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Wrapping Effect (1)

E=0 L k=1 L k=2 @ Linear set of state equations
2 o l fo
1 : Xpt1 = ApXg
e i o (o
—1(1 ! ! { .
N o o e Example:
i i [ ]_ [_17 1]
T : x : 1 0 [—1 9 1]
2 Lo b 1 1 1
| : A’“‘A‘iﬂ{q 1]
Ty : T1 : Ty
‘ ‘ = Rotation of 45° )
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Wrapping Effect (2)

@ Traditional interval
arithmetic evaluation:

| |

| |

| |

| | g‘» X1 = AXo
: 1 : T1

‘ ! [ X9 = AX1
T oo
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T T z1 Xk+1 = AXk
| |
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! ! = Exponential growth of the
l ! enclosing interval boxes
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| |
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= Wrapping effect
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Conclusions

Wrapping Effect (3)
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A. Rauh et al.:

Verified Simulation of Dynamic Systems

@ Modified system matrix:

x1 = Axo= Ay x

X9 = AAO X0 = Al X0

Xpt1 = AAp 1% = Apxg

Ay =AA;,

= Significant reduction of the
wrapping effect for linear
systems

= Elimination of the wrapping
effect for point matrices A
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Discrete-Time Dynamical Systems with Time-Invariant
Interval Parameters (1)

[Xk—i-l] _ [gk (Xk,Pk,uk,k)]
Pk+1 Pk

uy: given open-/ closed-loop control
Problem

Determine state enclosures at each time step k for a given
finite time horizon

Solution Approach 1

Recursive computation of state intervals

k1] = e (4], [P] g, ) + open-loop control

[Xkt1] = gk([Xk] s [Pl ug (X, [PE]) ,k) : closed-loop control

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Discrete-Time Dynamical Systems with Time-Invariant
Interval Parameters (2)

[Xk—i-l] _ [gk (Xk,pk,uk,k)]
Pk+1 Pk

uy: given open-/ closed-loop control
Problem

Determine state enclosures at each time step & for a given
finite time horizon

Solution Approach 2

Computation of state intervals [xj11] by coordinate
transformations for reduction of overestimation caused by
the wrapping effect, e.g. linear transformations

[Xk] = Tk[ik] - [ik+1] = Tl;—il—l'gk (Tk[f(k] s [pk] e )

A. Rauh et al.: Verified Simulation of Dynamic Systems




Discrete-Time Dynamical Systems with Time-Invariant
Parameter Uncertainties (3)

Solution Approach 3

Idea: Subdividing and merging of state intervals representing
[xx+1] for tight enclosures of complexly shaped regions

@ Consistency tests by inverse mapping of state equation

Xi = 8k (Xkt1, Phs - - -)
[X%41] C [xk41] subinterval of forward computation

@ Interval Newton methods for state equations where
inverse mapping cannot be calculated analytically

© Merging of subintervals in case of small overestimation
of the union of the merged subintervals

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Discrete-Time Dynamical Systems with Time-Invariant
Parameter Uncertainties (4)

Xpt1 = &k (Xk, Pr, Up, k) for all x, € Ay

T2k
L2 k+1

Xy

A A1
Subdivision into
interval boxes

L1 k+1

Natural interval evaluation
~__— (without optimization)

L2 k+1

Application of optimized
interval techniques

Consistency test
by inverse mapping

Xp, = &k (Xit1, Pr, Uk, k)

Result of forward computation
of subdivided interval boxes

T1k+1

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Discrete-Time Dynamical Systems with Time-Invariant
Parameter Uncertainties (4)

Solution Approach 4
Computation of state variables [xj1] by explicit
replacement of [xg], [Xk—1], ..., [x2], [x1] in terms of the
initial state [xg] and all parameter uncertainties [x¢], [x1],
Cy [kal]: [Xk], i.e.,

(Xpt1] = g (gk—l ( .81 (go ([xo] ; [Po] s u0,0) , [p1] , u1, 1) .

