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Motivation: Excursion in Control and Estimation

Plant

Mathematical model                        and

Desired trajectory

Controller
Calculation of the system input to reach

the desired trajectory

 Sensor Characteristics       

ẋ= f (x , p ,u)

w=xd

u ym

y

u(w) y
ym

Figure : Open-loop control u(w).

Nonlinear continuous-time state equations f , reference signal w, state
vector x, control vector u, parameter vector p, measurements ym,
corresponding system output y
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Motivation: Excursion in Control and Estimation

Plant

Mathematical model                           and

Desired trajectory

Controller
Calculation of the system input to reach

the desired trajectory

 Sensor Characteristics       

ẋ= f (x , p ,u , t )

w=xd

u ym

y

u(w , x̂) y
ym

State Estimation (Observer)
Reconstruction of non-measureable system states

by simulating the mathematical system model
in parallel such that                  become equal 

ym , y

x̂

ym , y

Figure : Closed-loop control u(w, x̂).

Nonlinear continuous-time state equations f , reference signal w, state
vector x, control vector u, parameter vector p, measurements ym,
corresponding system output y, estimated state vector x̂
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Motivation: Excursion in Control and Estimation

Plant

Mathematical model                           and

Desired trajectory

Controller
Calculation of the system input to reach

the desired trajectory

 Sensor Characteristics       

ẋ= f (x , p ,u , t )

w=xd

u ym

y

u(w , x̂) y
ym

State Estimation (Observer)
Reconstruction of non-measureable system states

and uncertain parameters
by simulating the mathematical system model
in parallel such that                become equal  

ym , y

x̂

ym , y

Taking into account:
-measurement error intervals
-estimation error intervals
-intervals for uncertain parameters
-measurement noise
-process noise

Taking into account:
-control error intervals
-intervals for uncertain parameters
-process noise

Figure : Closed-loop control with bounded and stochastic uncertainty.
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Motivation: Excursion in Control and Estimation

Plant

Mathematical model                           and

Desired trajectory
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Calculation of the system input to reach

the desired trajectory
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ẋ= f (x , p ,u , t )

w=xd

u ym

y

u(w , x̂) y
ym

State Estimation (Observer)
Reconstruction of non-measureable system states

and uncertain parameters
by simulating the mathematical system model

in parallel such that                   become equal  
ym , y

x̂

Taking into account:
-measurement error intervals
-estimation error intervals
-intervals for uncertain parameters
-measurement noise
-process noise

Taking into account:
-control error intervals
-intervals for uncertain parameters
-process noise

Typical criteria for control systems:
- (Global) Asymptotic stability
- Stabilization of instable plants
- Improvements of dynamics
- Robustness, optimality

ym , y

Figure : Closed-loop control with bounded and stochastic uncertainty.

Goal: Minimization of control errors (difference between reference signal
and system output)
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Experimental Test-Rig

electric 
drive

drive side shaft

load side shaft

deflector rolls 
with drive belt

brake

angle 
measurement
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Experimental Test-Rig

Hardware and Programming

Real-time environment: Bachmann PLC system

Communication via serial interface and Ethernet

Compilation of Matlab/Simulink model for use on process unit

Interface with C-XSC does not work in experiment, because switching
of rounding mode is not fully supported (loss of accuracy can be
neglected)
⇒ Own structure for calculating with intervals
⇒ New implementation of all algebraic operators
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Drive Train Test-Rig: Modeling

electric motor

deflector rolls with toothed belt
(energy transfer)angle measurements

drive side shaft 

load side shaft
  brake (velocity-proportional torque)

JM

ωM

ωB

ϕM,m

ϕB,m

J DS,M

J DS,B

T B

TM

control signal u=T M

Motor torque TM , braking torque TB
Angular velocity of the motor ωM

Measured angles ϕM,m

Jrot contains all mass moments of inertia JDS,M , JDS,B, JM with
respect to the driving shaft

Braking represents a disturbance
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Drive Train Test-Rig: Modeling

ODE of System model

Torque balance Jrot · ω̇M = TM − TB − TS · sign(ωM )

Compensation of static friction TS · sign(ωM,d)

Transmission ratio k = ωM
ωB

Braking torque TB = kD2 · ωB =
kD2
k · ωM = d · ωM

System Model (ϕM angle of rotation of the motor shaft)

f =

[
ẋ1
ẋ2

]
=

[
ϕ̇M

ω̇M

]
=

[
ωM

α · ωM + β · ũ

]
with ũ = TM + TS · sign(ωM )
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Drive Train Test-Rig: Modeling

