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Non-smooth Models: Phenomena and Areas
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Non-smooth Models: Further Details

Areas: Control, biology, economics, material science, ...

Phenomena: Saturation, “good” numerical behavior, switchings...

Formalisms: differential inclusions, Moreau’s sweeping process, ...

Similarities: mẍ+ h · sign(x) = 0

sliding pendulum relay
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Impact-like Problems

Impact

A high force applied over a short time period when two or more
bodies collide

Mechanics: Collision of rigid bodies
Goal: model and simulate changes in the motion
of two solid bodies following collision
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Electrical engineering: Ideal diodes
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The current i(t) and the voltage v(t) satisfy the
complementarity conditions: 0 ≤ i(t)⊥v(t) ≥ 0

Models: E.g., differential inclusions

ψK(x) =

{
0 if x ∈ K
+∞ if x /∈ K , ∂ψR+(x) =

{
{0} if x > 0
(−∞, 0] if x = 0

, i(t) ∈ −∂ψR+(v(t))
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Friction

The force resisting the relative motion of e.g. solid surfaces sliding
against each other ( dry friction resists relative lateral motion of
two solid surfaces in contact).

Mechanics: A block which slides or sticks on the table

Non-smooth approach:

Electrical engineering: Ideal Zener diode
Allows current to flow in the forward direction,
but also permits it to flow in the reverse direction
when the voltage is above a certain value known
as the breakdown voltage

Models: E.g., Coulomb friction with Sgn(x) = ∂|x| =


1 if x > 0
[− 1, 1] if x = 0
−1 if x < 0
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Hysteresis

The time-based dependence of a system’s output on current and
past inputs ( “loop”).

Mechanics: Rubber band

The behavior as a load is removed is not
the same as that when the load is being
increased

Electrical engineering: Schmitt trigger

The output retains its value until the
input changes sufficiently to trigger a
change

Models: Specific to the area, e.g., Bouc-Wen model with the hysteretic
displacement ż(t) = u̇(t) {A− [β sign(z(t)u̇(t)) + γ] |z(t)|n}
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Non-smooth Models: Code Angle

Construct Example

IF-THEN-ELSE Force: F ≤ 0

SWITCH Muscle activation function:

0 ≤ a(t) = A1e
−c1(t−t1) +A2e

−c2(t−t2) ≤ 1

|x| Hysteresis:

ω̇ (t) =ρ ·
(
v (t)− σ · |v (t)| · |ω (t)|ν−1 · ω (t)

+ (σ − 1) · v (t) · |ω (t)|ν)

signx Friction: F (v) =sign(v) · F + µ · v

E. Auer University of Technology, Business and Design Wismar
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Mathematical Formalisms

Automaton (causal): a graph or an automaton with different ODEs as vertices
and logical conditions for jumps as edges

Closed-expression: (non-causal): a single system of ordinary or implicit D(A)Es or
inequalities that changes its right side in dependence on zeros of a certain g

Automaton based Closed expression based

formal model
checkers

... ...Differential
inclusions (DI)

ODEs with
discontunuities

classic

Filippov‘s Lipschitz ... Piecewise cont.
functions

Cont. theory+
„derivatives“

...

...and combinations

Necessary: A study of relationships between modeling concepts

Example: a system with Coloumb and viscous friction

Model: mẍ(t) + cẋ(t) + kx(t) ∈ −∂(µ|ẋ|)
Formalisms: DI, variational inequality, interval, ...

E. Auer University of Technology, Business and Design Wismar

Uncertain Non-Smooth Dynamic Systems 8
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Possible Interval Reformulations: Example

ẋ(t) = x(t)u(t), x(0) = 0, u(t) ∈ [−1, 1] unknown, smooth

Possibility Formulation Solution

1. Solve the IVP see above x(t) = x0 · e
(

t∫
0

u(s)ds)
for x0 6= 0

or x(t) ≡ 0
2. Consider a DI ẋ(t) ∈ [−x(t), x(t)] x(t) = 0 and e.g.

x(t) =

{
0, 0 ≤ t ≤ 2
t2, t ≥ 2

3. Use intervals ẋ(t) = x(t) · [−1, 1]︸ ︷︷ ︸
treated as constant

x(t) = x0 · e[−1,1]t for x0 6= 0

or x(t) ≡ 0

Intervals offer help in solving DE with convex and closed set-valued right sides

E. Auer University of Technology, Business and Design Wismar
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Reformulations: Illustration

Let ẋ(t) = x(t)u(t), x(0) = 1, u(t) = cos t ∈ [−1, 1]

“Normal”: x(t) = 1 · e
(
t∫
0

cos sds)
= esin t

DI x(t) =

{
1, 0 ≤ t ≤ 2
t2, t ≥ 2

“Interval”: x(t) = x0 · e[−1,1]t = [e−t, et],
because et is monotone

Interval solution is wide but encloses both of the other solutions!