Evaluation by mean-value rule, monotonicity tests, and
global optimization

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Quantification of Overestimation (1)

@ Basic criterion (uy not explicitly denoted)

n n
E QG Tyl = E a; 9i (X, Pk, )
=1 , =1

/

=: A(Xp+1) =: B(xk;Pk,k)
o Left-hand side evaluated purely with interval enclosures Xy 11 € [Xp41]
@ Right-hand side evaluated purely with interval enclosures xj € [xy]

@ Perform symbolic simplification of the right-hand side (or use of
higher-order Taylor expansion techniques, mean value theorem)

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Conclusions

Quantification of Overestimation (1)

@ Basic criterion (uy not explicitly denoted)

n n
E QG Tyl = E a; 9i (X, Pk, )
=1 , =1

/

=: A(Xp+1) =: B(xk;Pk,k)
o Left-hand side evaluated purely with interval enclosures Xy 11 € [Xp41]
@ Right-hand side evaluated purely with interval enclosures xj € [xy]

@ Perform symbolic simplification of the right-hand side (or use of
higher-order Taylor expansion techniques, mean value theorem)

The overestimation criterion often reflects physical conservation properties
or is chosen to cancel out nonlinear terms with multiple dependencies on
common interval variables

A. Rauh et al.: Verified Simulation of Dynamic Systems



Quantification of Overestimation (2)

o Overestimation in simulations with Ly intervals
N IR ONUR IR o <l>
a3 = 5 o4 ()
- din {5 (|7 [p'] 1) }}
with

Crp1 = diam {A ([x41])} — diam {B ([xx], [p&] . k)} > 0

and
diam {A ([xp41])} = diam {B ([xx], [p#] . %)}

@ Subsequent subdivision of [Xj1]

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Discretized Model of Biological Wastewater Treatment (1)

Schematic system representation

i Uo2

Qin Qasm Aeration tank Qasum Settler Qourt = Qasm — Qourz
— volume: Vagar > volume: Vsgr —
13 states 7-layer model
Qrs Qex  (Qour2 = Qrs + Qrx)

e

@ Description of aeration tank by 13 ordinary differential equations
@ Description of settler tank by 14 ordinary differential equations
@ Discretization with respect to time

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Applications Conclusions

Discretized Model of Biological Wastewater Treatment (2)

Typical kinetics

© Aerobic growth of heterotrophic biomass

o255 () (it
Ks+Ss) \Kou +So) \Karkn +Sark

@ Anoxic growth of heterotrophic biomass (denitrification)

) (25
H Kg+ Sg Kno + Syo

( Ko ) ( SALK >
: na XH
Kou +So) \Karku + Savk

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Discretized Model of Biological Wastewater Treatment (3)

Interval enclosure of Sg Interval enclosure of Sp
— 9 — 18
& ]
g’ 8 %’3 14
| |
o o
\%: - \\g 1.0
. “ 06
6
0.2
0 2 4 6 8 10 0 2 4 6 8 10
t/10%s — t/10%s —
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Initial Value Problem with Interval Uncertainty

Definition of the initial value problem (IVP)
@ Given set of ordinary differential equations (ODEs)

x(t) = £ (x(t))

with smooth right-hand sides

@ Uncertain initial conditions
x (0) € [xo] := [x(0)] = [x(0) ; x(0)]

e Component-wise definition of interval vectors [x] = [[z1] ... [zn]
with the vector entries [x;] = [z; ; i), z; <2 < T, i=1,...,n

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Initial Value Problem with Interval Uncertainty

Definition of the initial value problem (IVP)
@ Given set of ordinary differential equations (ODEs)

with smooth right-hand sides

@ Uncertain initial conditions
x (0) € [xo] := [x(0)] = [x(0) ; x(0)]

@ Uncertainty in parameters p;, j = 1,...,n,, and control (input)
signals u(t) are assumed to be included in the expression for f (x ()),
e p; = 0 or u(t) = u(x (t),p)

A. Rauh et al.: Verified Simulation of Dynamic Systems



Cont.-Time Systems
(o] Jele]e]

Verified Integration of ODEs (1)

Solution Approach 1 (VNODE/ VNODE-LP by N.S. Nedialkov)
Computation of state enclosures of initial value problem IVP
by series expansion with respect to time

