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Part 1

1. Fundamentals of Interval Arithmetic

Presentation of the Fundamental Mathematical Concept of Interval
Arithmetic for Set-Valued Computations
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Motivation: Uncertainty

Model Accuracy

Computation TimeImplementation Effort

Manufacturing 
Tolerances

Measurement 
Noise *

Disturbances * Input Range 
and Rate 
Constraints

Numerical Problems 
(Rounding and 
Discretization Errors,...)

Simplifications

Non-representable effects

Non-Measurable States

Real System

Static or Dynamic
Mathematical Model

Reliable Simulation
Identification
Optimization

Real-time Control
State Observation

Intervals Intervals Intervals Intervals Intervals

Intervals

Intervals

Intervals

* - more details about 
    stochastic approaches
    in Part 2
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Definition of Real Intervals, Interval Vectors, Interval
Matrices
Scalar Real Interval

[a] = [a; a] = [inf([a]); sup([a]))] , a ≤ a , {x ∈ R|a ≤ x ≤ a}
Interval Vector

[a] =


[a1; a1]
[a2; a2]

...
[an; an]


Interval Matrix

[A] =


[a11; a11] [a12; a12] . . . [a1n; a1n]
[a21; a21] [a22; a22] . . . [a2n; a2n]

...
...

. . .
...

[an1; an1] [an2; an2] . . . [ann; ann]
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Definition of Complex Intervals

ℜ {a }

ℑ {a }

a1 a1

a2

a2

[a ]=[a1 ;a1 ]+ j [a2 ;a2 ]

ℜ {z }

ℑ {z }

r
m

[ z ]=<m ,r>

Rectangular Circular

⇒ Useful for dynamic systems with oscillatory behavior
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Calculating with Real Intervals - Natural Interval
Evaluation

Addition

[p; p] + [q; q] = [p+ q; p+ q]

[1; 2] + [−2; 2] = [1 + (−2); 2 + 2] = [−1; 4]

[
[−2;−1]
[0; 4]

]
+

[
[−10;−3]

[5; 8]

]
=

[
[−12;−4]
[5; 12]

]
[
[2; 3] [−4;−3]
[7; 9] [10; 15]

]
+

[
[12; 13] [−14;−13]
[17; 19] [20; 25]

]
=

[
[14; 16] [−18;−16]
[24; 28] [30; 40]

]
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Calculating with Real Intervals - Natural Interval
Evaluation

Subtraction

[p; p]− [q; q] = [p− q; p− q]

[1; 2]− [2; 3] = [1− 3; 2− 2] = [−2; 0]

[
[2; 3] [−4;−3]
[7; 9] [10; 15]

]
−
[
[12; 13] [−14;−13]
[17; 19] [20; 25]

]
=

[
[−11;−9] [9; 11]
[−12;−8] [−15;−5]

]
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Calculating with Real Intervals - Natural Interval
Evaluation

Multiplication

[p; p] · [q; q] =
[
min

{
p q, p q, p q, p q

}
; max

{
p q, p q, p q, p q

}]

[1; 2] · [2; 3] = [min{1 · 2, 1 · 3, 2 · 2, 2 · 3}; max{1 · 2, 1 · 3, 2 · 2, 2 · 3}] = [2; 6]
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Calculating with Real Intervals - Natural Interval
Evaluation

Division

[p]
[q] = [p] ·

[
1
q ; 1

q

]
if 0 6∈ [q]

[1; 2]

[2; 3]
= [1; 2] ·

[
1

3
;
1

2

]
=

[
1

3
; 1

]
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Calculating with Real Intervals - Natural Interval
Evaluation

Radius of a Real Interval

r([a]) = 1
2(a− a)

Width of an Interval

w([a]) = a− a = 2 · r([a])

Mid-point of an Interval

m([a]) = 1
2(a+ a)

⇒ For real interval vectors and matrices, these characteristics hold
component-wise
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Continuous- and Discrete-Time Systems — Dynamic Case

