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Verified Parameter Identification for a Drive Train Test Rig

Experimental setup

drive side shaft

angle
measurement

electric
drive

deflector rolls
with drive belt

load side shaft

o lIdentification of static friction, sliding friction

@ |dentification of mass moment of inertia
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Verified Parameter Identification for a Drive Train Test Rig

Experimental setup

deflector rolls with toothed belt
angle measurements (energy transfer)

drive side shaft

Prvm

Iu

electric motor
control signal u=T,

load side shaft
brake (velocity-proportional torque)

@ Measurements: Angle(s) and angular velocities

@ Actuation of brake: Non-modeled disturbance
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Verified Parameter Identification for a Drive Train Test Rig
System model: Sliding friction for ¢y = wy = xo(t) # 0

deflector rolls with toothed belt
angle measurements (energy transfer)

drive side shaft

In

electric motor
control signal u=T,

load side shaft
brake (velocity-proportional torque)

Blgg] B [a-xQ(t) + 8- (ult) —TF(t))] » Te(t) = Tps - sign(2(t))
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Verified Parameter Identification for a Drive Train Test Rig
System model: Static friction for z5(t) = 0 and |u(t)| < Try

deflector rolls with toothed belt
angle measurements (energy transfer)

drive side shaft

In

electric motor
control signal u=T,

load side shaft
brake (velocity-proportional torque)

o) = o

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems



Motivation
0000e

er Identification

Verified Parameter Identification for a Drive Train Test Rig

deflector rolls with toothed belt
angle measurements (energy transfer)

\(pM.m
‘ |

drive side shaft

I

electric motor
control signal u=T,

load side shaft
brake (velocity-proportional torque)

e «a — (velocity-proportional friction)/(mass moment of inertia)
e [ —1/(mass moment of inertia)

e Ty ¢ — static friction, possibly varying after standstill
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System Model with Non-Smooth Right-Hand Side (1)
(L) = u(t) — Tr(?)

Nominal system model,

Ezz<0)| %rz>0) |

(u < —Tps) & (a2 = 0)) 7, =0 (u> Ty )& (2 = 0))
B () =22 () () =0 () =2 (1)

iy (t) = amy(t) + pu(t) i (1) =0 iy (t) = axy(t) + pu(t)

(u > Ty )& (20 = 0)

(z2>0) |
((u = Tp)&e(w2 = 0))

(12 <0)|
((u < ~Tr )& (22 = 0))

sliding friction static friction sliding friction
“backward . “forward
motion” 1o motion motion”
o < Tr.)&

(e % TF,)(')& ' EIE —0)
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System Model with Non-Smooth Right-Hand Side (2)
Uncertain model, a(t) := u(t) — Tr(t), [Tg*] := [~Trs ; Try)

(z2<0) | (z2>0) |

((u 5 —Ths) k(12 = 0)) 2 =0 ((u 2 T &e(r2 = 0))
Model Sy Model Sy Model Sy

iy () = 29 (£) i (t)=0 dy () = @y ()

iy (1) = ao(t) + Bii(t) iy (1) =0 iy (1) = aza(r) + Bia(t)

(sup (fu]) > i ([T5.])) (2] N0 # )

(inf([z;])<0)) S“P([Tz]>>0)|
((inf ([a]) < —inf ([T5.]))& (sup ([u]) > inf ([T ))&
(inf ( [ inf ([u]) < —inf ([Te])  sup ([u]) > inf ([Ted]) (inf ([r2]) = 0))

sliding friction static friction sliding friction

“forward
motion”

“backward
motion”

no motion

J [u] N [T§] #0)&
0) ﬁw n[o% m]) )

o) [132] 70

(inf ([u]) < —inf ([T ))&([2:] N0 £ 0)
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Taylor Series-Based Enclosure Method (1)

o Discretization of considered time horizon
@ Taylor series expansion of solution of the IVP with respect to time
according to

X (tr1) = % (1) + 30 200D (x (1) . pa 11) 1)

=1

+e (X (f) P, u (5) 75) ) X(tk) =f (X (tk) b, u (tk) atk)

with the integration step-size h, i.e., ty = kh, tx1+1 = (k + 1)h, and
b <& <tps1

