An interval observer-based anti-disturbance control strategy for rigid satellite

Zepeng Zhou (Ph.D Student)

Tongji University College of Electronics and Information Engineering

Model and Target Main Work Simulation Acknowledgement

Outline

Model and Target

Main Work Disturbance Reconstruction PPC Controller

Simulation

System Model

Based on the MRPs, the rigid satellite attitude system is given as,

$$\dot{\sigma} = \frac{1}{4} \left[\left(1 - \sigma^T \sigma \right) I_3 + 2\sigma^* + 2\sigma\sigma^T \right] \omega = G(\sigma)\omega$$
(1.1)
$$J\dot{\omega} = -\omega^* J\omega + D\tau + d$$
(1.2)

where

 σ is the system's attitude, ω is the angular velocity, τ is the control input, d is a bounded external disturbance.

In addition, $d^- \le d(t) \le d^+$ where d^- and d^+ are two known vectors.

Control Targets

Designing an interval observer-based disturbance reconstruction strategy;

2. Based on command filter method, developing an intergral sliding mode controller.

Control Targets

- 1. Designing an interval observer-based disturbance reconstruction strategy;
- 2. Based on command filter method, developing an intergral sliding mode controller.

Model and Target Main Work Simulation Acknowledgement

Outline

Model and Target

Main Work Disturbance Reconstruction PPC Controller

Simulation

System Block

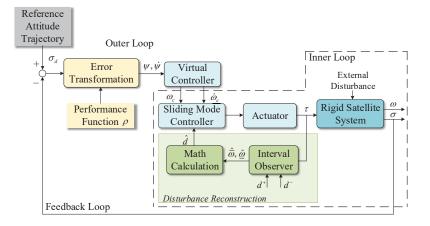


Figure 1: System Block

chowze		

For (1.2), an interval observer is designed as,

$$\dot{\hat{\omega}} = -J^{-1}\omega^{\times}J\omega + J^{-1}D\tau + (J^{-1})^{+}d^{+} - (J^{-1})^{-}d^{-} - L(\omega - \hat{\omega})$$
(2.1)

$$\dot{\underline{\omega}} = -J^{-1}\omega^{*}J\omega + J^{-1}D\tau + (J^{-1})^{+}d^{-} - (J^{-1})^{-}d^{+} - L(\omega - \underline{\hat{\omega}})$$
(2.2)

Furthermore, we have,

$$\omega(t) = \Omega(t)\hat{\bar{\omega}}(t) + (I_3 - \Omega(t))\hat{\underline{\omega}}(t)$$
(2.3)

where $\Omega(t) = \text{diag}\{a_v(t)\}, a_v(t) = [a_1(t); a_2(t); a_3(t)]$ and $0 \le a_i(t) \le 1, i = 1, 2, 3.$

For (1.2), an interval observer is designed as,

$$\dot{\tilde{\omega}} = -J^{-1}\omega^{*}J\omega + J^{-1}D\tau + (J^{-1})^{+}d^{+} - (J^{-1})^{-}d^{-} - L(\omega - \hat{\omega})$$
(2.1)

$$\dot{\underline{\omega}} = -J^{-1}\omega^{*}J\omega + J^{-1}D\tau + (J^{-1})^{+}d^{-} - (J^{-1})^{-}d^{+} - L(\omega - \underline{\hat{\omega}})$$
(2.2)

Furthermore, we have,

$$\omega(t) = \Omega(t)\hat{\bar{\omega}}(t) + (I_3 - \Omega(t))\hat{\underline{\omega}}(t)$$
(2.3)

where $\Omega(t) = \text{diag}\{a_{\nu}(t)\}, a_{\nu}(t) = [a_1(t); a_2(t); a_3(t)]$ and $0 \le a_i(t) \le 1, i = 1, 2, 3.$