Continuous-Time System ẋ(t) = f (x(t),p,u(t))

x(t) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
, i = 1, ..., np

u(t) Input Vector: uj ∈
[
uj ; uj

]
, j = 1, ..., nu

Discrete-Time System x(tk+1) = f (x(tk),p(tk),u(tk))

x(tk) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
=⇒ Range Bounds / Tolerances

u(tk) Input Vector: uj(tk) ∈
[
uj(tk) ; uj(tk)

]
=⇒ Input Range Constraints

⇒ Calculate all reachable states
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Continuous- and Discrete-Time Systems — Static Case

Continuous-Time System ẋ(t) = 0 = f (x(t),p,u(t))

x(t) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
, i = 1, ..., np

u(t) Input Vector: uj ∈
[
uj ; uj

]
, j = 1, ..., nu

Discrete-Time System x(tk+1) = x(tk) = f (x(tk),p(tk),u(tk))

x(tk) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
=⇒ Range Bounds / Tolerances

u(tk) Input Vector: uj(tk) ∈
[
uj(tk) ; uj(tk)

]
=⇒ Input Range Constraints

⇒ Solve for state vector x(t) or xk resp. for 1 time step
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Continuous-Time System ẋ(t) = 0 = f (x(t),p,u(t))

x(t) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
, i = 1, ..., np

u(t) Input Vector: uj ∈
[
uj ; uj

]
, j = 1, ..., nu

Discrete-Time System x(tk+1) = x(tk) = f (x(tk),p(tk),u(tk))

x(tk) State Vector

p Vector of Uncertain Parameters: pi ∈
[
p
i
; pi

]
=⇒ Range Bounds / Tolerances

u(tk) Input Vector: uj(tk) ∈
[
uj(tk) ; uj(tk)

]
=⇒ Input Range Constraints

⇒ Solve for state vector x(t) or xk resp. for 1 time step

13/38



Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation

Necessary: Factorizations, simplifications, reformulations as far as possible
⇒ Reduction of overestimation and computation time

Example

[f ]([x]) = 2 · [x]− [x] · [x] and [x] = [−1 ; 2], Results provided by Intlab

1 [f ]([x]) = 2 · [x]− [x] · [x] = [−6 ; 6]

2 [f ]([x]) = 2 · [x]− [x]2 = [−6 ; 4]

3 [f ]([x]) = −([x]− 1) · ([x]− 1) + 1 = [−3 ; 3]

4 [f ]([x]) = −([x]− 1)2 + 1 = [−3 ; 1] (Exact evaluation)
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Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation

Necessary: Factorizations, simplifications, reformulations as far as possible
⇒ Reduction of overestimation and computation time

Example

[f ]([x]) = 2 · [x]− [x] · [x] and [x] = [−1 ; 2], Results provided by Intlab
5 Higher-order Interval Evaluation for Polynomials: Taylor Expansion

(xm = mid([x])) according to

T (f) = f(xm) +

(
n−1∑
i=1

∂if(x)

∂xi

∣∣∣∣
xm

· ([x]− xm)i

i!

)
+

∂nf(x)

∂xn

∣∣∣∣
[x]

· ([x]− xm)n

n!
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Overestimation: Dependency Problem

Problem: Multiple occurence of an interval in one equation

Necessary: Factorizations, simplifications, reformulations as far as possible
⇒ Reduction of overestimation and computation time

Example

[f ]([x]) = 2 · [x]− [x] · [x] and [x] = [−1 ; 2], Results provided by Intlab

5 Taylor Expansion with xm = mid([x]) = 0.5

[f ]([x]) = f(xm) + ∂f
∂x

∣∣∣
xm

· ([x]− xm) + ∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)2

2!

f(xm) = 2 · 0.5− 0.52 = 0.75
∂f
∂x

∣∣∣
xm

· ([x]− xm) = (2− 2 · x)|xm
· ([x]− xm) = [−1.5 ; 1.5]
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Overestimation: Dependency Problem

Example

[f ]([x]) = 2 · [x]− [x] · [x] and [x] = [−1 ; 2], Results provided by Intlab

5 Taylor Expansion with xm = mid([x]) = 0.5

[f ]([x]) = 0.75 + [−1.5 ; 1.5] + ∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)2