(x] (ti1) = [x] (tk) + hie - & ([x] (&) + [ex]
with

St ()
0= T T
and the discretization error
AR10
v+ 1) d

[ex] = (
[7x],[B&]

evaluated for the time interval [1%] := [tk ; tg41] and the
bounding box of all states and parameters [By] for the time
interval [1%] using Picard iteration

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Verified Integration of ODEs (2)

Solution Approach 2
Computation of state enclosures of IVP by series expansion
with respect to time and initial states, implemented in
the Taylor-model-based solver COSY VI by M. Berz and
K. Makino

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Verified Integration of ODEs (2)

Solution Approach 2
Computation of state enclosures of IVP by series expansion
with respect to time and initial states, implemented in
the Taylor-model-based solver COSY VI by M. Berz and
K. Makino

Solution Approach 3
Computation of two basic types of state enclosures

[Xena (t) := % (t) + [R] (t)
[Xencl] (t) = exp ([A] (t) : (t - tO)) : [Xencl] (tO)

of IVP with a non-validated approximate solution X () and
guaranteed error bounds [R] (¢), implemented in
VALENCIA-TVP by A. Rauh and E. Auer for ODE systems
given in state-space representation with extensions towards
implicit ODE and DAE systems with arbitrary index

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Picard Iteration: Theory and lllustrative Example

Picard iteration, integration horizon t € [7] := [tk ; trs1]

W ([B]®) 1= [x) () + (05 tas1 — te] £ ([B™)) with [BO] = ] (1)

v

Different cases
oV ([B]("‘)> c ([B](”)>: Continue with [B]"T1) .= ¥ <[B](“))

o Else: Inflation of [B]"™!) necessary

@ Continue for maximum number of iterations or until no significant
change can be noticed

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Picard Iteration: Theory and lllustrative Example

Picard iteration, integration horizon t € [7] := [tk ; trs1]

W ([B]®) 1= [x) () + (05 tas1 — te] £ ([B™)) with [BO] = ] (1)

v

Different cases
oV ([B]("‘)> c ([B](”)>: Continue with [B]"T1) .= ¥ ([B](“))

o Else: Inflation of [B]"™!) necessary

@ Continue for maximum number of iterations or until no significant
change can be noticed

MATLAB examples

run_picard.m

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Coupled Sets of ODEs: Wrapping Effect and Gershgorin
Circle Theorem

Basic observation

Wrapping effect occurs in simulations of coupled sets of state equations

Closely related to overlapping discs in Gershgorin Circle Theorem
o Circle < m;,r; > in complex plane with midpoint m; = a;;, radius
n
ri= 2 lagil
=
@ All eigenvalues are included in the union of all corresponding discs

@ Disjoint regions: Number of eigenvalues in the disjoint subsets is
equal to the number of overlapping discs in the subset

@ Example: gershgorin ex.m

v

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Coupled Sets of ODEs: Wrapping Effect and Gershgorin
Circle Theorem

Basic observation
Wrapping effect occurs in simulations of coupled sets of state equations

v

Note
@ Decoupling of state equations by suitable coordinate transformation
@ Use of subsequent exponential enclosure technique

e Exploitation of system property of cooperativity (monotonicity of the
solution with respect to parameters and initial conditions): Multiple
(verified) evaluations of the state equations for corner points of
interval uncertainty

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Fundamental Solution Approach

Definition of the state enclosure

x(t) € [x] (1) = x(¢) + [R] (?)

Constituents of the solution
@ Approximate solution (non-verified) x(¢)
o Verified error bound [R] (%)

@ Computation of the error bound by a suitable iteration scheme

Note

Without suitable counter-measures, solution enclosures may not converge,
even for asymptotically stable systems

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Fundamental Solution Approach

Definition of the state enclosure

x(t) € [x] (t) = x(¢) + [R] (?)