(In the following control input u(t) instead of ũ(t))

System Model: State-Space Representation

ẋ(t) = A · x(t) + b · u(t) =

[
0 1
0 α

] [
x1(t)
x2(t)

]
+

[
0
β

]
u(t) with

y(t) = cT · x(t) = x1(t)
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Drive Train Test-Rig: Modeling
System Model: State-Space Representation with Intervals

ẋ(t) = A · x(t) + B · u(t) =

[
0 1
0 [α]

] [
x1(t)
x2(t)

]
+

[
0

[β]

]
u(t) with

y(t) = cT · x(t) = x1(t)

Task for Interval-Based Sliding Mode Approaches

Trajectory tracking ϕM − ϕM,d
!

= 0 and ωM − ωM,d
!

= 0 in terms of
motor torque control

Reconstruction of system states and parameter identification

despite

Uncertain parameters α = − d
J ∈ [α] and β = 1

J ∈ [β]

Friction, measurement noise
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Control

Sliding Mode Approaches and Lyapunov Functions

Stability

Control a system such that it does not become unstable despite
disturbances or external influences

Asymptotic Stability

System dynamics converge over time to the system’s equilibrium

Lyapunov Functions

Basis for Sliding Mode Approaches guaranteeing the system’s stability for

Control tasks: calculate a gain in the control law

Estimation tasks: calculate a gain used for the reconstruction of

system states and parameters such that y − ym
!

= 0
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Control

Sliding Mode Approaches without Intervals

Principle (Common Way)

Assume a system in nonlinear controller normal form, y = x1

Definition of a sliding surface s = s(x,xd) =
n−1∑
i=0

κi · (x(i)1 (t)−x(i)1,d(t))

such that the system states tend to this stable mode, ideal case s = 0

Suitable candidate of a Lyapunov function V = 1
2 · s

2 > 0

Stabilization of tracking error (ensure that system states follow the

corresponding desired ones) V̇ = s · ṡ
!
≤ 0

Asymptotic stability if V̇ < 0 for all s 6= 0
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Control

Sliding Mode Approaches without Intervals

Calculation of the Switching Amplitude

Enforcing proportionality between absolute value of the sliding surface and
the time derivative of the Lyapunov function

V̇ (t)
!
≤ −η · |s(t)| with η > 0 and |s(t)| = s(t) · sign(s(t))

s(t) · ṡ(t)
!
≤ −η · s(t) · sign(s(t))

ṡ(t) + η · sign(s(t))
!
< 0 (instead of 0, obtain a convergence rate) (1)

sign(s(t)) =


1, if s(t) > 0
−1, if s(t) < 0
0, else .

Calculate η such that (1) becomes true
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Control

Sliding Mode Approaches without Intervals

Resulting Control Law for a System with x
(n)
1 (t) = u(t)

u(t) = x
(n)
1,d(t)−

n−1∑
i=0

κi · (x(i)1 (t)− x(i)1,d(t))− η · sign(s(t))

Note

Control law depends on all system states (estimation necessary)

Switching amplitude η has to be defined by the user and is constant
over all time (either too large or too small) ⇒ Problem in case of
input constraints ⇒ Control law realizable?

Coefficients κi have to be defined by the user

11/42



Motivation Application Sliding Mode Control Sliding Mode Estimation Summary Conclusion

Control

Sliding Mode Approaches with Intervals

x1(t )

x2(t)

[ xd ,1](t )

[x
d
,2
](
t)

t

 

 

current state           
(not exactly known)

         

desired state trajectory
[ xd ,1](t )=xd ,1(t)+[Δ xc ,1]

x (t k )

x d (t)

CHATTERING 

[ xd ,2](t )=xd ,2(t)+[Δ xc ,2]desired current state x d (t k)

Deviation of the current state from 
desired state included in:

[ x̃1](t )=x1(t)−[ xd ,1](t )
Interval for the tracking error:

[ x̃2](t )=x2(t )−[ xd ,2](t)

Figure : Control error interval for sliding mode control design.
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Control

Sliding Mode Approaches with Intervals

Note

Intervals for control error and parameter uncertainty

Vector-valued sliding surface depending on system order

Calculation of the switching amplitude vector η ∈ Rn×1

Consideration of stochastic processes by using a Lyapunov function
and the Itô differential operator