2! =

∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)·([x]−xm)

2! = −2 · ([x]−xm)·([x]−xm)
2! =

−1 · [−1.5 ; 1.5] · [−1.5 ; 1.5] = [−2.25 ; 2.25]

⇒ Taylor expansion will be demonstrated later with two software libraries
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[x]2 =

{
[min(aa, aa) ; max(aa, aa)] if 0 /∈ [x]

[0 ; max(aa, aa)] if 0 ∈ [x]

∂2f
∂x2

∣∣∣
[x]
· ([x]−xm)2

2! = −2 · ([x]−xm)2

2! = −1 · [−1.5 ; 1.5]2 = [−2.25 ; 0]
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Overestimation: Dependency Problem

[ x ]

[
f
](
[x

]) [ f ]([ x ])=−([ x ]−1)2+1
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Overestimation: Dependency Problem

[ x ]
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f
](
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])
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[ f ]([ x ])=−([ x ]−1)2+1

16/38



Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

[ x ]

[
f
](
[x

])

[ f ]([ x ])=2[ x ]−[x ][x ]

[ f ]([ x ])=2[ x ]−[x ]2

[ f ]([ x ])=−([ x ]−1)2+1

16/38



Motivation Arithmetics System Formulations Problem: Overestimation and How to Reduce

Overestimation: Dependency Problem

[ x ]

[
f
](
[x

])

[ f ]([ x ])=2[ x ]−[x ][x ]

[ f ]([ x ])=2[ x ]−[x ]2

[ f ]([ x ])=−([ x ]−1)([ x ]−1)+1

[ f ]([ x ])=−([ x ]−1)2+1
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Overestimation: Dependency Problem

[ x ]

[
f
](
[x

])

[ f ]([ x ])=2[ x ]−[x ][x ]

[ f ]([ x ])=2[ x ]−[x ]2

[ f ]([ x ])=−([ x ]−1)([ x ]−1)+1

Taylor Expansion

[ f ]([ x ])=−([ x ]−1)2+1
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Special Case of Taylor Expansion: Mid-point Rule

f (x) ⊆ fm ([x]) = f (xm) +
∂f

∂x

∣∣∣∣
[x]

([x]− xm)

f ( x)

xmx x

f ( x)

f ( xm)

f ( x)

[ f ex ]([ x])

Approximation of the solution of the function

Exact enclosure

f ( x)
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Special Case of Taylor Expansion: Mid-point Rule

f (x) ⊆ fm ([x]) = f (xm) +
∂f

∂x

∣∣∣∣
[x]

([x]− xm)

f ( x)

xmx x

f ( x)

f ( xm)

f ( x)

[ f nat ]([ x ])

[ f mp]([x ])

[ f ex ]([ x])
tangent

Approximation of the solution of the function
by using the smallest and largest slope depicted by
the triangles

Exact enclosure

Natural evaluated enclosure

Enclosure evaluated by mid-point rule

Constructed range of function value 
using mid-point rule and tangent on f ( xm)

f ( x)
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Monotonicity

Consider: Interval-Valued Function given by F = x+ x · x
Two intervals [x1] = [−2; 4] and [x2] = [−1; 4] with [x1] ⊂ [x2]

F ([x1]) = [−2; 4] + [−2; 4] · [−2; 4] = [−2; 4] + [−8; 16] = [−10; 20]
F ([x2]) = [−1; 4] + [−1; 4] · [−1; 4] = [−1; 4] + [−4; 16] = [−5; 20]
Consequence F ([x2]) ⊂ F ([x1]) ⇒ F is an inclusion monotonic
function

4 basic arithmetic operators are also inclusion monotonic

Consequence for Calculating with Intervals

Splitting of large intervals

Hull of all evaluations with the subintervals

Tighter range bounds than with original interval
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Monotonicity

Consider: Interval-Valued Function given by F = x+ x · x
Two intervals [x1] = [−2; 4] and [x2] = [−1; 4] with [x1] ⊂ [x2]