Systematize formalisms/applications, assign a verified method,
introduce a simple way of analysis

E. Auer University of Technology, Business and Design Wismar
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Verified Methods for Non-smooth Systems

Description of a non-smooth IVP
↙ ↘

Closed expressions Automata

x′ =

{
f−(x), h(x(t), t) < 0
f+(x), h(x(t), t) > 0

Rihm (1993), Rauh (2011), Eggers (2009), Ratschan (2012)

Mahmoud and Chen (2008) Nedialkov and Mohrenschildt (2002)

Verified non-smooth optimization: Slopes, generalized gradients ...
Ratz (1995), Kearfott (1996), Schnurr (2007), ...

E. Auer University of Technology, Business and Design Wismar
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Task: Solve the Non-smooth IVP

ẋ = f(x, t), x(0) = x0, where f(x, t) is non-smooth in x (or in t).

Situation 1: f is discontinuous only in t
↓

Lebesque integration, x(t) = x0 +
t∫
0

f(x(s), s)ds

Situation 2: f is discontinuous in x: more difficult
↓

Problem reformulation

Solution definition (allowed to be discontinuous?)

Existence (uniqueness) of the solution

Application areas

E. Auer University of Technology, Business and Design Wismar
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Rihm’s method

Reformulation ẋ(t) = f(x(t), t) =

{
f1(t, x(t)), g(t, x(t)) < 0
f2(t, x(t)), g(t, x(t)) > 0

Application systems with friction, switchings

Solution (a) a continuous function for which IVP holds
except at isolated switching points

(b) Filippov’s convex definition for DIs if switching
points are not isolated

Existence (a) unique if transversality conditions hold

(b) exists if the function f0 = α · f1 + (1− α)f2 is
cont. in x; unique if f0 cont. differentiable

E. Auer University of Technology, Business and Design Wismar
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Rihm’s method: Enclosure over the Switching Point

Transversality
ġ1(t, x) :=

∂g

∂t
+
∂g

∂x
f1(t, x) > 0(< 0)

ġ2(t, x) :=
∂g

∂t
+
∂g

∂x
f2(t, x) > 0(< 0)

Endpoints ġ1(t, x) < 0 and ġ2(t, x) > 0

Sliding ġ1(t, x) > 0 and ġ2(t, x) < 0

Let t∗ be the switching point, x∗ := x(t∗), f− := f1(t
−, x(t−)),

f+ := f2(t
∗, x∗), h− := t∗ − t−, h+ := t+ − t∗, s = t+ − t−,
z− ∈ z− and z+ ∈ z+ local errors, then

x(t+) = x(t−) + h+(f+ − f−) + sf− + z− + z+

∈ x− + sf− + [0, s](f+ − f−) + z− + z+ =: x+

E. Auer University of Technology, Business and Design Wismar
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Rihm’s method: Algorithm

1. Prepare: 0 ∈ g(t0, [x0])? (Y) Check transversality, reformulate (N) Proceed

2. Enclose in the area of continuity: Define a grid t0, t1, . . . , trs

Compute a rough enclosure xj−1,j over [tj−1, tj ]

Refine into xj of x1(tj) until j = rs

or (t∗, x∗) is reached (check with [tj−1, tj ], xj−1,j)

3. Enclose t∗: Use the interval Newton method: t∗ ∈ I∗ := [t−, t+], h = wid(I∗)

4. Enclose x∗: Compute x(t) over [tj−1, tj ] (e.g. from Taylor coeff.)

Compute a rough enclosure
x∗ = xj−1,j ∩ (x(t−) + [0, h]f1(I

∗, xj−1,j)) ∩ (x(t+)− [0, h]f1(I
∗, xj−1,j))

Refine if possible, e.g. using g(t, x); check if (t∗, u∗) is an end point

5. Continue into the next cont. area: Compute rough enclosure x+ and local errors z−, z+

Compute the refined enclosure of x(t+) (previous slide)

Reformulate and go to 2

E. Auer University of Technology, Business and Design Wismar
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An Automaton Based Method (Rauh et al.)