Stochastic processes (Standard Deviations & Brownian motions for
probability distributions)

Process noise: approximation error between two subsequent time steps

Measurement noise: uncertainty in sensors

Over-approximation of external disturbances and unknown effects on
system dynamics
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Control

Itô Differential Operator to Consider Noise Processes

Example

Dynamic system ẋ = −x+ p · x · w
State x

Parameter p

Normally distributed noise w with expectation µ = 0, standard
deviation G = 1

Asymptotic stability of the deterministic part ẋ = −x for all x ∈ R

Formulation as Stochastic Differential Equation

dx = −x︸︷︷︸
f(x)

dt+ p · x︸︷︷︸
g(x)

dw
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Control

Itô Differential Operator to Consider Noise Processes

Formulation as Stochastic Differential Equation

dx = −x︸︷︷︸
f(x)

dt+ p · x︸︷︷︸
g(x)

dw

Lyapunov function

V (x) =
1

2
x2 > 0

How to calculate the time derivative of the Lyapunov function for a system
that is affected by stochastic processes?

Itô Differential Operator

L(V (x)) =
∂V

∂t
+
∂V

∂x
· f(x) +

1

2
trace

{
g(x) · ∂

2V

∂x2
· g(x)

}
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Control

Itô Differential Operator to Consider Noise Processes

dx = −x︸︷︷︸
f(x)

dt+ p · x︸︷︷︸
g(x)

dw with V (x) =
1

2
x2 > 0

Itô Differential Operator

L(V (x)) =
∂V

∂t︸︷︷︸
0

+
∂V

∂x︸︷︷︸
x

·f(x) +
1

2
trace

g(x) · ∂
2V

∂x2︸︷︷︸
1

·g(x)


= x · (−x) +

1

2
trace

{
g2(x)

}
= −x2 +

1

2
· (p · x)2 = −x2 · (1− 1

2
· p2)
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Control
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Control

Itô Differential Operator to Consider Noise Processes

Itô Differential Operator

L(V (x)) =
∂V

∂t︸︷︷︸
0

+
∂V

∂x︸︷︷︸
x

·f(x) +
1

2
trace

g(x) · ∂
2V

∂x2︸︷︷︸
1

·g(x)


= −x2 +

1

2
· (p · x)2 = −x2 ·

(
1− 1

1
· p2
)

!
< 0 for stability

Consequence

Stochastic system is only asymptotically stable, if(
1− 1

1
· p2
)
< 0 ⇒ p2 < 2 ⇒ p ∈

[
−
√

2;
√

2
]
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Control

Itô differential operator to consider noise processes

Itô differential operator

L(V (x)) =
∂V

∂t︸︷︷︸
0

+
∂V

∂x︸︷︷︸
x

·f(x) +
1

2
trace

g(x) · ∂
2V

∂x2︸︷︷︸
1

·g(x)


= −x2 +

1

2
· (p · x)2 = −x2 · (1− 1

2
· p2)

!
< 0 for stability

Consequence

Stochastic system is only asymptotically stable, if
(1− 1

1 · p
2) < 0 ⇒ p2 < 2 ⇒ −

√
2 < p <

√
2

⇒ System can nevertheless become unstable due to the stochastic noise w
⇒ Control necessary
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Control

Sliding Mode Control: Scheme (g(x) = Gp)

d x= f (x (t ) ,u(t) ,[ p ])dt+G pd w p
y=C ([ p ]) x(t )+Gm d wm

System model, stochastic ODE
with interval parameters Desired state trajectories

up to the   -th derivative
xd=[ x1,d , x2,d , ... , xn , d ]

T
n
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Control

Sliding Mode Control: Scheme (g(x) = Gp)

V=
1
2
( x−xd )

T P ( x−xd )

Suitable cancidate of a 
Lyapunov function

d x= f (x (t ) ,u(t) ,[ p ])dt+G pd w p
y=C ([ p ]) x(t )+Gm d wm

System model, stochastic ODE
with interval parameters Desired state trajectories

up to the   -th derivative
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T
n
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Control

Sliding Mode Control: Scheme (g(x) = Gp)

Itô differential operator

L(V )=( ∂V
∂(x−xd ))

T

( f ( x ,u , [ p ])− ẋd )+
1
2
trace{G pT ∂2V

∂( x−xd )
2
G p}

V=
1
2
( x−xd )