Constituents of the solution
@ Approximate solution (non-verified) x(t)
o Verified error bound [R] (%)

@ Computation of the error bound by a suitable iteration scheme

Reference

Rauh, Andreas; Westphal, Ramona; Auer, Ekaterina; Aschemann, Harald:
Exponential Enclosure Techniques for the Computation of Guaranteed State
Enclosures in VALENCIA-IVP, Reliable Computing: Special volume devoted to
material presented at SCAN 2012, Novosibirsk, Russia, Vol. 19, Issue 1,

pp. 66-90, 2013. )

A. Rauh et al.: Verified Simulation of Dynamic Systems 20/35
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Exponential Enclosure Technique

Definition of the state enclosure
@ Representation of contracting state enclosures by using

X (t) € [xe] (t) := exp ([A] - 1) - [x] (0)
with 0 & [z, ] (0), [x¢] (0) = [x0] for the diagonal matrix
[A] :=diag{[\]} , i=1,...,n

with element-wise negative real entries \;

@ Definition of the interval matrix exponential

exp ([A] - £) = diag {exp (\u] - )., exp ([A] - £)}

A. Rauh et al.: Verified Simulation of Dynamic Systems



(

Discr.-Time ns Cont.-Time Systems ValEnclA-IVP App Conclusions

Exponential Enclosure Technique

Derivation of the iteration scheme
@ Picard iteration

x(2) € e (1) = bral + [ £ (] () s
0

@ Reformulation by the time-dependent expression

K (1) € exp (A1) - bx] (0) = e =+ ()

— o] + / £ (exp (A - 5) - [x] ) ds
0

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Exponential Enclosure Technique

Derivation of the iteration scheme
@ Picard iteration

x*(t) € [xe](n+1 (t) := [xo] + /f ([Xe](") (3)) ds
0

e Differentiation with respect to time and evaluation for ¢ € [0 ; T

%* (03 7)) € diag { M)V} - exp ([A]**D - 05 T1) - [x] (0)
c £ (exp([A1™ - [0 71) - [x] (0)

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Exponential Enclosure Technique

Derivation of the iteration scheme
@ Picard iteration

x*(t) € [Xe](~+1) (t) := [x0] + /f <[Xe](“) (S)) ds
0

@ Convergence of the iteration process for

exp([A]*) - ) - x] (0) € exp([A*) - 1) - ] (0)
equivalent to

[Ai](”H) C [)\i](ﬂ) S [A](HH) C [A](’"“)

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Exponential Enclosure Technique

Derivation of the iteration scheme
@ Picard iteration

t

x°(8) € e (1) = boal + [ £ (b () s

0

@ Resulting iteration formula
fi (exp (1419 - [0 71) - [x] (0))
exp (M- [0; 10) - [ae] (0)

with the guaranteed state enclosure at the point ¢t =T

[)\i](n—i-l) o

,i=1,...,n

x*(T) € [xe] (T) := exp ([A] - T) - [x] (0)

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Exponential Enclosure Technique: Special Case

Application to linear system models
e Simplified state equations

n
fi(x) =) ai-x;
j=1
@ Simplification of the iteration formula

[)\i](n—i-l) = z”: {aij - exp ((P\j](rc) . [)\i](n)> 0 T]) . [Zce,j] (0)}

L 76,1 (0)

+ai;  with a;; € [aij]

Note

Free of overestimation if the equations are decoupled with a;; =0, i # j

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Exponential Enclosure Technique: Special Case

Application to linear system models

o Simplified state equations
n
fi(x) = aij -
=1
o Simplification of the iteration formula

=5 o (-0 ) )

+ a;;  with Qij € [aij]

Solution

Transformation of the state equations (decoupling) into real-valued Jordan
canonical form (assumption of pairwise different eigenvalues)

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Exponential Enclosure Technique: Special Case

Application to linear system models
o Simplified state equations

n
fi(®) =) -z
j=1
e Simplification of the iteration formula

[)\i](n—i-l) = z": {aij - exp ((P\j](rc) . [)\i](n)> 0 T]) . [xe,j] (0)}

= 221 (0)

+a;  with a;; € [aij]

Computation of state transformation matrices

Use of approximately computed (floating point) eigenvector matrix with a
verified inverse and a verified transformation of the initial states

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Exponential Enclosures: State-Space Transformation

Decoupling of the state equations

A 0 ... 0

z(t) =X -z(t) with X = 0 A2 . and z(0) € [z(0)]
S ()
0 ... 0 X\,

Applicability of the iteration scheme

The value zero must not be included in the true solution set
= Oscillating systems with complex eigenvalues are problematic

