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Modeling and Simulation Cycle

Real world Formal model
mẍ = F
with some

x0, ẋ0,m ∈ m

Computerized
model

p<<joint<<link;

p.getPos();

Analysis/Qualification

Implementation/VerificationSimulation/Validation

Sensitivity/Uncertainty

Uncertainty and sensitivity analyses are needed at each stage!

E. Auer University of Technology, Business and Design Wismar

Kinds and Treatment of Uncertainty 2



Motivation Uncertainty/Sensitivity Methods and Tools Summary

Imperfect Information: Philosophical Questions

Open question: Is there imprecision and uncertainty in the real world?

Fact: Data/information as available to an engineer are always imperfect

Modeling imperfect data: Probability theory only (until ≈ 1960s)

Currently: Many different possibilities for modeling, which are not
equally suitable for a given situation

Classification possibility: Aspects of imperfect information∗

– Imprecision
→ The length of Mr. X’s femur is either 52.6cm or 53.2cm

– Uncertainty
→ The length of Mr. X’s femur is probably 52.6cm

– Inconsistency, vagueness, ambiguity, error
→ The length of the femur is on average 26.74% of the

height, measured 70cm on Mr. X (whose height is 190cm)

∗Ph. Smets, Imperfect information: Imprecision – Uncertainty, 1999
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Basic Notions

Model (traditional): A set of mathematical equations along with
the computational expression that describe a physical
phenomenon

Computerized model (CM): Code

Accuracy: The agreement between estimated
values and their true values

Credibility: The degree of trust that the CM
answers a specific research question

formal model

CSM

technology: computer

science: model

reality: phenomenon

Impreciseness: Characterized by the absence of an error component

Uncertainty: Arises from e.g. a gap in knowledge about the real system
or its inherent variability

Sensitivity: A measure of the effect of a change in a particular variable
on the simulation outputs

Hicks et al., Is My Model Good Enough? DOI: 10.1115/1.4029304
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Errors in an Engineering Application

P — real system
V — representation of the CM solution

max{|P −M |, |M −D|, |D − L|, |L− V |} ≤
|P − V |

≤ |P −M |+ |M −D|+ |D − L|+ |L− V |

1 Errors in the input data

2 Modeling error |P −M |
3 Discretisation error |M −D|
4 Truncation error |D − L|
5 Representation error |L− V |

Reality

l → l̃

1 Ruler:

l ± 10−3m

d2φ
dt2

+
g

l
sinφ = 0

2 Point mass

no friction

yi+1 = yi + hf(ti, yi) + ∆i

3 Grid

h = ti − ti−1 yi+1 = yi+
hf(ti, yi)���+∆i

yi1:=yi+h*f(ti,yi)

4 ∆i → 0

h→ 0

y:=5.56E+3

5 Conversion

Binary→Decimal

These ’errors’ can be seen as sources of uncertainty
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Outline

1 Motivation

2 Uncertainty versus Sensitivity Analyses

3 Methods and Tools for Uncertainty Quantification

4 Summary

E. Auer University of Technology, Business and Design Wismar
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Uncertainty versus Sensitivity Analyses

Uncertainty analysis

Quantify the uncertainty in the the model output from the
uncertainty in the input or vice versa

Direct:

Probabilistic (e.g. Monte-Carlo,
polynomial chaos expansion)

Non-probabilistic (e.g. interval, fuzzy)

Inverse:

Frequentist

Bayesian

Sensitivity analysis

Apportion the uncertainty in the model output to different sources
of uncertainty in the model input
• Scatter plots

• First derivative si =
∂x(p1, . . . ,pn)

∂pi
for pi ∈ pi

E. Auer University of Technology, Business and Design Wismar
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Uncertainty versus Sensitivity Analyses

Example:∗ Y = Ω(Z1 + Z2), Zi ∼ N (0, σi), Z1 less uncertain (σ1 < σ2)

 Z1 is less influential

Si =
∂Y

∂Zi
= Ω

 Z1, Z2 are equal

• Point derivatives can lead to wrong conclusions  Sσ =
σi∂Y

σY ∂Zi
• Another view: Sσ combines uncertainty and sensitivity!