Problem: Smooth models {Si}li=1: ẋ (t) = fSi (x (t) , p, u (t) , t)

Transition Si → Sj if the condition T ji (x, u) holds true

Stage 1: Calculate a bounding box

bak =
⋃

i∈Ia
(x0 + [0, h] · fSi(xk,p,u(tk), tk))

Stage 2: Activate additional transitions T ji (bak,u([tk, tk+1]))

b̃
a
k := bak

⋃
i∈Ĩa\Ia

(x0 + [0, h] · fSi(b
a
k,p,u([tk, tk+1]), [tk, tk+1]))

Stage 3: Calculate xk+1 at tk+1 (≈ refinement of b̃
a
k)

Stage 4: Deactivate transition conditions depending on xk+1

E. Auer University of Technology, Business and Design Wismar
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A “Continuous” Method: Problem Definition

R.B.Kearfott, Rigorous Global Search: Continuous Problems, 1996

Simplicity is a major advantage of treating non-smooth problems with the same
techniques as smooth problems

Interval IVP:

{
x′ = f(x),
x(0) ∈ [x0],

where
f : D ⊂ Rn → Rn
or D ⊂ IRn → IRn

.

f is given in its algorithmic representation (inductive):
τi(x) = gi(x) = xi, i = 1 . . . n
τi(x) = gi(τ1(x), . . . , τi−1(x)), i = n+ 1 . . . l,
gi ∈ SEO ∪ SPW

.

SEO = {c,+,−, ∗, /, sin, cos, . . . } and SPW are piecewise cont.

Goal: Find a derivative generalization to use with the usual theory
E. Auer University of Technology, Business and Design Wismar
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Definition of Piecewise Functions φ(y) in SPW

y = τν(x), φj(y), j = 0, . . . , L smooth

φ(y) =
φ0(y) for c−1 = −∞ < y < c0,
φ1(y) for c0 < y < c1,
. . . . . .
φL−1(y) for cL−2 < y < cL−1,

φL(y) for cL−1 < y < cL = +∞ .

x

f(x)

x
2

x
1

c
1

c
0

c
2

An interval extension of φ over x (φ(x)):{
φi(x), if x ⊆ (ci−1, ci),⋃j−1
k=i+1

φk([ck−1, ck])∪φi([x, ci])∪φj([cj−1, x]), if x ⊆ (ci−1, cj)

E. Auer University of Technology, Business and Design Wismar
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Definition of the Derivative: Top-Down Approach

An interval extension of φ′ over x (φ′(x))
φ′i(x), if x ⊆ (ci−1, ci),⋃j−1
k=i+1

φ′k([ck−1, ck])∪φ′i([x, ci])∪φ′j([cj−1, x])

∪ rest, if x ⊆ (ci−1, cj),

where REST depends on:

– how many switching points x contains,

– whether φ is continuous,

if we want the mean value theorem to hold.

E. Auer University of Technology, Business and Design Wismar
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Derivative for IF-THEN-ELSE (One Switching Point)

φ(x) =

{
φ0(x), x < c0,

φ1(x), x > c0.

If φ is continuous, there is no REST

If φ is discontinuous
φ′0([x, c0])∪

(φ1(c0)− φ0(c0)

[c0, x]− x0
+ φ′0([x, c0])∪φ′1([c0, x])

)
if x0 ∈ [x, c0),

φ′1([c0, x])∪
(φ0(c0)− φ1(c0)

[x, c0]− x0
+ φ′0([x, c0])∪φ′1([c0, x])

)
if x0 ∈ (c0, x],

φ′0([x, c0])∪φ′1([c0, x]) if x0 = c0 .

x0 needed to avoid overconservative enclosures ([−∞,+∞])

E. Auer University of Technology, Business and Design Wismar
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Generalization

This definition can be generalized for the arbitrary number of
ci ∈ x, but:

x containing many ci might be simply too wide.

If φ(·) contains several switching points ci, but x contains only one:

φ′(x) =


φ′i(x) for x ⊂ (ci−1, ci),

φ′cont(x) for x ⊂ (ci−1, ci+1), if φ is cont. in ci,

φ′dis(x) for x ⊂ (ci−1, ci+1), if φ is discont. in ci .