T P ( x−xd )

Suitable cancidate of a 
Lyapunov function

d x= f (x (t ) ,u(t) ,[ p ])dt+G pd w p
y=C ([ p ]) x(t )+Gm d wm

System model, stochastic ODE
with interval parameters Desired state trajectories

up to the   -th derivative
xd=[ x1,d , x2,d , ... , xn , d ]

T
n
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Control

Sliding Mode Control: Scheme (g(x) = Gp)

Robust stability & minimum convergence rate
L(V )<−qT abs(x−xd )

Itô differential operator

L(V )=( ∂V
∂(x−xd ))

T

( f ( x ,u , [ p ])− ẋd )+
1
2
trace{G pT ∂2V

∂( x−xd )
2
G p}

V=
1
2
( x−xd )

T P ( x−xd )

Suitable cancidate of a 
Lyapunov function

d x= f (x (t ) ,u(t) ,[ p ])dt+G pd w p
y=C ([ p ]) x(t )+Gm d wm

System model, stochastic ODE
with interval parameters Desired state trajectories

up to the   -th derivative
xd=[ x1,d , x2,d , ... , xn , d ]

T
n

19/42



Motivation Application Sliding Mode Control Sliding Mode Estimation Summary Conclusion

Control
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η
Calculation of the
switching amplitudes
in each time step
dim (η)=n×1
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Control

Sliding Mode Control: Scheme (g(x) = Gp)

Control law in

u=uFF+uFB+ηT sign (x−xd )

f (x (t) ,u(t ) ,[ p])

Robust stability & minimum convergence rate
L(V )<−qT abs(x−xd )

Itô differential operator

L(V )=( ∂V
∂(x−xd ))

T

( f ( x ,u , [ p ])− ẋd )+
1
2
trace{G pT ∂2V

∂( x−xd )
2
G p}

V=
1
2
( x−xd )

T P ( x−xd )

Suitable cancidate of a 
Lyapunov function

d x= f (x (t ) ,u(t) ,[ p ])dt+G pd w p
y=C ([ p ]) x(t )+Gm d wm

System model, stochastic ODE
with interval parameters Desired state trajectories

up to the   -th derivative
xd=[ x1,d , x2,d , ... , xn , d ]

T
n

η
Calculation of the
switching amplitudes
in each time step
dim (η)=n×1

All calculations with
    and[ p ]=[ p ; p ] [x d ]
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Control

Derivation of the Switching Amplitude

Itô Differential Operator

L(V (t)) =
∂V

∂t
+

(
∂V

∂x̃

)T

·(f([x] (t) , [p],u(t))− ẋd(t))+
1

2
trace

{
gT ∂

2V

∂x̃2
g

}

Lyapunov function V = 1
2 x̃

TPx̃

Tracking error / sliding surface

s(t) = x̃(t) = x(t)− xd(t) =


x1(t)− x1,d
x2(t)− x2,d

...
xn(t)− xn,d

 ∈ Rn×1
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Control

Derivation of the Switching Amplitude

Itô Differential Operator

L(V (t)) =
∂V

∂t
+

(
∂V

∂x̃

)T

·(f([x] (t) , [p],u(t))− ẋd(t))+
1

2
trace

{
gT ∂

2V

∂x̃2
g

}

Stochastic dynamic system dx = f(x,p,u)dt+ gdw

Deterministic system with parameter uncertainty and control error
intervals f([x](t), [p], u(t)) = A · [x](t) + B · u(t) + d(t),
[x](t) = x(t) + [∆xc]

Interval system matrix A
Interval input vector B
External non-modeled effects d(t) (e.g. friction)

Control error interval [∆xc]
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Control

Derivation of the Switching Amplitude

Itô Differential Operator

L(V (t)) =
∂V

∂t
+

(
∂V

∂x̃

)T

·(f([x] (t) , [p],u(t))− ẋd(t))+
1

2
trace

{
gT ∂

2V

∂x̃2
g

}

Extended Control Law

u(t) = uFF(t) + uFB(t) + uS(t)

Feedforward control: uFF(t) = S · w, w = x1

State feedback control: uFB(t) = −kT · x̂(t)

Switching control: uS(t) = ηT · sign(s(t))

Standard deviation of process noise g = Gp
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Control