By referring (1.2), (2.1)-(2.3), *d* is formulated as,

$$d = J \cdot \left[Q_1 \left(\hat{\bar{\omega}} - \hat{\underline{\omega}} \right) + Q_2 d^+ + Q_3 d^- \right]$$

where

$$N_1 = -L(\Omega - I_3) \text{ and } N_2 = -L\Omega,$$

$$Q_1 = \Omega N_1 + (I_3 - \Omega)N_2 + \dot{\Omega},$$

$$Q_2 = \Omega (J^{-1})^+ - (I_3 - \Omega)(J^{-1})^-,$$

$$Q_3 = -\Omega (J^{-1})^- + (I_3 - \Omega)(J^{-1})^+.$$

To calculate $\dot{\Omega}$, the Levant differentiator¹ is used here. Then we have,

$$\hat{Q}_1 = \Omega N_1 + (I_3 - \Omega)N_2 + \hat{\Omega}$$
$$d = J \cdot \left[\hat{Q}_1 \left(\hat{\omega} - \underline{\hat{\omega}}\right) + Q_2 d^+ + Q_3 d^-\right]$$

¹Levant A. Robust exact differentiation via sliding mode technique. Automatica 1998;34(3):379-84.

Algorithm

- 1. Design an interval observer for ω ;
- 2. Constructing $\omega(t) = \Omega(t)\hat{\omega}(t) + (I_3 \Omega(t))\hat{\omega}(t);$
- 3. Calculating $d = J \cdot \left[\hat{Q}_1\left(\hat{\omega} \hat{\underline{\omega}}\right) + Q_2 d^+ + Q_3 d^-\right]$

- Different selections of d^{*} and d^{*} will produce almost the same disturbance reconstruction;
- The control input is decoupled from the expression of d;
- 3. The reconstruction can be obtained within a finite time.

Algorithm

- 1. Design an interval observer for ω ;
- 2. Constructing $\omega(t) = \Omega(t)\hat{\bar{\omega}}(t) + (I_3 \Omega(t))\hat{\underline{\omega}}(t);$
- 3. Calculating $d = J \cdot \left[\hat{Q}_1 \left(\hat{\omega} \hat{\omega} \right) + Q_2 d^+ + Q_3 d^- \right]$

- 1. Different selections of d^+ and d^- will produce almost the same disturbance reconstruction;
- 2. The control input is decoupled from the expression of *d*;
- 3. The reconstruction can be obtained within a finite time.

Algorithm

- 1. Design an interval observer for ω ;
- 2. Constructing $\omega(t) = \Omega(t)\hat{\omega}(t) + (I_3 \Omega(t))\hat{\omega}(t);$
- 3. Calculating $d = J \cdot \left[\hat{Q}_1\left(\hat{\omega} \hat{\omega}\right) + Q_2 d^+ + Q_3 d^-\right]$.

- 1. Different selections of d^+ and d^- will produce almost the same disturbance reconstruction;
- 2. The control input is decoupled from the expression of *d*;
- 3. The reconstruction can be obtained within a finite time.

Algorithm

- 1. Design an interval observer for ω ;
- 2. Constructing $\omega(t) = \Omega(t)\hat{\omega}(t) + (I_3 \Omega(t))\hat{\omega}(t);$

3. Calculating
$$d = J \cdot \left[\hat{Q}_1\left(\hat{\omega} - \hat{\omega}\right) + Q_2 d^+ + Q_3 d^-\right]$$
.

- Different selections of d⁺ and d⁻ will produce almost the same disturbance reconstruction;
- 2. The control input is decoupled from the expression of *d*;
- 3. The reconstruction can be obtained within a finite time.

Algorithm

- 1. Design an interval observer for ω ;
- 2. Constructing $\omega(t) = \Omega(t)\hat{\omega}(t) + (I_3 \Omega(t))\hat{\omega}(t);$

3. Calculating
$$d = J \cdot \left[\hat{Q}_1\left(\hat{\omega} - \hat{\omega}\right) + Q_2 d^+ + Q_3 d^-\right]$$
.

- Different selections of d⁺ and d⁻ will produce almost the same disturbance reconstruction;
- 2. The control input is decoupled from the expression of *d*;
- 3. The reconstruction can be obtained within a finite time.

