yi=1,..,mp

u(t) Input Vector: u; € [yj ; ﬂj] ,Jg=1,...,ny

Discrete-Time System x(tx11) = x(tx) = £ (x(tx), p(tx), u(ts))
x(ty) State Vector
P Vector of Uncertain Parameters: p; € [Qz‘ ;]_94

—> Range Bounds / Tolerances
u(ty) Input Vector: u;(ty) € [u;(tx) ; u;(te)]
— Input Range Constraints

= Solve for state vector x(t) or xy, resp. for 1 time step

13/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation

Necessary: Factorizations, simplifications, reformulations as far as possible
= Reduction of overestimation and computation time

Example
[f]([z]) =2 [z] — [z] - [x] and [z] = [~1 ; 2], Results provided by Intlab
Q [fI([z]) =2 [a] = [2] - [2] = [-6 ; 6]

Q [f([z]) =2-[a] — [z]* = [-6; 4]
Q [fl([z]) =—([z] = 1) - ([z] - 1) +1=[-3; 3]
Q [f1([z]) = —([z] = 1)?2 +1 = [-3 ; 1] (Exact evaluation)

14/38

Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation

Necessary: Factorizations, simplifications, reformulations as far as possible
= Reduction of overestimation and computation time

Example
[f1([z]) =2 [z] — [z] - [x] and [z] = [~1 ; 2], Results provided by Intlab

© Higher-order Interval Evaluation for Polynomials: Taylor Expansion
(zm = mid([z])) according to

(sl —i!xmv) L @)

(2] = 2m)"

[] n!

T(f) = f(wn) + <Z L i

14/38

Motivation Arithmetics System Formulations

Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation

Necessary: Factorizations, simplifications, reformulations as far as possible
= Reduction of overestimation and computation time

Example
[f]([z]) =2 [z] — [z] - [x] and [x] = [~1 ; 2], Results provided by Intlab
@ Taylor Expansion with z,,, = mid([z]) = 0.5
Aal) = flam) + 8| - (lo] =) + G| - et
f(zy) =2-0.5—0.52 —0.75
o . ([#] —zm) = 2—2-2)|, - ([z] —zm) = [-1.5; 1.5]

14/38

Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Example
[f]([z]) = 2 [z] — [z] - [x] and [z] = [-1 ; 2], Results provided by Intlab
@ Taylor Expansion with z,, = mid([z]) = 0.5

[F1([2]) = 0.75 + [-1.5 ; 1.5] + Z4 " (el=—zm)® _
2f| . (al=em)(al=om) _ o (al=om)(e]-2m) _
2!

—1-[-15; 1.5]-[-1.5; 1.5] = [—2.25 ; 2.25]

v

= Taylor expansion will be demonstrated later with two software libraries

15/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Example
[f]([z]) =2 [z] — [z] - [x] and [x] = [—1 ; 2], Results provided by Intlab
@ Taylor Expansion with z,,, = mid([z]) = 0.5
Fl([z]) =0.75+ [-1.5 ; 1.5]+ 2| . delzom?®

8.’1)2 []
o2f1 | (alzem)(d=zm) _ o (z]= mm) ([w] Tm) _

—1-[-15; 1.5]-[-1.5; 1.5] = [~2.25 ; 2.25]

(2]2 = {[mi“(%,M) ; max(aa,aa)] if 0 ¢ [z]
05 max(aa, aa)] if 0 € [2]
o%f

. el g (eloem)® g {15 152 = [-2.25 ; 0]

v

= Taylor expansion will be demonstrated later with two software libraries

15/38

Motivation Arithmetics System Formulations

Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Example

[f]([z]) =2 [z] — [z] - [z] and [z] = [—1 ; 2], Results provided by Intlab
@ Taylor Expansion with z,,, = mid([z]) = 0.5

[([z]) = f(@m) + 5L (el —zm) + 27| . (el-en)

m [z]

f(zm) =2-0.5—-0.5%2 =0.75

%) (2] —zm) = (2—2-2)|, (2] —zm) = [-1.5; 1.5]
%H.M:_Q.M:—l-[—lﬁ; 152 = [=2.25 ; 0]

= [f]([z]) = 0.75+ [-1.5; 1.5] +[-2.25; 0] = [-3; 2.25]

= Taylor expansion will be demonstrated later with two software libraries

15/38

Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

A=) ==([x]=1)"+1

[f](i[x])

Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

([x])=2[x]-[x][x

4

2
= Ax)==([x]=1)+1
=o
=

-3

-4

= -05 o 05 1 15 2

16/38

Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

([x])=2[x]-[x][x

4 [A(D=2[x]-[xT!

2
= Ax)==([x]=1)+1
=o
=

-2

-4

= -05 o 05 1 15 2

16/38

Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

([x])=2[x]-[x][x

4 [A(D=2[x]-[xT!