Derivation of the Switching Amplitude

Itô Differential Operator

L(V (t)) =
∂V

∂t︸︷︷︸
0

+

(
∂V

∂x̃

)T

︸ ︷︷ ︸
[x̃]T (t)·P

· (f([x] (t) , [p],u(t))− ẋd(t)) +

1

2
trace

gT ∂
2V

∂x̃2︸︷︷︸
P

g


Calculation of the Switching Amplitude

Inserting f([x] (t) , [p],u(t) and employing a condition for a minimum

convergence rate L(V (t))
!
< −qT · abs ([x̃](t)) ∈ Rn×1, qi > 0
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Control

Derivation of the switching amplitude

3 Cases

Inserting f([x] (t) , [p],u(t) and employing a condition for a minimum

convergence rate L(V (t))
!
< −qT · abs ([x̃](t)) ∈ Rn×1

ηi =


sup
(

[M]+i ·
(
−[V̇a](t)− qT · abs ([x̃](t))− TS

))
+ ε, if sup([M]i) < 0

inf
(

[M]+i ·
(
−[V̇a](t)− qT · abs ([x̃](t))− TS

))
− ε, if inf([M]i) > 0

0, else

[M]T := BT ·P · |[x̃]| (t) , left pseudo inverse

[M]+ =
(
[M]T · [M]

)−1 · [M]T ( dim([M]) = n× 1)

Small value guaranteeing the strict inequality ε
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Control

Derivation of the switching amplitude

3 Cases

Inserting f([x] (t) , [p],u(t) and employing a condition for a minimum

convergence rate L(V (t))
!
< −qT · abs ([x̃](t)) ∈ Rn×1

ηi =


sup
(

[M]+i ·
(
−[V̇a](t)− qT · abs ([x̃](t))− TS

))
+ ε, if sup([M]i) < 0

inf
(

[M]+i ·
(
−[V̇a](t)− qT · abs ([x̃](t))− TS

))
− ε, if inf([M]i) > 0

0, else

|[x̃]| =


[x̃1] · sign([x̃1]) [x̃1] · sign([x̃2]) . . . [x̃1] · sign([x̃n])
[x̃2] · sign([x̃1]) [x̃2] · sign([x̃2]) . . . [x̃2] · sign([x̃n])

...
...

. . .
...

[x̃n] · sign([x̃1]) [x̃n] · sign([x̃2]) . . . [x̃n] · sign([x̃n])


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Control

Derivation of the switching amplitude

3 Cases

Inserting f([x] (t) , [p],u(t) and employing a condition for a minimum

convergence rate L(V (t))
!
< −qT · abs ([x̃](t)) ∈ Rn×1

ηi =


sup
(

[M]+i ·
(
−[V̇a](t)− qT · abs ([x̃](t))− TS

))
+ ε, if sup([M]i) < 0

inf
(

[M]+i ·
(
−[V̇a](t)− qT · abs ([x̃](t))− TS

))
− ε, if inf([M]i) > 0

0, else

[V̇a] = [x̃]T ·P · (A− BkT ) · x + [x̃]T ·P · B · uFF − [x̃]T ·P · ẋd

Sign function sign([x̃i]) =


1 if inf([x̃i]) > 0
−1 if sup([x̃i]) < 0
0 else
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Control

Derivation of the switching amplitude

3 Cases

Inserting f([x] (t) , [p],u(t) and employing a condition for a minimum

convergence rate L(V (t))
!
< −qT · abs ([x̃](t)) ∈ Rn×1

ηi =


sup
(

[M]+i ·
(
−[V̇a](t)− qT · abs ([x̃](t))− TS

))
+ ε, if sup([M]i) < 0

inf
(

[M]+i ·
(
−[V̇a](t)− qT · abs ([x̃](t))− TS

))
− ε, if inf([M]i) > 0

0, else

abs ([x̃](t)) =


|[x1](t)− x1,d(t)|
|[x2](t)− x2,d(t)|

...

|[xn](t)− xn,d(t)|


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Control

Sliding Mode Approaches with Intervals

Note

Control law depends on all system states (estimation necessary)

One switching amplitude for each state enables smaller switching
amplitudes ⇒ as small as possible in each time step ⇒ less violation
of input range constraints

Intervals included to consider parameter uncertainty (not exactly
known / varying over time)

Consideration of noisy processes

Implemented using C-XSC in simulation
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Control