Algorithm

- 1. Design an interval observer for ω ;
- 2. Constructing $\omega(t) = \Omega(t)\hat{\omega}(t) + (I_3 \Omega(t))\hat{\omega}(t);$

3. Calculating
$$d = J \cdot \left[\hat{Q}_1\left(\hat{\omega} - \hat{\omega}\right) + Q_2 d^+ + Q_3 d^-\right]$$
.

- Different selections of d⁺ and d⁻ will produce almost the same disturbance reconstruction;
- 2. The control input is decoupled from the expression of *d*;
- 3. The reconstruction can be obtained within a finite time.

PPC-Error Transformation

The PPC stands for prescribed performance control.

Objectives

- 1. The transient response is bounded by a preset boundary pair;
- 2. The steady-state response will not violate the boundary set.

The output constraint for $ilde{\sigma}$ is set as,

$$-\underline{\delta}(t)\rho(t) < \tilde{\sigma} < \overline{\delta}(t)\rho(t)$$

Importing $S(\cdot)$ as $S(\psi_i) = \frac{\overline{\delta}_i(t)e^{\psi_i} - \underline{\delta}_i(t)e^{-\psi_i}}{e^{\psi_i} + e^{-\psi_i}}$, it has,

$$\dot{\psi} = \varrho \dot{\tilde{\sigma}} + v$$

Then the constrained output problem is transformed into the stability problem of ψ .

PPC-Error Transformation

The PPC stands for prescribed performance control.

Objectives

- 1. The transient response is bounded by a preset boundary pair;
- 2. The steady-state response will not violate the boundary set.

The output constraint for $ilde{\sigma}$ is set as,

$$-\underline{\delta}(t)\rho(t) < \tilde{\sigma} < \overline{\delta}(t)\rho(t)$$

Importing $S(\cdot)$ as $S(\psi_i) = \frac{\overline{\delta}_i(t)e^{\psi_i} - \underline{\delta}_i(t)e^{-\psi_i}}{e^{\psi_i} + e^{-\psi_i}}$, it has,

$$\dot{\psi} = \varrho \dot{\tilde{\sigma}} + v$$

Then the constrained output problem is transformed into the stability problem of ψ .

PPC-Error Transformation

The PPC stands for prescribed performance control.

Objectives

- 1. The transient response is bounded by a preset boundary pair;
- 2. The steady-state response will not violate the boundary set.

The output constraint for $\tilde{\sigma}$ is set as,

$$-\underline{\delta}(t)\rho(t) < \tilde{\sigma} < \overline{\delta}(t)\rho(t)$$

Importing $S(\cdot)$ as $S(\psi_i) = \frac{\overline{\delta}_i(t)e^{\psi_i} - \underline{\delta}_i(t)e^{-\psi_i}}{e^{\psi_i} + e^{-\psi_i}}$, it has,

$$\dot{\psi} = \varrho \dot{\tilde{\sigma}} + v$$

Then the constrained output problem is transformed into the stability problem of ψ .

Outer Loop

For the outer loop, the sliding mode surface is selected as,

$$\begin{split} s_{\psi} &= \psi(t) + \Gamma_{\psi} \psi_{I}(t) \\ &= \psi(t) + \Gamma_{\psi} \int_{0}^{t} k_{\psi 1} \psi(\tau_{\psi}) + k_{\psi 2} \psi^{q_{\psi}/p_{\psi}}(\tau_{\psi}) d\tau_{\psi} \\ \dot{\psi}_{I} &= k_{\psi 1} \psi(t) + k_{\psi 2} \psi^{q_{\psi}/p_{\psi}}(t), \quad \psi_{I}(0) = -\frac{\psi(0)}{\Gamma_{\psi}} \end{split}$$

Due to the implement of command filter, the compensated tracking error Y is given like,

$$Y = s_{\psi} - \zeta$$

Then the virtual controller ω_d is chosen as,

$$\omega_d = G^{-1} \varrho^{-1} \left(-k_1 s_{\psi} - \nu - k_2 \operatorname{sig}^{l_1}(Y) - \Gamma_{\psi} k_{\psi 1} \psi(t) - \Gamma_{\psi} k_{\psi 2} \psi^{q_{\psi}/p_{\psi}}(t) \right)$$

and ζ is governed by,

$$\dot{\zeta} = -k_1\zeta + \varrho G(\omega_c - \omega_d)$$

Inner Loop

For the inner loop, the sliding mode surface is selected as,

$$s_b = e_\omega + \Lambda_1 \mathbf{Y} + \Lambda_2 \operatorname{sig}^{l_1}(\mathbf{Y})$$