F ([x1]) = [−2; 4] + [−2; 4] · [−2; 4] = [−2; 4] + [−8; 16] = [−10; 20]
F ([x2]) = [−1; 4] + [−1; 4] · [−1; 4] = [−1; 4] + [−4; 16] = [−5; 20]
Consequence F ([x2]) ⊂ F ([x1]) ⇒ F is an inclusion monotonic
function

4 basic arithmetic operators are also inclusion monotonic

Monitonicity of a Function Using Derivatives

∂F

∂x

∣∣∣∣
x∈[x]

< 0 ⇒ F ∈ [F (x);F (x)]

∂F

∂x

∣∣∣∣
x∈[x]

> 0 ⇒ F ∈ [F (x);F (x)]
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Overestimation: Wrapping Effect —Example

Discrete System Model

[x](tk+1) = A · [x](tk) with [x](t0) =

[
[−1 ; 1]
[−1 ; 1]

]
and A =

1

2

√
2

[
1 1
−1 1

]

Aim

Evaluation of interval enclosure [x](tk+1)

Problem in Engineering Tasks

Uncertainty in parameters, significantly larger than representation errors of
floating-point values (rounding errors)
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Overestimation: Wrapping Effect — Example

[x](tk+1) = A · [x](tk) with [x](t0) =

[
[−1 ; 1]
[−1 ; 1]

]
and A =

1

2

√
2

[
1 1
−1 1

]
x2

x1

x2

x1

x2

x1

t=t0 t=t1 t=t2

Exact recursive evaluation

⇒ Rotation of 45◦ due to structure of system matrix A
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Overestimation: Wrapping Effect — Example

[x](tk+1) = A · [x](tk), [x](t0) =

[
[−1 ; 1]
[−1 ; 1]

]
, A = Ak = 1

2

√
2

[
1 1
−1 1

]
x2

x1

x2

x1

x2

x1

t=t0 t=t1 t=t2

x2

x1

x2

x1

x2

x1

Traditional recursive interval
evaluation (using e.g. Intlab)

[x](t1) = A [x](t0)

[x](t2) = A [x](t1)

...

[x](tk+1) = A [x](tk)

⇒ Exponential growth of the enclosing interval boxes
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Overestimation: Wrapping Effect — Example

[x](tk+1) = A · [x](tk), [x](t0) =

[
[−1 ; 1]
[−1 ; 1]

]
, A = Ak = 1

2

√
2

[
1 1
−1 1

]
x2

x1

x2

x1

x2

x1

t=t0 t=t1 t=t2

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

Intelligent recursive evaluation
(affine): Modified system matrix
Ãk = AÃk−1

[x](t1) = A [x](t0) = Ã0 [x](t0)

[x](t2) = AÃ0 [x](t0) = Ã1 [x](t0)

...

[x](tk+1) = AÃk−1 [x](t0) = Ãk [x](t0)

⇒ Significant reduction of the wrapping effect for linear systems
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Affine System Representation for Discrete Systems

Advantages

Directly mapping of interval variables to their initial intervals in each
time step

No dependencies between intervals ⇒ no interval box rotations

Discretization depends on

Additive interval or multiplicatively coupled parameter interval

Input variable constant or changing

Explicit or implicit Euler method
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Affine System Representation for a SISO System
Case 1: Additive interval uncertainty [a], u(tk) 6= const, step size T = 1

f(y(tk), [u(tk)]) = 2 · [y](tk) + 1 · u(tk) + 3 · [a]

[x](tk+1) =

[
[y](tk+1)
[a](tk+1)

]
︸ ︷︷ ︸

extended state vector x(tk+1)

=

[
2 3
0 1

]
︸ ︷︷ ︸

M

·
[
[y](tk)
[a](tk)

]
︸ ︷︷ ︸

x(tk)

+

[
1
0

]
· u(tk)︸ ︷︷ ︸

ρ(tk)

E.g. Explicit Euler Discetization (time discretization error neglected)

[x](tk+1) = M(tk+1) · [x](t0) + γ(tk+1) with

M(tk) = M ⇒ M(tk+1) = M ·M(tk)