Sliding Mode Approaches with Intervals

For detailed information, see
Experimental and Numerical Validation of a Reliable Sliding Mode Control
Strategy Considering Uncertainty with Interval Arithmetic to be published
in the Mathematical Engineering Series ”Variable-Structure Approaches:
Analysis, Simulation, Robust Control and Estimation of Uncertain
Dynamic Processes”
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Control - Simulative and Experimental Results

Simulative Results - Angle

Figure : Common sliding mode control Figure : Interval sliding mode control
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Control - Simulative and Experimental Results

Simulative Results - Angular velocity

Figure : Common sliding mode control Figure : Interval sliding mode control
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Control - Simulative and Experimental Results

Experimental Results of the ISMC
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Figure : Experimental results for the desired and measured angle (left) and the
corresponding deviation of both (right), Improvement 55% compared to pure
state-feedback control.
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Control - Simulative and Experimental Results

Experimental Results of the ISMC
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Figure : Experimental results for the desired and estimated angular velocity (left)
and the corresponding deviation of both (right).
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Observer

State and Parameter Estimation

Aim

Reconstruction of non-measurable system states and uncertain
parameters (specified by range bounds) such that the system is
guaranteed to be stable

Use these estimations in the controller

How?

Simultaneous evaluation of a parallel model additionally to the
system/test-rig and taking into account the deviation between the
measured data and the output of the parallel model
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Observer

Sliding Mode Techniques for State and Parameter
Estimation

ODEs of a Dynamic System
ẋ(t) = f (x(t),p,u(t)) = A · x (t) +B · u(t) + S · ξ (x(t),u(t))
y(t) = C · x (t)

Nominal expressions of system, input and output matrices
A := A(x(t),p) ∈ [A], B := B(x(t),p) ∈ [B] and
C := C(x(t),p) ∈ [C] (included in interval expressions)

State vector x(t)

Uncertain/bounded parameters p(t) ∈ [p]

Input vector u(t)

Representation of a-priori unknown and nonlinear terms
S · ξ (x(t),u(t)) with S ∈ Rn×q and ‖ξ (x,u)‖ ≤ ξ (fixed upper
bound of the vector norm ξ)
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Observer

Sliding Mode Techniques for State and Parameter
Estimation

Sliding Mode Observer ODEs Considering Uncertainty ˆ̃
f :=

ˆ̃
f(x̂ (t) , [p],u(t))

ˆ̃
f =f̂(x̂ (t) , [p],u(t)) + P+[Ĉ]T ·Hs · sign(em + [∆ym])

:=[Â] · x̂ (t) + [B̂] · u (t) + Hp · [em] + P+[Ĉ]T ·Hs sign(em + [∆ym])

ŷm :=[Ĉ] · x̂ (t)

Combination of locally valid linear system model and variable
structure part that handles uncertainty and nonlinearities to stabilize
the error dynamics with certainty

Uncertainty in parameters and measurements → interval arithmetic

L. Senkel et al: Interval-Based Sliding Mode Observer Design for Nonlinear Systems with

Bounded Measurement and Parameter Uncertainty , IEEE Intl. Conference on Methods

and Models in Automation and Robotics MMAR 2013, Miedzyzdroje, Poland, 2013.
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Observer

Sliding Mode Techniques for State and Parameter
Estimation

Sliding Mode Observer ODEs Considering Uncertainty
ˆ̃f := ˆ̃f(x̂ (t) , [p],u(t))

ˆ̃
f =f̂(x̂ (t) , [p],u(t)) + P+[Ĉ]T ·Hs · sign(em + [∆ym])

:=[Â] · x̂ (t) + [B̂] · u (t) + Hp · [em] + P+[Ĉ]T ·Hs sign(em + [∆ym])

ŷm :=[Ĉ] · x̂ (t)

Instead of nominal system, input and output matrices → interval
matrices [Â], [B̂] and [Ĉ] denoting the interval evaluations of
Â(x̂ (t) , [p]) ∈ [Â], B̂(x̂ (t) , [p]) ∈ [B̂] and Ĉ(x̂ (t) , [p]) ∈ [Ĉ]

Measurement error vector em(t) ∈ [em] = ym − ŷm + [∆ym]
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Observer

Sliding Mode Techniques for State and Parameter
Estimation

Sliding Mode Observer ODEs Considering Uncertainty
ˆ̃f := ˆ̃f(x̂ (t) , [p],u(t))

ˆ̃
f =f̂(x (t) , [p],u(t)) + P+[Ĉ]T ·Hs · sign(em + [∆ym])