3 = blkdiag{...,%;,...}, Si:[di wl]

A. Rauh et al.: Verified Simulation of Dynamic Systems



Discr.-Time ns Cont.-Time Systems ValEnclA-IVP App s Conclusions (

O [e]e]e]e] }

Exponential Enclosures: State-Space Transformation

Decoupling of the state equations

A0 0

z(t) =X -z(t) with X = 0 Ay T and z(0) € [z(0)]
S (]
0 0 M

Solution: Use of complex valued Jordan canonical form, see also
ODE_complex.m

Complex-valued IVP z(t) = X - z(t) with z(0) € C", z(0) € [z(0)]

% = blkdiag{. .., %,...}, Zy= |7 _ij.
2 ]

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Exponential Enclosures: State-Space Transformation

Decoupling of the state equations

A0 0
z(t) =% z(t) with X = 0 X and  z(0) € [2(0)]

S

0 0 An

Analysis of the applicability: Eigenvalues of the multiplicity 6; = 1
@ Exact solution z;(t) = (T2t 2,(0), 241 (t) = et . 2,.1(0)

@ lteration procedure is always applicable for z;(0) # 0 due to

24 = (@RIt @m0 ) 2 (0)? = €2 |z (0)) £ 0

v

A. Rauh et al.: Verified Simulation of Dynamic Systems



-Time Systems ValEnclA-IVP Appl ions Conclusions

[e]e]e]e] }

Exponential Enclosures: State-Space Transformation

Decoupling of the state equations

A 0 ... 0

z(t) =X -z(t) with X = 0 A2 . and z(0) € [z(0)]
S (]
0 ... 0 X\,

Analysis of the applicability: Eigenvalues of the multiplicity 6; = 1

@ Solution remains asymptotically stable for decoupled (oscillatory)
linear systems

@ (Limited) Overestimation in the initial conditions

@ Multiple eigenvalues lead to a non-negligible wrapping effect

A. Rauh et al.: Verified Simulation of Dynamic Systems



-Time Systems ValEnclA-IVP Applications Conclusions
O [ ) 0000000000

Simulation of the Dynamics of a Controlled High-Speed
Rack Feeder System

Test rig at the Chair of Mechatronics, University of Rostock
Elastic multibody model

e Y (©) 4 x
M, Ok TLL w(l, t)
Xk (t) = x ()1 o
5]
P AE, gl Q(t){\\lll((tt))] d
2 rive

horizontal

vertical Il 1| position
| encoder
carriage )

A. Rauh et al.: Verified Simulation of Dynamic Systems



ime Systems A-IVP Applications Conclusions
0000000000

Simulation of the Dynamics of a Controlled High-Speed
Rack Feeder System

Test rig at the Chair of Mechatronics, University of Rostock
Elastic multibody model @ Linear, time-invariant system
model for k = const
TR O 4 x . :
- @ Nonlinear (resp. linear,
KOk V(xl,t) . .
time-varying) model for
X (0 = (1)1 K # const
ys®) @ System order 6 with real as well
AE |5l c1(t)= Vl(t) o
P v, () as complex eigenvalues of
multiplicity 1
ys (t) @ Asymptotically stable after
y mg design of a suitable state
| I— feedback controller

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Representative Simulation Results

Complex-valued exponential

enclosure technique VNODE-LP
20 20
T 15 / interval enclosure T 15 interval enclosure
Z Z
g 10 g8 10
E 5 interval diameter = . interval diameter
= = 3]
g S |
0 0 ------------------
—5 —5
~10 —10
0 0.05 010 015 020 0.25 0 0.05 010 0.15 0.20  0.25

tins —* tins —*

@ Increased diameters of the exponential state enclosures due to the
wrapping effect in initial conditions: complex intervals are represented
in midpoint/ radius form provided by INTLAB

A. Rauh et al.: Verified Simulation of Dynamic Systems



Representative Simulation Results

Complex-valued exponential

enclosure technique VNODE-LP
20 20
T 15 interval enclosure T 15 interval enclosure
E 10 g 10
E interval diameter = 5 interval diameter
= 5 =
g 5 |
0 O T T
-5 -5
—10 —10
0 0.05 010 015 020 0.25 0 0.05 0.0 015 020 0.25

tins —> tins —*

@ Similar results can be obtained for the case of time-varying
parameters x with sufficiently small integration step sizes