γ(tk+1) = M(tk) · γ(tk) + T · ρ(tk)

initial conditions x(t0) =

[
[y](t0)
[a](t0)

]
, M(t0) = I2×2 , γ(t0) = 0
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Affine System Representation for a SISO System
Case 2: Additive interval uncertainty [a], u=const, step size T = 1

f(y(t), [u(t)]) = 2 · [y](t) + 1 · u(t) + 3 · [a]

[x](tk+1) =

[y](tk+1)
[a](tk+1)
u(tk+1)


︸ ︷︷ ︸

extended state vector x(tk+1)

=

2 3 1
0 1 0
0 0 1


︸ ︷︷ ︸

M

·

[y](tk)[a](tk)
u(tk)


︸ ︷︷ ︸

x(tk)

Explicit Euler Discetization (time discretization error neglected)

[x](tk+1) = M(tk+1) · [x](t0) with

M(tk) = M ⇒ M(tk+1) = M ·M(tk)

[x](t0) =

[y](t0)[a](t0)
u(t0)
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Affine System Representation — Comparison

Implicit Euler Method (u(tk+1) = u(tk) = const)

ẋ(t) = f(x(t), u(t)) = Ax(t) + bu(t)

⇒f(x(tk+1), u(tk+1)) ≈
x(tk+1)− x(tk)

T
x(tk+1) = (I− T ·A)−1 · (x(tk) + T · b · u(tk+1))[

x(tk+1)
u(tk+1)

]
︸ ︷︷ ︸

x̃(tk+1)

=

[
(I− T ·A)−1 (I− T ·A)−1 · T · b

0T 1

]
︸ ︷︷ ︸

Ã

·
[
x(tk)
u(tk)

]
︸ ︷︷ ︸

x̃(tk)
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Affine System Representation — Comparison

Explicit Euler Method (u(tk+1) = u(tk) = const)

ẋ(t) = f(x(t), u(t)) = Ax(t) + bu(t)

⇒f(x(tk), u(tk)) ≈
x(tk+1)− x(tk)

T
x(tk+1) = (I+ T ·A) · x(tk) + T · b · u(tk)[

x(tk+1)
u(tk+1)

]
︸ ︷︷ ︸

x̃(tk+1)

=

[
(I+ T ·A) T · b

0T 1

]
︸ ︷︷ ︸

Ã

·
[
x(tk)
u(tk)

]
︸ ︷︷ ︸

x̃(tk)
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Affine System Representation for a One-Mass Oscillator

m

k c

x

F

m · ẍ(t) + c · x(t) + k · x(t) = F (t)[
ẋ(t)
ẍ(t)

]
=

[
0 1

− k
m − c

m

] [
x(t)
ẋ(t)

]
+

[
0
1
m

]
F (t)
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Affine System Representation for a One-Mass Oscillator

m · ẍ(t) + c · x(t) + k · x(t) = F (t)[
ẋ(t)
ẍ(t)

]
=

[
0 0

− k
m − c

m

] [
x(t)
ẋ(t)

]
+

[
0
1
m

]
F (t)

Euler Discretization with constant input variable

x̃(tk+1) = Ã · x̃(tk)

x̃(t1) = Ã · x̃(t0)
x̃(t2) = Ã · x̃(t1) = Ã · (Ã · x̃(t0)) = Ã2 · x̃(t0)
...
x̃(tk+1) = Ãk · x̃(t0)

Example in MATLAB
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Affine System Representation for a One-Mass Oscillator

m · ẍ(t) + c · x(t) + k · x(t) = F (t)[
ẋ(t)
ẍ(t)

]
=

[
0 0

− k
m − c

m

] [
x(t)
ẋ(t)

]
+

[
0
1
m

]
F (t)

Euler Discretization with constant input variable

x̃(tk+1) = Ã · x̃(tk)

x̃(t1) = Ã · x̃(t0)
x̃(t2) = Ã · x̃(t1) = Ã · (Ã · x̃(t0)) = Ã2 · x̃(t0)
...
x̃(tk+1) = Ãk · x̃(t0) Example in MATLAB
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Part 1