∗
A. Saltelli et al., Global Sensitivity Analysis: The Primer, John Wiley & Sons, 2008

E. Auer University of Technology, Business and Design Wismar
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Uncertainty versus Sensitivity Analyses

Example:∗ Y = Ω(Z1 + Z2), Zi ∼ N (0, σi), Z1 less uncertain (σ1 < σ2)

 scatter plots propagate the uncertainty

Si =
∂Y

∂Zi
= Ω

 the model
response is
indeed equal

• Sensitivity is the response of the model to the changes in parameters
• Uncertainty is quantified by propagating it from input to output
• Sσ or similar notions combine both in one indicator
∗

A. Saltelli et al., Global Sensitivity Analysis: The Primer, John Wiley & Sons, 2008
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Uncertainty Modeling: Choice of the Method

Uncertainty
Uncertainty model
Interval [1.2, 1.6]

Observer

1 Kind/source/cause of uncertainty
lack of info/complexity/conflict/belief/ambiguity

2 Type of input information
numerical/interval/linguistic/symbolic

3 Quality of numerical data
nominal/ordered/metric/precise/interval/absolute

4 Required output information
numerical/interval/linguistic/symbolic

Source/Cause/Type

Theory

uncertainty

K
in

d
 o

f 
in

p
u

t/
o

u
tp

u
t

in
fo

rm
a

ti
o

n

Q
u

a
lity

 o
f n

u
m

e
ric

a
l

in
fo

rm
a

tio
n

Uncertainty

model

P
h

e
n

o
m

e
n

o
n

S
y
ste

m

real modeled

uncertainty

Uncertainty models require a certain scale level of numerical information

Scale of method’s operations ≤ Scale of provided information

Example: Frequentist Kolmogorov probability theory: (LoI,Num,Cardinal,Num)

E. Auer University of Technology, Business and Design Wismar
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Sources of Uncertainty

Two major kinds of uncertainty

Aleatory (irreducible)

environmental stochasticity
(as in games of chance)

Epistemic (reducible)

lack of knowledge:
measurement uncertainty,
unobservability, censoring

Sources of uncertainty

1 Uncertainty in the model itself (e.g., due to simplifications or
parameter/dimension reduction)

2 Possible numerical discretization

3 Uncertainty in parameters (e.g., due to physical reasons or
measurement errors)

4 Errors due to the finite nature of floating-point arithmetics

E. Auer University of Technology, Business and Design Wismar
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Main Types of Methods

UncertaintyPurely aleatory

MixedProbability theory

p-boxes,
Dempster-Shafer, etc.

Purely epistemic

Intervals, etc.

Fuzzy methods handle impreciseness

1 A.C. Cullen, H.C. Frey, Probabilistic techniques in
exposure assessment, 1999

2 H.M. Wadsworth, Handbook of statistical
methods for engineers and scientists, 1998

3 S. Ferson et al, Constructing Probability Boxes
and Dempster-Shafer Structures, 2003

4 V. Kreinovich et al, Monte-Carlo-type techniques
for processing interval uncertainty..., 2004

5 H.-J. Zimmermann, Fuzzy Set Theory and its
Applications, 2003

Model Discretization Parameters Arithmetic

PT 1 2 X
IP 3 4
F 5 5

VR X X X X

PT=probability theory, IP=p-boxes or Dempster-Shafer, VR= methods with result verification, F=fuzzy

E. Auer University of Technology, Business and Design Wismar
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Types of Algorithms with Uncertain Numbers

Rigor-preserving (≈ with result verification): the result is
guaranteed to enclose the uncertainty completely, if inputs
enclose it completely

Best possible (≈ inner enclosure): the result cannot get any
tighter without more information

Statistical confidence: guarantee of the type “in x percent of the
trials, the result is sure to enclose the uncertainty completely”

We will focus (mostly) on parametric uncertainty, direct case

Probabilistic methods → Monte-Carlo, polynomial chaos exp.