, [A)([x)==([x)=1)([x]-1)+1
= Ax)==([x]=1)+1
§ o

-2

-4

= -05 o 05 1 15 2

16/38

Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

([x])=2[x]-[x][x
¢ [A1(x)=2(x]=[xT]
A)==((x]=1)([x]-1)+1
2f Taylor Expansion
= Ax)==([x]=1)+1
=o
=
-2
-4
1 -05 [} 05 1 15 2

16/38

Problem: Overestimation and How to Reduce

Special Case of Taylor Expansion: Mid-point Rule
of

Exact enclosure [fex]([x])

Approximation of the solution of the function /'(x)

Problem: Overestimation and How to Reduce

Special Case of Taylor Expansion: Mid-point Rule

F @) C () = f (wm) + 2L

(el -)

(=]
flx)
f(}) _______________
tangent
Sx)= — . Exact enclosure |/) ([x])
! [/l (x])
| Natural evaluated enclosure nat
S fm _ ; :
i ! i
| | |
I I
i : | Approximation of the solution of the function f° (x)
| i |
x X x

Problem: Overestimation and How to Reduce

Special Case of Taylor Expansion: Mid-point Rule

F @) C () = f (wm) + 2L

(el -)

(=]
flx)
f(}) _______________
Sx)= — . Exact enclosure |/) ([x])
: Natural evaluated enclosure L/ m”]([x])
f(,x) —————————————— ! . Enclosure evaluated by mid-point rule [fm]([x])
| :
| ; |
I I
i : | Approximation of the solution of the function f° (x)
| i |
x X x

Problem: Overestimation and How to Reduce

Special Case of Taylor Expansion: Mid-point Rule

F@)C fon(fa) = S)+ L] (fa])

[z]

flx)
f(}) _______________
[tangent
Fly)|mmm e : Exact enclosure |/) ([x])
: Natural evaluated enclosure E(E2)
f(,x) —————————————— ! . Enclosure evaluated by mid-point rule [fm]([x])
| :
: | : Constructed range of function value
! | ! using mid-point rule and tangenton f'(x,,)
| :
: | : Approximation of the solution of the function f* (X)
x X x

Problem: Overestimation and How to Reduce

Special Case of Taylor Expansion: Mid-point Rule

Exact enclosure Lf ex] (

Natural evaluated enclosure L nal](

Enclosure evaluated by mid-point rule [f mj]([x])

Constructed range of function value
using mid-point rule and tangent on f(xm)

Approximation of the solution of the function £ (x)
by using the smallest and largest slope depicted by
the triangles §\\§\\“"

>

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Monotonicity

Consider: Interval-Valued Function given by FF =z +x - x
e Two intervals [z1] = [—2;4] and [z2] = [—1;4] with [z;] C [z2]
o F([z1]) = [-2;4] +[-2;4] - [-2;4] = [-2;4] + [-8;16] = [-10; 20]
o F([zo]) = [-1;4] +[-1;4] - [-1;4] = [-1;4] + [-4; 16] = [-5; 20]
e Consequence F([z2]) C F([z1]) = F is an inclusion monotonic
function

@ 4 basic arithmetic operators are also inclusion monotonic

Consequence for Calculating with Intervals
e Splitting of large intervals
@ Hull of all evaluations with the subintervals

o Tighter range bounds than with original interval

v

18/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Monotonicity

Consider: Interval-Valued Function given by FF =z +x - x
e Two intervals [z1] = [—2;4] and [z2] = [—1;4] with [z;] C [z2]
o F([z1]) = [-2;4] +[-2;4] - [-2;4] = [-2;4] + [-8;16] = [-10; 20]
o F(lzo]) = [-1;4] + [-1;4] - [-1;4] = [-1;4] + [-4;16] = [-5;20]
e Consequence F([z2]) C F([z1]) = F is an inclusion monotonic
function

@ 4 basic arithmetic operators are also inclusion monotonic

Monitonicity of a Function Using Derivatives
oF
ox
oF
ox

19/38

<0 = Fe[F(Z);F(z)]

z€[x]

>0 = FelF(z); F(7)]

€[]

Motivation Arithmetics System Formulations

Problem: Overestimation and How to Reduce

Overestimation: Wrapping Effect —Example

Discrete System Model

(1) = A () with ()= {37] ana &= gvE [1))

Aim

Evaluation of interval enclosure [x](tx1)

Problem in Engineering Tasks

Uncertainty in parameters, significantly larger than representation errors of
floating-point values (rounding errors)

v

20/38

Problem: Overestimation and How to Reduce

Overestimation: Wrapping Effect — Example

(ta2) = A () with (o) = {37] ana &= 3vE [1)) J

=1, =1, 1=t,

4[!]7 # 4[|E—‘ @ Exact recursive evaluation

= Rotation of 45° due to structure of system matrix A

21/38

Problem: Overestimation and How to Reduce

Overestimation: Wrapping Effect — Example

(1) = A - [x](t), [x](to) = Hj H] A= Ap=5V2 [_11 ﬂ J

t=t, t=t, t=t,

o o “
4[!]‘11 # 4E|E—, o Traditional recursive interval
evaluation (using e.g. Intlab)

.\‘2¥ X. X.