1. Fundamentals of Interval Arithmetic

Software Demonstration
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Software Demonstration of Interval Arithmetics

Intlab: INTerval LABoratory — Matlab toolbox for Reliable
Computing

C-XSC — C++ Class Library

Importance of Verified Computing

Floating-point arithmetics on today’s computer is always affected by a
maximum accuracy
⇒ rounded results differ at most by 1 unit in the last place from the
exact result

After further calculations, the result may be wrong because of
rounding ⇒ Results have to be verified
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INTerval LABoratory

Development by Prof. Dr. Siegfried M. Rump, Hamburg University of
Technology
http://www.ti3.tu-harburg.de/rump/intlab/

Standard interval arithmetic

Arithmetic operators +,−, ·, /
Real and complex intervals

Automatic Differentiation

Forward mode: forward substitution to find the derivatives

Compute derivatives using the chain rule for composite functions

Calculate an enclosure of the true derivative of an interval function
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INTerval LABoratory
http://www.ti3.tu-harburg.de/rump/intlab/

Verified Functions for Linear Systems of Equations

Solution of linear systems of equations in a verified way

Computation of an enclosure of the solution hull

Aim: produce a tight bound on the true solution

Rounding Mode

Function setround(y): changes the rounding mode of the processor
to the nearest (0), round down (-1), round up (1)

Function getround outputs the current rounding mode
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INTerval LABoratory
http://www.ti3.tu-harburg.de/rump/intlab/

Verified Functions for Linear Systems of Equations

Solution of linear systems of equations in a verified way

Computation of an enclosure of the solution hull

Aim: produce a tight bound on the true solution

Rounding Mode

Function setround(y): changes the rounding mode of the processor
to the nearest (0), round down (-1), round up (1)

Function getround outputs the current rounding mode

Matlab Example: intlab fundamentals.m and taylor expansion.m
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C-XSC
http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Information

C++ Class Library for Extended Scientific Computing

Compatible to Windows, Linux, Mac Os

Data Types

real, interval, complex, cinterval (complex interval)

rvector, ivector, cvector, civector (complex interval vector)

rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)
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C-XSC
http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Data Types

real, interval, complex, cinterval (complex interval)

rvector, ivector, cvector, civector (complex interval vector)

rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)

Rounding Mode

by-default: all operations are only one rounding away from the exact
result

Modes: long fix-point accumulator for dot product computations
(default), pure floating point operations, DotK algorithm (based on
so-called error free transformations)
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C-XSC
http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

Data Types fundamentals.cpp

real, interval, complex, cinterval (complex interval)

rvector, ivector, cvector, civector (complex interval vector)

rmatrix, imatrix, cmatrix, cimatrix (complex interval matrix)

Rounding Mode

by-default: all operations are only one rounding away from the exact
result

Modes: long fix-point accumulator for dot product computations
(default), pure floating point operations, DotK algorithm (based on
so-called error free transformations)
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FADBAD++
http://www.fadbad.com/fadbad.html#General_introduction

General

Flexible Automatic Differentiation using templates and operator
overloading in C++

Implementing the forward, backward and Taylor methods utilizing
C++ templates and operator overloading

Differentiate a C++ function by replacing all occurrences of the
original arithmetic type with the AD-template version

Possible to generate high-order derivatives
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FADBAD++
http://www.fadbad.com/fadbad.html#General_introduction

General taylor expansion FF.cpp and taylor expansion T.cpp

Flexible Automatic Differentiation using templates and operator
overloading in C++

Implementing the forward, backward and Taylor methods utilizing
C++ templates and operator overloading

Differentiate a C++ function by replacing all occurrences of the
original arithmetic type with the AD-template version

Possible to generate high-order derivatives

Advantage of Using C++ instead of Intlab

Interface to rapid control prototyping environments is possible
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Thank you for your attention!

All presentations, examples and selected publications will be
available at

http://www.com.uni-rostock.de/ecc15/

in the 1st week of August

User: ECC15
Password: intervals-are-fun

http://www.com.uni-rostock.de/ecc15/
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