A. Rauh et al.: Verified Simulation of Dynamic Systems



Applications

O@00000000

Representative Simulation Results

Complex-valued exponential

enclosure technique VNODE-LP
20 20
T 15 interval enclosure T 15 interval enclosure
= =
E 10 g 10
=] . . = . .
= 5 interval diameter pag 5 interval diameter
g S
0 Offf W
-5 -5
~10 —10
0 0.05 0.10 0.15 020 025 0 0.05 0.10 0.15 020 025
tinsg —* tins —*

@ A. Rauh, R. Westphal, H. Aschemann, Harald: Verified Simulation of
Control Systems with Interval Parameters Using an Exponential State
Enclosure Technique, Proc. of IEEE Intl. Conf. on Methods and Models in
Automation and Robotics MMAR 2013, Miedzyzdroje, Poland, 2013.

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Extension to Systems with Multiple (Complex) Eigenvalues

Canonical form with real eigenvalues
#(t) = - z(t) with 2 = blkdiag{\;,A2..., %5 ... A},
A1 0
Sy = O A | e RO ang z(0) € [z(0)]
00

@ Solve decoupled equations independently
@ Jordan block with §; > 1 = solve “from bottom to top”
= Further details: see Section Outlook

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Uncertain Compartment Model of Granulopoiesis (1)

Granulopoiesis

@ Seven compartments representing the proliferation stages of
granulocytes (human blood cells)

@ Stem cell compartment (S): cell growth until reaching circulating
blood

Function compartment (F): cells in blood
Compartment bone marrow (CBM)
Compartment blood (CBL)

Precursor cells (P)

Mature cells (M)

Reserve cells (R)

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Uncertain Compartment Model of Granulopoiesis (2)

State variables

r1 =S x33 = R

xo =CBM;,..., x11 = CBMjy T3y = F

r19 =CBLq,..., x91 = CBLq x35 = Regl
Too =P ,..., x31 = Pig x36 = Regll
T390 = M

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Uncertain Compartment Model of Granulopoiesis (3)

Abbreviations

ur =7 eXp(—V1$1)
+726xp(—ug-(w2+...+$11 +5L‘22+...+x33)) + 73

ug = 4 — Y5 exp(—v3235) ug = Y6 — Yy €Xp(—14T3s5)
us = 2(1 — p)ujzy U7 = A\pZ31
uy = ug = 78 — 79 exp(—v5x36)
us = Ae11 U9 = UST33

u1o =y10exp ( — v6- (121 + g2+ (w2 + ... + x11) + g3- (T2 + ... + 34)))

U1 = Y11 eXP(—V79034)

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Uncertain Compartment Model of Granulopoiesis (4)

Nonlinear set of state equations (Fliedner and Steinbach)

.’i?l = (2p — 1)’&1(171

To = U3 — A\eT2 + U2 — UgT2 + Px12

Ti = Aei—1 — AeTj + UoXy — Ugxy + P4 10 for 1=3,...,11

T; = Ugxi_10 — Px; for 1=12,...,21
T92 = Us + UsT22 — ApT22

95 = Al AF R — Ay for i=23,...,31
T32 = uy — AMT32, ¥33 = AMT32 —UT33, T34 = Uy — AFT34

T35 = U10 — ARegIT35, ¥36 = U1l — ARegIIT36

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Uncertain Compartment Model of Granulopoiesis (5)

JURRRRRRRRRRRRRE R o - \

S > o] T8 > " —— > —>
CBM*

T I T C S

........................... N Regl L Regll

* CBL, CBM and P compartment are split into 10 subcompartments

—> cellflow

» information flow
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Uncertain Compartment Model of Granulopoiesis (6)
Constraint A: Directly evaluated using a guaranteed enclosure for
T
r = [SL’l,. 5 .,,’1,’36]
HH,l = X364 = Ti41 + 2411 with [ =1,...,10

Substitution of the interval enclosures [z;41], [x;+11] for the state variables

v

Constraint B: Integration of the corresponding time derivatives via
additional ODEs