:=[Â] · x̂ (t) + [B̂] · u (t) + Hp · [em] + P+[Ĉ]T ·Hs sign(em + [∆ym])

ŷm :=[Ĉ] · x̂ (t)

Underlying stabilization of the error dynamics observer gain matrix Hp

Matrix P results from solving the Lyapunov equation
Ã ·P + P · ÃT + Q = 0 with Ã = Â−Hp · Ĉ and Q > 0

Online evaluation of the switching amplitudes Hs = diag(hs) in each
time step to handle uncertainty
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Observer

Sliding Mode Techniques for State and Parameter
Estimation

Itô Differential Operator for Consideration of Stochastic Disturbances

Suitable candidate of a Lyapunov function V (t) = 1
2(x− x̂)TP(x− x̂)

Ensure the system’s stability for reliable estimations with V̇

System affected by stochastic processes ⇒ V̇ by using Itô differential
operator

L(V (t)) = ∂V
∂t +

(
∂V
∂e

)T ·(f(x, [p],u)− ˆ̃
f(x̂, [p],u)

)
+ 1

2 trace
{
GT ∂2V

∂e2
G
}
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Observer

Sliding Mode Techniques for State and Parameter
Estimation

Itô Differential Operator for Consideration of Stochastic Disturbances

L(V (t)) = ∂V
∂t +

(
∂V
∂e

)T ·(f(x, [p],u)− ˆ̃
f(x̂, [p],u)

)
+ 1

2 trace
{
GT ∂2V

∂e2
G
}

System f(x, [p],u) and observer parallel model ˆ̃
f(x̂, [p],u)

Estimation error e = x− x̂

Standard deviation of process and measurement noise
G = [Gp −HpGm] to simulate neglected nonlinear phenomena or
inaccurate sensor measurements
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Observer

Sliding Mode Techniques for State and Parameter
Estimation

Calculation of the Switching Amplitude

Solving L(V (t))
!
< −qT |[em]| with respect to Hs, qi > 0

Cascaded structure due to multiplicative coupling of states and parameters
to be estimated

For further details see
Sliding Mode Approaches Considering Uncertainty for Reliable Control and
Computation of Confidence Regions in State and Parameter Estimation
presented at 16th GAMM-IMACS International Symposium on Scientifc
Computing, Computer Arithmetic and Validated Numerics, SCAN 2014,
Würzburg Germany
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Simulative and Experimental Results

Simulative and Experimental Validation (ISMO)
State Estimation
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(b) Estimation error x2.

Figure : Experimental results
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Simulative and Experimental Results

Simulative and Experimental Validation (ISMO)
Parameter Estimation α = [−1.5, 4.5], β = [30, 90]
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Figure : Simulative (a) and experimental results (b)
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Simulative and Experimental Results

Simulative and Experimental Validation

Comparison

One driving cycle (acceleration, deceleration) takes 8 sec, repeated
periodically

ISMO: adaptation of parameters and states takes place at each
discretization step

Least Squares Estimation (LSE): adaptation of parameters once per
driving cycle

Comparison of root-mean square errors for angle and velocity

LSE ISMO Improvement

x1 ∆x1,LS = 2730 ∆x1,ISMO = 261.36 90.43%
x2 ∆x2,LS = 4.79 ∆x2,ISMO = 4.51 5.85%
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Comparison of Control and Observer

ISMC ISMO

Sliding surface Tracking error Estimation error
x̃ = x− xd e = x− x̂

Lyapunov function V = 1
2 x̃

TPC x̃ V = 1
2e

TPOe

Switching amplitude η ∈ Rn×1 hs ∈ Rny×1

Bounded uncertainty [p], [∆xc] [p], [∆xe], [∆xm]

Stochastic uncertainty process noise process noise
measurement noise

Condition L(V )
!
< qC · abs([x̃]) L(V )

!
< qO · |[em]|

Aim x
!

= xd x̂
!

= x
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Conclusions and Outlook

Conclusions

Interval sliding mode control and observer

Simultaneous identification of unknown system parameters and
estimation of system state

Consideration of bounded and stochastic disturbances

Validation in simulation and in experiment

Systematic computation of variable structure gains

Outlook on Further Work

Simultaneous implementation of control and observer on the test-rig

Experimental validations of these Sliding Mode Approaches for other
real-time applications
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Thank you for your attention!
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