Note
@ System parameters p € [p] are piecewise constant

@ Changes of control signals u(tx) only occur at the points t = ¢,

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems



ation  Modeling  Parameter Identification ~ Soluti X mental Results  Optir

000@0

Taylor Series-Based Enclosure Method (2)

@ Recursive computation of the total derivatives f(—1) (resp. Taylor
series coefficients) in terms of the smooth right-hand side of the ODE
with p=0and u(t) =0, t € (tx ; tg+1)

@ Calculation of guaranteed bounds of the discretization error

hu+1
e(x(§),p,u(f),§) Clex] == mf(y) (B!, [Pl a (%)), [7x])

@ Prerequisites: Differentiability of f € C¥

e Bounding box [B; ;], parameter and control enclosures [p] and
u ([7%]) for the time interval [7] := [tx ; tr+1] have to be available

= Use of the Picard iteration to determine [B, ;] J

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Extension to Systems with Non-Smooth Right-Hand Sides

Step 1 Calculation of bounding box [B, ] for the time interval [7;]
for the union of all system models which are active at t = i,
with a continuously differentiable function f, enclosing the
right-hand sides of all active models

Step 2 Check for additionally activated models

@ Repeat Step 1 if additional models are activated
= modification of f, by consideration of additionally
activated models

@ Otherwise, continue with Step 3

Step 3 Interval evaluation of series expansion for f (-) = f, (+)
Subsequently: v =1

Step 4 Deactivation of system models which can no longer be active
att = tk+1

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Verified Methods for Parameter Identification

Offline procedure: Multiple simulations over complete horizon of
gathered measured data

ym(tk)e[ym](tk)

measured data y, (z,)

t tl t ty .. time ¢
@ Measured data are available at discrete points of time
@ Worst-case bounds for measurement tolerances

@ Information about uncertain initial states and bounds on uncertain
parameters

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Verified Methods for Parameter Identification

Offline procedure: Multiple simulations over complete horizon of
gathered measured data

) /simulated output enclosure ..~}

measured data y,,(t,)

time ¢

@ Prerequisite: Correctness of model structure

o Initial state/ parameter intervals are subdivided for candidates, for
which no decision about admissibility can be made

@ Intersection of directly measured and simulated state intervals possible
.

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems



Parameter Identification
[e]e] Tele]

Verified Methods for Parameter Identification

Offline procedure: Multiple simulations over complete horizon of
gathered measured data

measured data y,_(,)

>

time ¢

@ Search for guaranteed admissible initial state/ parameter intervals
@ Subdivision until undecided region is sufficiently small
@ Needs to be fulfilled for each available sensor if dim(yy,) > 1

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems



Parameter Identification
[e]e]e] o]

Verified Methods for Parameter Identification

Offline procedure: Multiple simulations over complete horizon of
gathered measured data

[J’m](ts)

measured data y_(¢,)

>

time ¢

@ Exclusion of inadmissible intervals (for at least one of the sensors)

@ Drawback: Conservativeness for systems with non-smooth right-hand
sides (large number of subintervals)

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Verified Methods for Parameter Identification

Offline procedure: Multiple simulations over complete horizon of
gathered measured data

[J’m](ts)

measured data y_(¢,)

>

time ¢

@ Exclusion of inadmissible intervals (for at least one of the sensors)

@ Drawback: Conservativeness for systems with non-smooth right-hand
sides (large number of subintervals)

o Parameter reset (after standstill) cannot be handled efficiently )

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Verified Methods for Parameter ldentification

Online procedure: Observer-based approach

State and parameter estimate in the prediction step

Nonlinear measurement
model with uncertainties

I
I
|
I
Nonlinear dynamical Ym,1 (t) —— Sensor 1 = i
system model | 3 g 2| Estimatt_e in :he o " "
i inti t 4'—> =35 = | ' correction step ntersection of
with uncertainties Ym,2 ( k) ‘ } % 2 E : et
1 H 288! state enclosures
I gz
el
ym,ny (tk) 4’1 ’SCTOI‘W,/’—» :
! I

unit delay

Improved estimate after transition from t,_; to ¢

o Verified integration of state equations between two subsequent
measurement points = Structure close to Luenberger observer/
(Extended) Kalman Filter

@ Exclusion of inadmissible intervals

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Verified Methods for Parameter ldentification

Online procedure: Observer-based approach

State and parameter estimate in the prediction step

Nonlinear measurement
model with uncertainties

Nonlinear dynamical Y1 (1) ——= Sensor 1
system model |

with uncertainties Ym,2 (tr) — Sensor 2
| :

~ | H

|

.