I T37 = U3 — AeT2 + U2T2 for (=1
Vii=13.
3641 = AcTi41 — AcTiq2 +uzxye for 1=2,...,10

with initial conditions Hy;(0) = Hp,(0) for I = 1,...,10 evaluated for
the enclosure [x(0)]

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Uncertain Compartment Model of Granulopoiesis (7)

Interval enclosure of z2(t), cell Interval enclosure of x34(t), cell
count of the C BM; compartment count of the F' compartment
8.3 4.5
===No Uncertainty
82 a4 —+/- 10% Uncertainty
8.1
o 43
0 —
9 8.0 3
E\ 5 4.2
=79 =
x ™
* 41
7.8
7.7} |= = =No Uncertainty 40
=—+/- 10% Uncertainty| : :
76 1 2 3 4 5 t* 39 1 2 3 4 5 t*

time t/h time t/h

Branch and bound heuristics for (physical) conservation properties, similar
use for mass and energy conservation laws (e.g. Hamiltonian systems)
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Conclusions and Outlook on Future Work

@ Computation of verified state enclosures for discrete-time and
continuous-time dynamic systems

@ Handling of uncertainty in initial conditions and parameters

@ Possibilities for detection and elimination of overestimation (especially
wrapping effect)

@ Novel iteration scheme based on complex-valued interval arithmetic

@ Extensions to systems with multiple conjugate complex eigenvalues

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Conclusions and Outlook on Future Work

Computation of verified state enclosures for discrete-time and
continuous-time dynamic systems

Handling of uncertainty in initial conditions and parameters

Possibilities for detection and elimination of overestimation (especially
wrapping effect)

Novel iteration scheme based on complex-valued interval arithmetic
Extensions to systems with multiple conjugate complex eigenvalues

Verified, real-time capable safety analysis of control strategies:
Verification of compatibility with state constraints

Online sensitivity analysis in predictive control frameworks
Online sensitivity analysis for state and parameter estimation
Analysis of feedback linearizing control procedures
Verification of interval-based sliding mode techniques

A. Rauh et al.: Verified Simulation of Dynamic Systems



-Time Systems

ValEnclA-IVP

Conclusions

Outlook
#000000000

Extension to Systems with Multiple (Complex) Eigenvalues

Canonical form with conjugate complex eigenvalues

¥ = blkdiag{..., ¥/, %, ,...}

with =

and X

0 + Jw; 1 0

0 o; + Jw;

: ' 1

0 0 o0i+jwi
g; — Jw; 1 0 |

0 05 — Jwj

: . 1

0 0 o — Jwi |

for each eigenvalue pair o; + jw; with §; > 1

c Céixéi

c C(Si X0
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Extension to Systems with Multiple (Complex) Eigenvalues

Analytic representation of the solutions z;1(t), j =0,...,, — 1
5i—1 .
* oitJw;)- N tC_J
2yy(t) = et | N = zi+¢(0)
¢=j ’

Applicability of the standard exponential enclosure technique

o Computation of the square of its absolute value

2
5:i—1 .
. . — 7 § 2
AP = | 2 e @ || =
¢=j '

@ Exponential enclosure technique of VALENCIA-IVP is applicable if

0 ¢ {xilxs = RO} + 190G} 2i4¢(0) € s (0)], € 05 7]}

holds for any j =0,...,6; — 1

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Extension to Systems with Multiple (Complex) Eigenvalues

Modification of the iteration scheme
@ Definition of the enclosure and its time derivative

§i—1 .
g $$—J -
Zitj = mziﬂ((}) L et
¢=j '
§i—1 ;
. 167 P
Bigg = Xiwg o | D mzﬂc(o) o G
=R

%7l -G

+ > mzm(o)  ghitt

¢=j+1

e Evaluation for j =0,...,d; — 1, 2¢(0) € [2:(0)], t € [0; T]

o Compute enclosures [A;], ..., [Aits,—1]

v
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Extension to Systems with Multiple (Complex) Eigenvalues

Modification of the iteration scheme
@ Subsystem model (eigenvalue A} with multiplicity ¢; > 1)