E. Auer University of Technology, Business and Design Wismar
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Features

+
Right sides with several
variables represented

f(x1, x2) = |x1|+ x1 · sign (x2),
|sign (x1)|

− No PW operations like f(x1, x2) =

{
1, x2 < x1
2, x2 > x1 .

Covered by Rihm g(x1, x2) = x2 − x1,
f1 = 1 f2 = 2

+ Better coverage for f(x) =


−h, x < −x+
0, −x+ < x < x+
h, x+ < x .

E. Auer University of Technology, Business and Design Wismar
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Another Derivative Definitions

Slopes (implementation in Schnurr (2007), also of order 2)

f : D ⊆ R 7→ R continuous, x0 ∈ D, then f(x) = f(x0) + δf(x, x0)︸ ︷︷ ︸
slope in 1D

(x− x0)

Interval slope of f over x ∈ D: δf(x, x0)⊇ {δf(x, x0)|x ∈ x}

f(x) ∈ f(x0) + δf(x, x0)(x− x0)
δf(x, x0) = [ inf

x∈[x],x 6=x0

f(x)−f(x0)
x−x0 , sup

x∈[x],x 6=x0

f(x)−f(x0)
x−x0 ]

A triple (Fx, Fx0 , δF ) with f(x) ∈ Fx,f(x0) ∈ Fx0 , f(x)− f(x0) ∈ δF (x− x0)

( suitable for a bottom-up approach)

More definitions in H. Munoz, R.B. Kearfott, Slope Intervals, Generalized Gradients, Semigradients, Slant Derivatives, and Csets, 2004

E. Auer University of Technology, Business and Design Wismar
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Usage

Approach Plug the definition into ValEncIA-IVP

ValEncIA an a posteriori method

for smooth problems

x(t) ∈ [x (t)]︸ ︷︷ ︸
verified enclosure

:= xapp (t)︸ ︷︷ ︸
approximation

+ [R (t)]︸ ︷︷ ︸
error bounds

uses MVT, a fixed point theorem

Jacobians only → easy to adapt

Non-smooth upper semi-continuous right sides

Kakutani’s fixed point theorem

f ′ satisfies MVT

+ for Lipschitz cont. right sides or isolated switching points

– overestimation for sliding solutions

E. Auer University of Technology, Business and Design Wismar

Uncertain Non-Smooth Dynamic Systems 24



Motivation Non-smooth IVPs Examples Summary

Remarks on Software

Although descriptions of methods are easily available
the corresponding software is not easy to obtain (not maintained, etc.)

Automaton-based
(→ all rely on a kind of meta-language for defining the system)

SpaceEx http://spaceex.imag.fr/ (linear systems),

dReach http://dreal.github.io/ (the satisfiability
modulo theories solver for the nonlinear theories of
the reals),

Ariadne http://trac.parades.rm.cnr.it/ariadne/

(extendable)

Flow* http://systems.cs.colorado.edu/research/

cyberphysical/taylormodels/ (open source,
Taylor models)

E. Auer University of Technology, Business and Design Wismar
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Known Exact Solution: Tacoma Narrows Suspension Bridge

ẋ1 = x2

ẋ2 =
1

m
(sin (4t)− q(x1))

x1(0) = 0

x2(0) = 1
q(x1) =

{
x1, x1 < 0
4x1, x1 > 0

-4
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 0
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Known Exact Solution: Oscillator

m(̈x) = −fi(x), h = m = xt = 1, x(0) = 2, v(0) = 0

f1(x1) =

{
−h, x < 0
+h, x > 0

f2(x1) =

 −h, x < −xt
0, −xt < x < xt
+h, x > xt
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Comparisons with Other Methods: Water Level

ẋ1 = x2

ẋ2 = 0.5u(x1)

x1(0) = 5

x2(0) = 1
u(x1) =


1, x1 < 3
−1, x1 > 7
0, otherwise

Width at t = 35: wid(x1) = 0.28
as opposed to Nedilkov/von Moh-
renschildt wid(x1) = 10−7
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Example without a Classical Solution

ẋ1 = x2

ẋ2 = −0.2x2 − x1 + 2 cos (πt)− u(x2)
u(x1) =

{
−4, x1 < 0
+4, x1 > 0

x1(0) = 3, x2(0) = 4

The first switching point
at t ≈ 0.5, the second at
t ≈ 2.03, the solution lea-
ves the switching surface
v = 0 after t ≈ 2.6
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Summary

Considered:

→ Different formulations and reformulations of non-smooth
problems

→ Several approaches with result verification:
→ ODEs with switchings
→ Automaton-based
→ “Continuous”

Interesting topics:

– Systematize reformulations, find equivalencies, supply interval
(etc.) reformulation

– Software-related issues, e.g. how to implement in oder to
easily integrate into available simulation packages?