T

Ymn, (tk) H’m’—»

Improved estimate after transition from t,_; to ¢

stimate in the

orrection step Intersection of
both verified

state enclosures

Q

information

Fusion of
measurement

el

unit delay

o Verified integration of state equations between two subsequent
measurement points = Structure close to Luenberger observer/
(Extended) Kalman Filter

@ Exclusion of inadmissible intervals

o Parameter reset easily possible at specific points of time

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Observer-Based Verified Parameter Identification (1)
© Description of the state enclosure by a list of L interval boxes

[x<l>] (1)

[z<l>} (tg) == [[p<l>] (tk):| , Il=1,...,L

@ Perform M subdivisions of intervals, if at least one interval [ is
characterized by

n+np

I] diam { [sz] (tk)} £0
j=1

= New interval list of length L + M — 1

© Verified integration of the IVP until the next measurement point ¢
= [25] (te11)

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Observer-Based Verified Parameter Identification (2)

@ Intersection of all interval boxes with measured data
21(tk+1) € [ym] (tk+1) (assumption first state is directly measurable)

[Eflﬂ (tey1) == [sz} (tk+1) N [Ym] (te+1)

@ Replace [277] (tg11) by [577] (tgy1) foralll=1,..., L+ M — 1

Delete all subintervals with [#7] (t441) = 0 from the interval list

Replace static friction subintervals with initial range if standstill is
detected for a minimum time span (by binary signal from velocity
sensor)

© Reduce the number of subintervals by a convex hull with sufficiently
small overestimation: New list length L := L*

Note: Interval replacement (step 7) and reduction of interval number
(step 8) can be employed interchangeably

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Bisectioning Strategy in Step 2

Selection of the candidates to be subdivided

n+np
I* = argmax d1am{[z-<l>} t } , L' >L
g s Jl;[ S ()

Reduce ambiguities between static and sliding friction
@ Split static friction interval if

[u] (t) bt { = [10>] [ ]} # 0

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Bisectioning Strategy in Step 2

Selection of the candidates to be subdivided

n+np
I* = argmax d1am{[ <l>} tk} , L'>L
I=1,...L’ ]];‘[ 4] )

Reduce ambiguities between static and sliding friction
o Select splitting point w(tx) + €, € > 0 for [u] (tx) > 0 with
T < u(ty) and Try > a(ty)
o Select splitting point u(tx) — €, € > 0 for [u] (tx) < 0 with
< u(ty) and —I<f:> > u(ty)

e Else: Splitting of [ = >] at its midpoint

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Bisectioning Strategy in Step 2

Avoid unnecessarily conservative interval bounds

o Split angular velocity interval [z5" >] for

dioin {[a5">]} 2 diam {[>]}
@ Split interval [B<l*>] for

(=] [ 0 (5] - (w0 - [557]) 0

e Else: Split interval [a<!">]
o Optional: Trisectioning of [z5' ] if static and sliding friction are

possible simultaneously

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Replacement of Static Friction Interval in Step 7
Repeat for each subinterval [ =1,.... L+ M — 1
@ Initial range for T g: {Tlm]

@ Create subintervals
] = T8 ; T2 ]
=<I>
[Tb] |: <l> TFs ]

l
[TC] = |:T§s> ) Tll-'f‘us:|

T<l>

o Create a list of up to 3L subintervals, where [ } is replaced by

each of the intervals [T,], [T},], [T¢] with non-zero diameter

@ Subsequent merging (not necessarily after each time step) avoids

combining intervals with different active model states S;, i = 1,2, 3
—J

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Experimental Results for Verified Parameter Identification

@ Measurement uncertainty: [—0.1; 0.1] rad
@ Piecewise const. control: exactly known, interval hull over exp. data