Set-based methods → Result verification

Mixed methods → p-boxes, Dempster-Shafer

E. Auer University of Technology, Business and Design Wismar
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Monte-Carlo Simulation

Applications in connection with uncertainty

→ Properties of random variables with unknown distributions
→ Uncertainty propagation, failure analysis

Advantage: simple to implement Disadvantage: no proof of correctness

Random numbers
z1, z2, . . . , zN

Model with N variables
(metric η(z) = y)

System response
y1, y2, . . . , yN

1 Use the existing data to create a CDF for each input

2 Create an empty Frequency Distribution Histogram

3 The ith iteration step (i = 1 . . . 50000):

1 Loop over each input variable; calculate a weighted
random number for inputs

2 Use the weighted value of all input variables in the
metric to calculate a representative answer

3 Adjust the FDH appropriately

4 Repeat Step 3 if the final FDH is not complete

5 Normalize the FDH into DPDF; interpret the results

www.drjfwright.com/c/montecarlosimulation.html

E. Auer University of Technology, Business and Design Wismar
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Polynomial Chaos Expansion

Monte-Carlo can become computationally prohibitive for complex metrics

z1, z2, . . . , zN

Model with N variables
(metric η(z) = y)

Surrogate η̂(z) = ŷ
(simulates faster)

ŷ1 ≈ y1, . . . , ŷN ≈ yN

Goal: Quantify uncertainty (e.g. in differential equations)

Method: Represent stochastic quantities as spectral
expansions of orthogonal polynomials; X = f(Ξ), Ξ with a
given distribution, f ≈ polynomial expansion

Example: X ∼ χ2
1, Ξ ∼ N (0, 1), then X = Ξ2, Hermite

polynomials φ0(ξ) = 1,φ1(ξ) = ξ,φ2(ξ) = ξ2 − 1,...

Generally: Fx, Fξ the CDFs of X, Ξ, then X = F−1
x (Fξ(Ξ)) = f(Ξ)

Polynomial chaos expansion 1D: X ≈
p∑
j=0

xjφj(Ξ), xj =
<f,φj>

<φj ,φj>
(truncated)

Propagation: Y ≈
∑p
j=0 yjφj(Ξ) ≈ η(

∑p
j=0 xjφj(Ξ)) (e.g. by Galerkin projection)

Non-intrusive: Solve yk =
<η(

∑p
j=0 xjφj(Ξ)),φk>

<φk,φk>
, k = 0 . . . p

A. O’Hagan, Polynomial Chaos: A Tutorial and Critique, 2013, www.tonyohagan.co.uk/academic/pdf/Polynomial-chaos.pdf
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Methods with Result Verification

Idea: Use set-based methods, if uncertainty can be bounded

Task: Interface result verification and existing simulation tools

Not that easy....

Major problem: Many higher-level techniques with result
verification (ODE solver etc.) need exact derivatives

Derivatives can be easily (if not really quickly) obtained by al-
gorithmic differentiation, if the expressions for the model are known

Some
CA System

Expressions
Verification

block
Verified
results

Many simulation tools do not produce models as expressions!
Nonetheless possible, if simulation tools are open-source

E. Auer University of Technology, Business and Design Wismar
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Tools: SmartMOBILE for (Bio)Mechanics

1 Verified kinematics/dynamics + uncertainty management

2 Free choice of the underlying arithmetic: templates + solvers

Type Integrator Purpose

MoReal MoAdams,... nonverified dynamics

TMoInterval TMoAWA

TMoFInterval TMoValencia verified dynamics of
TMoTaylorModel TMoRiOT ODE based systems
TMoTaylorModel TMoVSPODE

RDAInterval --- Taylor model based kinematics

MoFInterval MoIGradient
verified equilibria
kinematics with cons-
traints

MoSInterval TMoValenciaS verified sensitivity

· · · · · · · · ·
3 Converters MOBILE −→ SmartMOBILE

E. Auer University of Technology, Business and Design Wismar
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Example: Dynamics of a Double Pendulum

xy

z

g

m1

m2

first angle

second angle

0 0.1 0.2 0.3 0.4
time (s)         

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

fir
st

 a
ng

le
 (

ra
d)

   
   

  

TMoRiOTIntegrator
TMoValenciaIntergrator
TMoAWAIntegrator
TMoVspodeIntegrator

# define TMoInterval t;
TMoFrame<t> K0, K1, K2, K3, K4;

TMoAngularVariable<t> psi1, psi2;