= Exponential growth of the enclosing interval boxes

2 2

(x](t1) = A [x](to)
(x](t2) = A [x](t1)

=

(x](tk+1) = A [x](tk)

22/38

Problem: Overestimation and How to Reduce

Overestimation: Wrapping Effect — Example

(i) = A< W), B = |30 a=ac=gva| L] J

t=t, t=t, t=t

o Intelligent recursive evaluation
h) (affine): Modified system matrix

) Ap=AA;
@2 [x](t1) = A [x](to) = Ag [x](to)
T [x(t2) = AAg [X](to) = Aq [x](t0)

* (%] (1) = AAg_y [x](t0) = A [X](to)

= =
S 81
= =

|
x

\ 2

1

1

1

1 *
1

1

= Significant reduction of the wrapping effect for linear systems
23/38

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Affine System Representation for Discrete Systems

Advantages

@ Directly mapping of interval variables to their initial intervals in each
time step

@ No dependencies between intervals = no interval box rotations

Discretization depends on
@ Additive interval or multiplicatively coupled parameter interval

@ Input variable constant or changing

@ Explicit or implicit Euler method

24/38

Problem: Overestimation and How to Reduce

Affine System Representation for a SISO System
Case 1: Additive interval uncertainty [a], u(t;) # const, step size T' =1

FQy(te), fu(te)]) = 2- [yl (k) + 1 ulty) + 3 - [a]

e =] =0 3 [le]] e

E.g. Explicit Euler Discetization (time discretization error neglected) }

[x](tk+1) = M(tk+1) - [x](t0) + ¥ (t41) with

M(tk) =M = M(tk—i-l) =M- M(tk)
(k1) = M(tk) - y(te) + T - p(ty)

initial conditions x(tp) = Hﬂ Eig;] , M(to) =122 | ~(tg) =0

25/38

Problem: Overestimation and How to Reduce

Affine System Representation for a SISO System

Case 2: Additive interval uncertainty [a], u=const, step size T' =1
FQy(@), [u®)]) =2 [yl(t) + 1-u(t) + 3 - [a]

[y](tk+1) 2 3 1] [lyl(tr)
(x](tkt1) = [a](tk+1) =10 1 0| ([al(tk)
u(tkH) 0 0 1 u(tk)

extended state vector X(tx1) M x(tg)

(x](tk+1) = M(te+1) - [x](t0) with
M(tk) =M = M(tk-i-l) =M- M(tk)
[yl (to)
x](to) = |[a](to)
u(to)

Explicit Euler Discetization (time discretization error neglected) J

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Affine System Representation — Comparison

Implicit Euler Method (u(ty41) = u(tx) = const)

x(t) = £(x(t), u(t)) = Ax(t) + bu(t)

= (xX(tpy1), u(tps1)) = X(tk+1)T_ x(t)

X(the1) = X =T - A) 7" (x(tx) + T b - u(tpr1))

o o e e
R(txt1) A (1)

27/38

Problem: Overestimation and How to Reduce

Affine System Representation — Comparison

Explicit Euler Method (u(t41) = u(tx) = const)

x(t) = £(x(t),u(t)) = Ax(t) + bu(t)

X(tk+1) — x(tk)
T
X(th1) = A +T-A)-x(tp) + T - b - u(ty)

x(ti1)] _ [@A+T-A) T-b] [x(t)
i) = | | [ie

=f(x(tg), u(ty)) =

o” 1 u(ty)

b1
=
B
+
AR
P14
"
=
=
N

28/38

Affine System Representation for a One-Mass Oscillator

Problem: Overestimation and How to Reduce

Affine System Representation for a One-Mass Oscillator

)1 B2

Euler Discretization with constant input variable
X(thy1) = A - X(ty) J

x(t) = A-x(to) .
x(t2) = A-x(t1) = A- (A-x(to)) = A% x(to)

K(teer) = AF - ()

30/38

Problem: Overestimation and How to Reduce

Affine System Representation for a One-Mass Oscillator

)1 B2

Euler Discretization with constant input variable
X(thy1) = A - X(ty) J

x(t) = A-x(to) .
x(t2) = A-x(t1) = A- (A-x(to)) = A% x(to)

X(tpy1) = AF - %(t) Example in MATLAB

30/38

Problem: Overestimation and How to Reduce

Part 1

1. Fundamentals of Interval Arithmetic

Software Demonstration

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Software Demonstration of Interval Arithmetics

o INTLAB: INTerval LABoratory — Matlab toolbox for Reliable
Computing
o C-XSC — C++ Class Library