@ Sampling time: 10 ms

Estimate of the angle x1 = ¢\ Estimate of the angle x1 = o\
160 2.0
T T 1.5
9 120 —L!E N
£ E 10
= & =
g " o0
40 measured angle
0
0 interval bound
—05
32.6 32.7 32.8 32.9
0 20 40 60 80 .
tins —*>

tins —*
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Experimental Results for Verified Parameter Identification

o Measurement uncertainty: [—0.1 ; 0.1] rad
@ Piecewise const. control: exactly known, interval hull over exp. data

@ Sampling time: 10 ms

Parameter estimate « Parameter estimate 3

0

T T 400

D) =

) =300

—4 200

100
—6

0

0 20 40 60 80 0 20 40 60 80

tins —* tins —>
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Experimental Results for Verified Parameter Identification

o Measurement uncertainty: [—0.1 ; 0.1] rad
@ Piecewise const. control: exactly known, interval hull over exp. data

@ Sampling time: 10 ms

Parameter estimate T ¢ Parameter estimate 3

/rcsct at standstill
T 0.3 | I T T 400
L
= = 300
5 02
200
0.1
100
0 0
0 2 0 60 80 0 20 0 60 80
tins —* Lins >
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Experimental Results for Verified Parameter Identification

o Measurement uncertainty: [—0.1 ; 0.1] rad
@ Piecewise const. control: exactly known, interval hull over exp. data
@ Sampling time: 10 ms, reinitialization after 80s with last estimate

Parameter estimate « Parameter estimate 3

0
T T 400
= 2 — =
= = 300
—4 200
100
-6
0
0 20 40 60 80 0 20 40 60 80

tins —* tins —>
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Experimental Results for Verified Parameter Identification

o Measurement uncertainty: [—0.1 ; 0.1] rad
@ Piecewise const. control: exactly known, interval hull over exp. data

@ Sampling time: 10 ms, reinitialization after 80s with last estimate

Parameter estimate T ¢ Parameter estimate 3

reset at standstill

T 0.3 T 400
= D
= = 300
5 02
. . 200
improved estimate
0.1 for tighter [, [3]
100
0 0
0 20 40 60 80 0 20 40 60 30
tins —> tins —>

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems



Experimental Results
[e]e]ele]e] )

Experimental Results for Verified Parameter Identification

@ Measurement uncertainty: [—0.1; 0.1] rad
@ Piecewise const. control: uncertainty: 10% of the experimental data

@ Sampling time: 10 ms

Parameter estimate Tk ¢ Parameter estimate 3

T 03 T 400
= =
= = 300
a 2
5 92 without control uncertainty
with control uncertainty 200 ) \
with control uncertainty
0.1 without control uncertainty 100
0 0
0 10 20 30 40 0 10 20 30 40

tins —* tins —*>
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Experimental Results for Verified Parameter Identification

@ Measurement uncertainty: [—0.1; 0.1] rad
@ Piecewise const. control: uncertainty: 10% of the experimental data
@ Sampling time: 10 ms

Note
@ Transformation of state equations is advantageous for large
measurement and control sampling times (wrapping effect)

@ Minimize the number of unknown parameters to be identified

e Additional splitting of velocity intervals [z2] (¢;) for which a definite
distinction of the discrete model states is impossible (A. Rauh et al.:
Experimental Comparison of Interval-Based Parameter ldentification
Procedures for Uncertain ODEs with Non-Smooth Right-Hand Sides,
MMAR 2015, Miedzyzdroje, Poland.)

@ Dual task: Control optimization

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Optimal Control Tasks in Uncertain Settings (1)

Continuous-time dynamic optimization problem
x()=fx@).pE).u(t).t); 0<t<t;

x(t=0)=x% t > X(if) =%
9= 1y O<(05) D7) )+ [ 10 P (0109 )l = i

Continuous-time system model
o State equations x (t) =f (x(t),p (¢t),u(t),t)
@ State vector x (t)
@ Vector of uncertain system parameters p (t) € [p (¢) ; P (t)] with
additional tolerances for p (t) = Ap (t), Ap (t) € [Ap (¢) ; Ap(t)]

o Control vector u(t) € [u(t) ; u(t)] with given range constraints

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Optimal Control Tasks in Uncertain Settings (2)
@ Specification of robustness in the time domain by definition of
admissible and forbidden regions in the state space