// transmission elements

TMoVector<t> l1(0,0,-1), l2(0,0,-1);

TMoElementaryJoint<t> R1(K0,K1,psi1,xAxis);

TMoElementaryJoint<t> R2(K2,K3,psi2,xAxis);

TMoRigidLink<t> rod1(K1,K2,l1),rod2(K3,K4,l2);

t m1(1),m2(1);

TMoMassElement<t> Tip1(K2,m1),Tip2(K4,m2);

// the complete system

TMoMapChain<t> Pend;

Pend << R1<<rod1<<Tip1<<R2<<rod2<<Tip2;

// dynamics

TMoVariableList<t> q; q << psi1<<psi2;

TMoMechanicalSystem<t> S(q,Pend,K0,zAxis);

TMoAWAIntegrator I(S,0.0001,ITS QR,15);
I.doMotion();

Strategy TMoAWA

(variable h)
TMoRiOT

(0.0002 ≤ h ≤ 0.2)
TMoValencia

(h = 10−4)

TMoVSPODE

(variable h)

Break–down 0.420 0.801 0.531 0.656

CPU Time∗ 5 285 22 10

∗ computed on 8 × Intel Xeon CPU 2.00GHz under Linux 2.6.25.14-69.fc8

E. Auer University of Technology, Business and Design Wismar
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UniVerMeC Instead of Templates

Unified Framework for Verified GeoMetric Computations

Relaxed layered structure:

core Adapter for underlying arithmetic libraries

functions Uniform representation for functions

objects Implicit surfaces, CSG models, polyhedrons

decomp Spatial decomposition, Multisection schemes

algorithms Distance computation, Global optimization, ...

S. Kiel,UniVerMeC – A Framework for Development, Assessment and Interoperable Use of Verified Techniques, 2014

E. Auer University of Technology, Business and Design Wismar
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UniVerMeC: Function Specification

Important: Interoperability

The capability to communicate, execute programs, or transfer data among
various functional units in a manner that requires the user to have little or no
knowledge of the unique characteristics of those units

Necessary: Formalizations for arithmetics, types of enclosures, etc.
f : Rn 7→ Rm, tools for user-defined

functions (inductive), analytical expres-

sions or C++ code blocks

Function extensions: Evaluated with all arithmetics supported by core

→ e.g. natural interval extension (replace everything with interval versions)

Features: set of functionalities associated with f (e.g., differentiability)

FR object: Tuple zf,n,m = (I,F) where I is the set of inclusion
functions, F is a choice out of r supported features

If I and F are defined appropriately, e.g. probabilistic arithmetics can be used!
E. Auer University of Technology, Business and Design Wismar
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Bounded Uncertainty at the Analysis Stage

TMoSloppyJoint:

Ki

Ki+1

ϕi

li αi
body i

body i+ 1

Parameter:

Lengths ±1%
Slackness ±2mm
Angle ±0.1◦

Results:

Interval enclosure

Taylor model enclosure  (order 5)

16.4     16.6      16.8       17       17.2      17.4      17.6      17.8

x(m)

8.4

8.2

8

7.8

7.6

7.4

7.2
y
(m

)

x y Time (s)

TMoInterval 1.047 1.041 0.02

TMoTaylorModel 0.163 0.290 0.14
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Purely Parametric Bounded Uncertainty

Body segment motion

Reference r =
n∑
i=1

si · pi:

Parameters (mm):

knee width 120 ± 10
ankle width 80 ± 10
displacements tangential/soft tissue ± 10

normal ± 5

Femur length (mm):
TMoRDA INTERVAL

Knee, ankle [377.6; 396.7] [0;∞]
Skin displacement [0.000; 621.4] no answer

Point sensitivity of femur wrt.
Knee Ankle Tangential Normal Soft
0.4 -0.3 -2 0.7 1.4︸ ︷︷ ︸
±7mm

︸ ︷︷ ︸
±37.5mm
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Probability Boxes

Given: F and F : R 7→ [0, 1] nondecreasing, F (x) ≤ F (x), ∀x ∈ R
[F , F ]: Set of all nondecreasing functions F : R 7→ [0, 1] with