Importance of Verified Computing

@ Floating-point arithmetics on today's computer is always affected by a

maximum accuracy
= rounded results differ at most by 1 unit in the last place from the

exact result

o After further calculations, the result may be wrong because of
rounding = Results have to be verified

32/38

Problem: Overestimation and How to Reduce

Motivation Arithmetics System Formulations

INTerval LABoratory

Development by Prof. Dr. Siegfried M. Rump, Hamburg University of
Technology

http://www.ti3.tu-harburg.de/rump/intlab/
Standard interval arithmetic

@ Arithmetic operators +, —, -, /

@ Real and complex intervals

Automatic Differentiation
@ Forward mode: forward substitution to find the derivatives

@ Compute derivatives using the chain rule for composite functions

@ Calculate an enclosure of the true derivative of an interval function

33/38

http://www.ti3.tu-harburg.de/rump/intlab/

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

INTerval LABoratory

http://wuw.ti3.tu-harburg.de/rump/intlab/

Verified Functions for Linear Systems of Equations
@ Solution of linear systems of equations in a verified way
@ Computation of an enclosure of the solution hull

@ Aim: produce a tight bound on the true solution

Rounding Mode

@ Function setround(y): changes the rounding mode of the processor
to the nearest (0), round down (-1), round up (1)

@ Function getround outputs the current rounding mode

34/38

http://www.ti3.tu-harburg.de/rump/intlab/

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

INTerval LABoratory

http://wuw.ti3.tu-harburg.de/rump/intlab/

Verified Functions for Linear Systems of Equations
@ Solution of linear systems of equations in a verified way
@ Computation of an enclosure of the solution hull

@ Aim: produce a tight bound on the true solution

Rounding Mode

@ Function setround(y): changes the rounding mode of the processor
to the nearest (0), round down (-1), round up (1)

@ Function getround outputs the current rounding mode

Matlab Example: intlab_fundamentals.m and taylor_expansion.m

34/38

http://www.ti3.tu-harburg.de/rump/intlab/

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

C-XSC

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Information
@ C++ Class Library for Extended Scientific Computing
@ Compatible to Windows, Linux, Mac Os

Data Types
o real, interval, complex, cinterval (complex interval)
@ rvector, ivector, cvector, civector (complex interval vector)

@ rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)

35/38

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Arithmetics System Formulations Problem: Overestimation and How to Reduce

C-XSC

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Data Types
e real, interval, complex, cinterval (complex interval)
@ rvector, ivector, cvector, civector (complex interval vector)

@ rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)

Rounding Mode
@ by-default: all operations are only one rounding away from the exact
result

@ Modes: long fix-point accumulator for dot product computations
(default), pure floating point operations, DotK algorithm (based on
so-called error free transformations)

35/38

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

System Formulations Problem: Overestimation and How to Reduce

C-XSC

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Data Types fundamentals.cpp
e real, interval, complex, cinterval (complex interval)
@ rvector, ivector, cvector, civector (complex interval vector)

@ rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)

Rounding Mode
@ by-default: all operations are only one rounding away from the exact
result

@ Modes: long fix-point accumulator for dot product computations
(default), pure floating point operations, DotK algorithm (based on
so-called error free transformations)

35/38

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

FADBAD++

http://www.fadbad.com/fadbad.html#General _introduction

General

@ Flexible Automatic Differentiation using templates and operator
overloading in C++

o Implementing the forward, backward and Taylor methods utilizing
C++ templates and operator overloading

o Differentiate a C4++ function by replacing all occurrences of the
original arithmetic type with the AD-template version

@ Possible to generate high-order derivatives

36/38

http://www.fadbad.com/fadbad.html#General_introduction

Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

FADBAD++

http://www.fadbad.com/fadbad.html#General _introduction

General taylor_expansion_FF.cpp and taylor_expansion_T.cpp

o Flexible Automatic Differentiation using templates and operator
overloading in C4++

@ Implementing the forward, backward and Taylor methods utilizing
C++ templates and operator overloading

o Differentiate a C++ function by replacing all occurrences of the
original arithmetic type with the AD-template version

@ Possible to generate high-order derivatives

Advantage of Using C++ instead of Intlab

Interface to rapid control prototyping environments is possible

37/38

http://www.fadbad.com/fadbad.html#General_introduction

Thank you for your attention!

All presentations, examples and selected publications will be
available at
http://www.com.uni-rostock.de/ecc15/
in the 1st week of August

User: ECC15
Password: intervals-are-fun

http://www.com.uni-rostock.de/ecc15/

	Motivation
	Arithmetics
	System Formulations
	Problem: Overestimation and How to Reduce