@ Quantification of the influence of uncertainties on both the system
states and the performance index

@ How can optimality be defined for uncertain systems?

guaranteed non-optimal

(791
_l.,// control sequences

best
. . -~
approx1mat1onI '

. interval enclosure of the
sup ([J(M]) _______ I_ _ _I_ NI S _"_'_/ range of necessary costs

| | | L
I \ >

1 2 3 r

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems



Optimal Control
0000000000

Optimal Control Tasks in Uncertain Settings (3)

@ Computation of guaranteed enclosures of trajectories for a given
control input

@ Evaluation of performance index and robustness requirements

Interval arithmetic techniques are a basis for verified analysis of dynamic
systems with uncertainties.
— Mathematical verification of functionality, robustness, and safety

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Optimal Control Tasks in Uncertain Settings (3)

@ Computation of guaranteed enclosures of trajectories for a given
control input

@ Evaluation of performance index and robustness requirements

Interval arithmetic techniques are a basis for verified analysis of dynamic
systems with uncertainties.
— Mathematical verification of functionality, robustness, and safety

Dynamic optimization

In order to optimize open-loop or closed-loop controllers for systems with
uncertainties, approximations of globally optimal control sequences are
determined by piecewise constant (or piecewise linear) solutions.

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Interval Algorithm for Synthesis of Optimal Closed-Loop
and Open-Loop Control (1)

@ Direction of evaluation: GOAL — START

Interval enclosures of region of attraction of final states (controllability
problem for complete range of control variables)
Interval enclosure of possible range of the performance index
Guaranteed minimum and maximum of costs for transfer of the system
to the final state

@ Restriction to a specific set of initial states: START — GOAL
Candidates for admissible control sequences {[u] (%)}
Delete control sequences which do not allow to transfer the system

from the initial state to the final state
Delete control sequences which are certainly not optimal

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Interval Algorithm for Synthesis of Optimal Closed-Loop
and Open-Loop Control (2)

© Reduction of interval diameters of sequence of candidates {[x] (¢x)},
{[u] (%)} of the optimal solution
= Re-start with Step 1 as long as improvement is possible

© Search for global optimum {u*(¢x)}
Stopping criterion depending upon {[a] (%)}, {[X] (tx)}, {[j] (tk)}

ot (3]) ot o () <
and  diam ([ Jo] ) <3

© Output of {[X] (tx)} as best-known approximation for {u*(¢x)}

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Mechanical Systems with Friction and Hysteresis (1)

Continuous-time system model

@ Equations of motion for a mass m

% () = [8 (ﬂ x(t) + [% (Fa (t)o— Fy (22))

with the state vector x(t) = [z1(¢) Ig(t)]T

@ Mathematical model of the resulting friction force

Fr)=1{ " [Fy] 4[] - x2 for S; =true or Sy =true
P70 B+ [y -2y for Sy=true or Ss=true

with the static friction

Fy (w2) € [F)"™]:= [-Fs; Fs] for S3=true

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Mechanical Systems with Friction and Hysteresis (2)
Interval representation of uncertain parameters

o Uncertainties of static friction coefficient [Fy] := [F ; Fs]

o Uncertainties of sliding friction coefficient [u] := [11 ; 7]

Hysteresis and friction

@ Accelerating force Fy (t) :=u(t) — ¢ (z1 (t) ,w (t)) acting on the
mass m as the difference of

control variable u (t) provided by an actuator
restoring spring force ¢ (z1 () ,w (t)) = Kz21 + Kuw

@ Hysteresis of the restoring spring force given by the Bouc-Wen model

w(t) =p- (9«’2 (&) =0 lz2 (O] |w @) w ()

+(o—1) 22 (t) lw@))

EEEEESEES—S——————————_—_—_———.