Then the finite time controller is chosen as,

$$\begin{aligned} \tau &= \tau_{a1} + \tau_{a2} \\ \tau_{a1} &= D^{\dagger} J \left(-k_5 s_b - k_6 \text{sig}^{l_1}(s_b) + J^{-1} \omega^* J \omega - J^{-1} \hat{d} \\ &+ \dot{\omega}_c - F - \frac{s_b (\|\varrho G\| + \chi) \|Y^T e_\omega\|}{\|s_b\|^2 + k_3} \right) \\ \tau_{a2} &= D^{\dagger} J (-\Lambda_3 s_b - \Lambda_4 \text{sign}(s_b)) \end{aligned}$$

and χ which is used to address coupling between outer and inner loop satisfies,

$$\dot{\chi} = \begin{cases} \frac{\eta}{\chi} \cdot \frac{\chi \|s_b\|^2 - \|\varrho G\| k_4}{\|s_b\|^2 + k_3} \|\mathbf{Y}^T \boldsymbol{e}_{\omega}\| - l_2 \chi - l_3 \operatorname{sig}^{l_1}(\chi), & \chi \neq 0\\ -k_a \boldsymbol{e}^{-k_a t}, & \chi = 0 \end{cases}$$

Model and Target Main Work Simulation Acknowledgement

Outline

Model and Target

Main Work Disturbance Reconstruction PPC Controller

Simulation

Simulation

Some key parameters are given as,² $d = 0.01 \times [-2\sin(0.05t); 2\sin(0.07t); \cos(0.05t)]Nm$

Table 1: Parameters of the interval observer

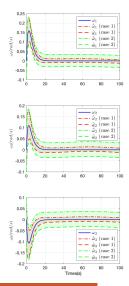
	Parameters
Interval	$\hat{\omega}(0) = [0.1; 0.1; 0.1], \underline{\omega}(0) = [-0.1; -0.1; -0.1]$
observer	$L = \begin{bmatrix} -0.6, 0.2, 0.2; 0.2, -0.6, 0.2; 0.2, 0.2, -0.6 \end{bmatrix}$

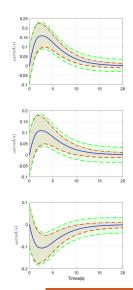
Table 2: Parameters of disturbance bounds

Observer	Parameters
Case 1	$d^+ = [0.03; 0.03; 0.03], d^- = -[0.03; 0.03; 0.03]$
Case 2	$d^+ = [0.1; 0.1; 0.1], d^- = -[0.1; 0.1; 0.1]$

²The detailed parameters are in https://doi.org/10.1016/j.isatra.2020.05.048

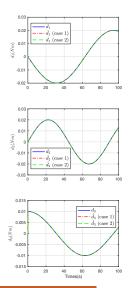
Interval Estiamtion

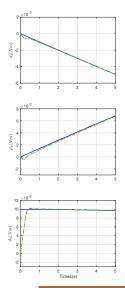




chowzepeng@tongji.edu.cn

TJU CEIE

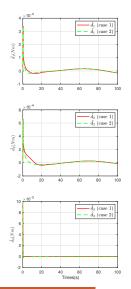


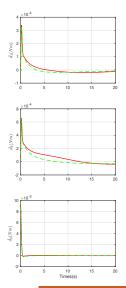


chowzepeng@tongji.edu.cr

TJU CEIE

Reconstruction Error

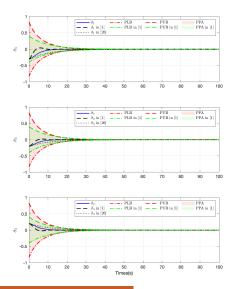




chowzepeng@tongji.edu.cn

TJU CEIE

Tracking Error Trajectory



The references are given as, [1]DOI: 10.1109/TIE.2018.2838065 [26]DOI: 10.1016/j.ast.2012.11.007

Model and Target Main Work Simulation Acknowledgement

Thank for your attention.