F (x) ≤ F (x) ≤ F (x)

Definition: [F , F ] is called a p-box (probability box) when F and
F circumscribe an imprecisely known probability distribution

Meaning: If X is a random variable with the unknown distribution
F ∈ [F , F ] then F (x) is a lower bound on F (x) = P (X ≤ x)

F (x) = 1− P (X > x), F (x) = P (X ≤ x)

P is a lower probability for an event A (the maximum rate one would

be willing to pay for the gamble that pays 1 unit of utility if A occurs)

Bounds on the result of +,−, ·, / of random variables defined
using only bounds on their input distributions can be given

S. Ferson et al, Constructing Probability Boxes and Dempster-Shafer Structures, 2003
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(Finite) Dempster-Shafer Structures

Discrete distributions

Probability density

f(x) =


P (X = xi)︸ ︷︷ ︸
≈probability mass

for x = xi

0 for x 6= xi
i = 1, 2, . . .

Idea Dempster-Shafer


P (X = xi)︸ ︷︷ ︸

probability mass

for x ∈ Seti

0 otherwise
i = 1, 2, . . . , n

Interpretation: Classical probability theory in a topologically
coarser space (where each focal element is identified as a point)

Focal elements ai ⊆ R: Sets associated with nonzero mass; may
overlap one another

Basic probability assignment: Correspondence of probability
masses associated with the focal elements; m : 2R 7→ [0, 1],
m(∅) = 0, m(ai) = pi, i = 1, 2, . . . , n, pi > 0,

∑
i pi = 1

E. Auer University of Technology, Business and Design Wismar
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Dempster-Shafer Structures: Plausibility and Belief

Assumption: Let ai be closed intervals, b ⊆ R
Plausibility function: Pl : 2R 7→ [0, 1], Pl(b) =

∑
ai∩b 6=∅

m(ai)

Belief function: Bel : 2R 7→ [0, 1], Pl(b) =
∑
ai⊆b

m(ai)

Property: Bel(b) ≤ Pl(b)
Arithmetic operations generalize the notion of convolution

between distribution functions

The upper bound for the distribution function:
∑

inf(ai)≤z
pi, z ∈ R

(step function with n discontinuities)

The lower bound:
∑

sup(ai)≤z
pi

E. Auer University of Technology, Business and Design Wismar
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P-boxes Versus Dempster-Shafer Structures

Dempster-Shafer: Uncertainty in the x-value, certainty in the p-value

P-box: Uncertainty about probabilities, certainty about events

Nonetheless: Dual, can be converted into each other

DS → p-box: ([xi, yi], pi) → F (z) =
∑
xi≤z

pi, F (z) =
∑
yi≤z

pi

Relationship: Many Dempster-Shafer structures, a single p-box

R0 1 2 3 4
a1, p1 = 1

2

a2, p2 = 1
2

R0 1 2 3 4
a1, p1 = 1

2

a2, p2 = 1
2

F (z) =


0, z < 3
1
2
, z ∈ [3, 4)

1, z ≥ 4
F (z) =


0, z < 1
1
2
, z ∈ [1, 2)

1, z ≥ 2

P-box → DS:
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When to Apply?

1 Imprecisely specified distributions

2 Poorly known or even unknown dependencies

3 Non-negligible measurement uncertainty

4 Non-detects or other censoring in measurements

5 Small sample size

6 Inconsistency in the quality of input data

7 Model uncertainty

8 Non-stationarity (non-constant distributions)

E. Auer University of Technology, Business and Design Wismar
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Tools: Codes, References, Links for DS-Structures and
P-Boxes

P-boxes: RiskCalc (commercial)

→ http://www.ramas.com/riskcalc.htm

→ probability bounds analysis, standard fuzzy arithmetic, and

classical interval analysis

DS-structures: IPPToolbox (in MATLAB or R, open-source)

→ www.uni-due.de/informationslogistik/ipptoolbox.php

DS-structures with verified intervals: DSI Toolbox
(MATLAB, open-source)

→ www.scg.inf.uni-due.de/forschung/software/dsi-toolbox.php

Applications, comparisons: www.lix.polytechnique.fr/~bouissou/
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Stochastic arithmetic and the CADNA software