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Mechanical Systems with Friction and Hysteresis (3)

State transition diagram

sliding friction

forward
motion Sy

TIUTIUTI UTE

sliding friction

backward
motion S;

static friction

TIUT?UTUTS
no motion Sy

sliding friction

forward
motion Sy

sliding friction

backward
motion Sy

TIUTIUTIUTE

state transitions of the

Bouc-Wen hysteresis model
amic Systems

Simulation Techniques for Non-Smo

A. Rauh et a
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Simulation Results
Given control input: u (t) = 2 - sin (3t) J

Uncertain parameters
m € [1.1; 1.21], Fy € [0.015 ; 0.03], k; = 0.001, k., = 0.001, o = 0.001, p = 0.001,
v =1, p=0.001, z1(0) = 22(0) = 0, w(0) = —0.001

Position x1

T 4.0
At =102

= 30
]

grid-based
reference solution

2.0

1.0

0 1 2 3 4 5

time t —»
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Simulation Results
Given control input: u (t) = 2 - sin (3t) J

Uncertain parameters
m € [1.1; 1.21], Fy € [0.015 ; 0.03], k; = 0.001, k., = 0.001, o = 0.001, p = 0.001,
v =1, p=0.001, z1(0) = 22(0) = 0, w(0) = —0.001

Velocity xo

T (t) —>

-

0 1 2 3 4 5
time ¢ —

A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems



Simulation Results

Given control input: u (t) = 2 - sin (3t)

Uncertain parameters

m € [1.1; 1.21], F. € [0.015 ; 0.03], £z = 0.001, k., = 0.001, o = 0.001, p = 0.001,
v=1, = 0.001, z1(0) = 2(0) = 0, w(0) = —0.001

Hysteresis variable w

3.0

w(t) /1073 —

0 1 2 3 4 5

time ¢ —»
A. Rauh et al.: Simulation Techniques for Non-Smooth Dynamic Systems
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Optimization Results

Optimality criterion (At = 0.1, kpax = 50, M = 10)

tf o
J= / (1 () = 1 + 22 (87 + u (8)) b + 100AE S (up — up_1)?

Uncertain parameters

m € [1.1; 1.21], Fs = 0.015, K, = 0.001, s, = 0.001, ¢ = 0.001, p = 0.001, v =1,
w=0.001, z1(0) = z2(0) = w(0) =0
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Optimization Results
Optimality criterion (At = 0.1, kpayx = 50, M = 10)

i

kmax
J= / (21 (1) = )% + 22 (1) + w()?) At + 100A¢ Y (w — up1)?
0 k=1
Position Input force u
T L5 T L0
E 1.1 = 0.5
0 - —
000 esevesmen
0.5 o
ndare 05
0.0 —1.0
0 1 2 3 4 5 0 1 2 3 4 5
time t — time t —
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Optimization Results
Optimality criterion (At = 0.1, kpax = 50, M = 10)

s By,
J= / (1 (t) — 1) + 22 (1)’ 4 u (t)2) dt + 100A¢ Z (up — up—1)>
0 k=1
Velocity zo Input force u
T 1.0 T 1.0
B ® s
050 e
/N 00b T e
o1l T T e e
0ot
—01 ~05
0.5 -10
0 1 2 3 4 5 0 1 2 3 4 5
time ¢ — time ¢ —
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Conclusions and Outlook on Future Work

Verified integration of ODEs with non-smooth right-hand side

@ Observer-based identification of parameter intervals

e Consistency with dynamic system model and (uncertain) measured
data

@ Robust optimal control synthesis

o Efficiency of subdivision heuristics

e Validation of alternative estimation procedures (e.g. sliding mode)
= Use of interval bounds for system parameters to describe the
stability domains in the presentation of L. Senkel: Interval-Based
Design of Sliding Mode Control and State Estimation Procedures
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. Conclusions

Conclusions and Outlook on Future Work

Verified integration of ODEs with non-smooth right-hand side
@ Observer-based identification of parameter intervals

e Consistency with dynamic system model and (uncertain) measured
data

@ Robust optimal control synthesis
o Efficiency of subdivision heuristics

e Validation of alternative estimation procedures (e.g. sliding mode)

@ Implementation of parallelization strategies
e Extension to further (higher-dimensional) nonlinear models

@ Derivation of optimal input trajectories wrt. exclusion of infeasible
intervals
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Dziekuje bardzo za uwage!
Thank you for your attention!
Cng.di}igoiga Bawe BHumaHme!

Merei beaucoup pour votre attention!
.Muchas raC|as por su atencion!
Gra/ne mllle per Ia vostra attenzione!
Vielen Dank fur Ihre Aufmerksamkeit!
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