. *
Zi =N - 2+ Zip1

. *
Zit1 = Aj * Zit1 + Zigo

. k
Zitoi—1 = A * Zito—1

@ One-sided decoupling of equations

@ Solutions can be computed in the order 2;i5,—1, Zit5,—2, - - -, Zit1, Zi
v
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Extension to Systems with Multiple (Complex) Eigenvalues

[teration scheme

@ lteration procedure
5i—1

o ()
Ai (CZ (CC JJ)'ZHC(O)) - ePural

8;—1 - -
2 ﬁ%ﬂ(O) - elhig]e
¢=j
0;—1 $6—(G+1) it j41]t D '](”)t
CZ WZH-C(O) -(e iti+1lt _ [Nty )

= (%)
> iz (0) | - ebirsl ™t
=

@ One-sided decoupling: [X;1;] depends on result for [A; ;1]

D)+ o=

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Extension to Systems with Multiple (Complex) Eigenvalues

Iteration scheme
@ lteration procedure

6;—1 )
3 ¢—(3+1) o (k)
<<:Zjﬂ Gon Zi+<(0)> ' (B[M““]t — el t)

Gl oy )
> teizitc(0) | - el

Sl e )
S Eaiac(0) | - el

e Evaluation for A € [Af], 2¢(0) € [2¢(0)], t € [0; T

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Extension to Systems with Multiple (Complex) Eigenvalues

Iteration scheme
@ lteration procedure — simplified

8;—1
i M Ditjr1]—[\ ,](n) ¢
<<§+1 (¢- (JH))'ZH-C(O)) (e( +i41]—[higg]1) 1)
AF +
(Z (= y)'2z+<(0))

@ Evaluation for A € [A\f], 2¢(0) € [2¢(0)], t € [0; T

A. Rauh et al.: Verified Simulation of Dynamic Systems
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Extension to Systems with Multiple (Complex) Eigenvalues
Practically important generalization
o If additional terms are included in the system model
Zi=A 2+ ziv1+fi(2)
Ziv1 = A} - Ziy1 + Zigat fir1(2)

Ziysi—1 = A} - Ziysi—1+ fivei—1(2) ,

a vector-valued iteration has to be performed

YR ™)
Piga] Y s Mit1]®

. ](H—l—l)

Nitsi—1 ()

[Aits,—1
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Extension to Systems with Multiple (Complex) Eigenvalues

Simplified enclosure
@ Definition of the enclosure and its time derivative

Ziyj = (2i45(0) +t - 2i4541(0)) - elitit

Zigg = Nitg (2045 (0) + £+ 2i411(0)) - 9" + 234511(0) - X

o Simplified iteration procedure

Zz+]+1(0) o (e[)\i+j+1]t _ e[)‘iﬁLj](K)t)

(K)t

[Aits]

(2i45(0) + ¢ - 2i1j1+1(0)) - ePri+d]

v
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Extension to Systems with Multiple (Complex) Eigenvalues

Simplified enclosure
@ Definition of the enclosure and its time derivative

Zivj = (245(0) + ¢ - 2i1541(0)) - ¥5+4"
Zitg = Nitg (245(0) + ¢ - 2ij11(0)) - X4 + 251511 (0) - eXits®
o Simplified iteration procedure

e([/\¢+j+1]—[/\i+j]("))t 1

zi+;(0)
Zi+j+1(0) i

Paral ™ = A +

e Evaluation for j =0,...,d; — 1, 2¢(0) € [2(0)], t € [0; T
@ Decoupled/ coupled evaluation as before

v
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lllustrative Example

Complex IVP with §; = 2
z(0) € [<:5’0'1>] , A e (—2+43;0.1)

(—4,0.1)
T 2.0 T 1.0
~ 0 = 0
= =
& &
= —20 & —1.0
—4.0 —2.0
—6.0 3.0
0 05 10 15 20 25 30 0 05 10 15 20 25 30

t —
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lllustrative Example

Complex IVP with §; = 2

z(0) € [<:5’0'1>] , At € (—2+30.1)

(—4,0.1)
1.0 0.5
P b,
= =
= 10 =
& & —05
= 20 &
1.0
—3.0
—40 15
—5.0 —2.0
0 05 10 15 20 25 30 0 05 10 15 20 25 30

t —
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