Stochastic arithmetic: Model for exact computation on imprecise data ∼ N (µ, σ)

Origin: Cestac method by J. Vignes and J. M. Chesneaux, 1992

Idea: Interpret imprecise data as stochastic numbers
(S is the set of Gaussian random variables)

Therefore: X ∈ S is characterized by µ and σ

Property: ∃λν : P (X ∈ [µ− λνσ, µ+ λνσ]) = 1− ν
Confidence interval of µ with the probability 1− ν: [µ− λνσ, µ+ λνσ],

(e.g. λν = 1.96 for ν = 0.05)

Significant decimal digits on µ: log10 ( |m|λνσ
) if |m|λνσ

≥ 10 otherwise 0

Operations: Follow from the properties of the Gaussian distribution

Software: CADNA, www-pequan.lip6.fr/cadna/, estimates round-off errors

Example: P (x, y) = 9x4 − y4 + 2y2, P (10864, 18817) = 2.0 (wrong, exact=1.0),
P (1/3, 2/3) = 0.802... (correct). Is there any way to distinguish the quality?
In CADNA, the number of significant digits is computed to be zero in the first
case, normal (15) in the second!
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Fuzzy: Short Overview

Goal: Model impreciseness/vaugness (a little, very, etc.)

Definition: Pair (U, µ) is a fuzzy set, where U is a set and µ : U 7→ [0, 1]
a membership function, µ(x) the grade of membership of x in U

Set vs. fuzzy set

Traditional Fuzzy
x ∈ U or not µ decides if x ∈ U

Fuzzy number Convex, normalized fuzzy set A ⊆ R with continuous
µA(x) = 1 at precisely one element

Operations: xANDy = min (x, y), xORy = max (x, y), NOTx = 1− x

Fuzzy decisions: Rules for credibility, aggregation etc.
www.calvin.edu/~pribeiro/othrlnks/Fuzzy/fuzzysets.htm
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Mixed Methods: Some References

A set-membership method to characterize a probabilistic set:
L. Jaulin et al., Inner and outer approximations of probabilistic
sets, 2014
www.ensta-bretagne.fr/jaulin/teaching.html

Fuzzy probability theory: M. Beer, Fuzzy Probability Theory, In:
Meyers, R. (ed.), Encyclopedia of Complexity and Systems
Science, 2009

Comparisons: M Beer, V. Kreinovich, Interval or Moments: Which
Carry More Information?, 2012

Imprecise probabilities: http://www.sipta.org/

Intervals and probabilities:
http://ualr.edu/jdberleant/intprob/
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Approaches to Uncertainty Visualization

Goal: Present data with auxiliary uncertainty information

Most works deal with random aleatory uncertainty

→ Depends on uncertainty sources,
→ figure does not consider model uncertainty
Figure from A. Pang et al., Approaches to uncertainty visualization, 1997

Taxonomies: Dimensionality of data vs that of uncertainty

Methods: For example, for scalar/multivariate/vector discrete data
Error bars

by Velica

Tufte plots
Chernoff Glyphs

Evaluation: e.g. K. Potter et al., From Quantification to Visualization..., 2011

L. Gosink et al., Characterizing and Visualizing Predictive Uncertainty, 2013, graphics.cs.ucdavis.edu/~joy/NSF-IIS-1018097/
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Summary

Learned in this workshop:

Uncertainty: Definition, types, sources, models

Model uncertainty: Mostly not considered here

Parametric uncertainty: At modeling and simulation level

→ Classical uncertainty: Monte-Carlo, polynomial chaos expansions

→ Bounded uncertainty: intervals, Taylor models etc.

→ Imprecise probabilities: p-boxes, DS-structures

→ Impreciseness: fuzzy sets

Interesting research topics:

→ Uncertainty visualization

→ Interoperability/implementation issues

→ Parallelization/templatization (e.g. on the GPU)

E. Auer University of Technology, Business and Design Wismar

Kinds and Treatment of Uncertainty 32


	Motivation
	Uncertainty versus Sensitivity Analyses
	Methods and Tools for Uncertainty Quantification
	Summary