– Reduction of overestimation (→ slopes? combination with
non-verified methods?)
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Properties of φ′(x)

1 If the derivative of φ exists for x ∈ x, then φ′(x) ∈ φ′(x)

2 The slope δφ(x, x0) ⊆ φ′(x)

3 The mean value theorem holds:

φ(x) = φ(x0) + φ′(ξ)(x− x0) ∈ φ(x0) + φ′(x)(x− x0)

4 If φ is continuous (φj(cj) = φj+1(cj), 0 ≤ j < L), then
f(x) is continuous if all operations in SEO are continuous.

E. Auer University of Technology, Business and Design Wismar

Uncertain Non-Smooth Dynamic Systems 32
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ValEncIA-IVP1 For Non-smooth IVPs

General approach in ValEncIA: A posteriori

x(t) ∈ [x (t)]︸ ︷︷ ︸
verified state enclosure

:= xapp (t)︸ ︷︷ ︸
non-verified approximation

+ [R (t)]︸ ︷︷ ︸
error bounds

Conditions for the right side:
1 continuous

2 Lipschitz

1VALidation of state ENC losures using Interval Arithmetic for Initial V alue
Problems
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ValEncIA-IVP For Non-smooth IVPs (Cont.)

The algorithm for 0 ≤ t ≤ T :

1 Start with [x(0)], xapp(t), [R(0)]

2 k = 1 . . . kmax or while [Ṙ(k+1)([0, T ])]!=[Ṙ(k)([0, T ])]

Compute [Ṙ(k+1)([0, T ])] := ẋapp+f([x(k)]), (MVT)
where [x(k)] := [x(k)([0, T ])]

If [Ṙ(k+1)([0, T ])] ⊆ [Ṙ(k)([0, T ])] then[
R(k+1)([0, T ])

]
:= [R(0)] + [Ṙ(k+1)([0, T ])][0, T ][

x(k+1)([0, T ])
]

:= xapp + [R(k+1)([0, T ])]

Differences ((non-)smooth): Derivative definition, the fixed point theorem
To-do-list: Discontinuities in x for the right side
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Implementation Issues: Class pwFunc

Remarks on f(x)

f ′(x) is obtained with
pwFunc

pwFunc uses
FADBAD++ and
overloads hull, d()

f ′(x) encloses both left
and right derivatives

pwFunc is plugged into
ValEncIA

Class declaration

template<class T>

class pwFunc{
public:

typedef T (*ptrFct)(const T& x);

pwFunc(const vector<interval>& p,

const vector<ptrFct>& f);

T operator()(const T& x)

{ return getValueAtX(x);}
private:

vector< ptrFct > functions;

vector<interval> points;

vector<T> subintervals;

T getValueAtX(const T& x);

void generateSubintervals(const T& x);

};
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Implementation Example: A Discontinuous Function

template <class T> T f1(const T& x){ return -1+x;}
template <class T> T f2(const T& x){ return 1+x;}
template<class T> T ff(const T& a){

vector<INTERVAL> p; p.push back(0);

vector<pwFunc<T>::ptrFct> functions;

functions.push back(&f1<T>);functions.push back(&f2<T>);

pwFunc<T> fp(p, functions); return fp(a); }
ff([-1,2]);

Equation:

Ff (v) =

{ −1.0 + x x < 0

+1.0 + x x > 0

Result:

[-2,3]([1,6])
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System for the SOFC temperature

ϑ̇FC =
1

cFC mFC

[
1

RA
(ϑA − ϑFC)− (cN2ζN2,C + cO2ζO2)u(t)

− (cH2ṁH2 + cH2OṁH2O + cN2ṁN2,A)(ϑFC − ϑAG,in) +
∆Hm(ϑFC)ṁH2

MH2

+ d

]
= a(ϑFC(t), p) + b(ϑFC(t), p, d) · u(t)
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