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Switched systems

Definition

Switched systems represent a class of complex systems psechpf :
@ a finite number of continuous subsystems (modes)
@ a logical rule operates switching between subsystems
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Switched systems
Definition

Switched systems represent a class of complex systems psechpf :
@ a finite number of continuous subsystems (modes)

@ alogical rule operates switching between subsystems

Industrial systems

Switched systems represent an effective tool for des@ilvidustrial systems :
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Switched systems

State control
Stability

[Branicky, 1998]

[Liberzon and Morse, 1999]
[Hetel et al., 2006]

[Zhu and Antsaklis, 2015]
[Yang and Liberzon, 2017]

State estimation

[Alessandri and Coletta, 2003]
[Barbot et al., 2007]

[Fliess et al., 2008]

[Bejarano and Fridman, 2011]
[Arichi et al., 2015]

[Huang et al., 2019],..

systems

L4

Fault diagnosis

[Belkhiat et al., 2009] [Davoodi et al., 2013]
[Wang et al., 2009] [Du et al., 2015]
[Jiang et al., 2011] [Zhai et al., 2016], [Su et al., 2020Q],.
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Fault diagnosis
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State estimation

A number of results are available for the estimation problem

Luenberger Observers

Kalman Filter

Sliding mode observers

D

Other observers

[Luenberger, 1964]
[Jouili et al., 2012]
[Rego et al., 2017]

[Lu and Yang, 2017]

[Kalman, 1960]
[Welch et al., 1995]
[Yu et al., 2005]

[Beccuti et al., 2009]

[Levant, 2014]
[Fridman et al., 2008]
[Van Gorp et al., 2014]

[Teong Ooi et al., 2015]

[Raissi et al., 2012]
[Rios et al., 2015]
[Chen et al., 2016]

[Alhelou et al., 2019]
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Interval estimation

In the presence of uncertainties
@ In some cases, point estimation (classical observer) ¢ammverge to the real states.
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Interval estimation

In the presence of uncertainties

@ In some cases, point estimation (classical observer) ¢ammverge to the real states.

@ Interval observers
@ compute the set of admissible values,

@ provide the lower and upper bounds of state vector.

u(k) System yik)
X(K)
—>
Interval observer
——>
(k)
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Interval estimation

In the presence of uncertainties

@ In some cases, point estimation (classical observer) ¢ammverge to the real states.

@ Interval observers

@ compute the set of admissible values,
@ provide the lower and upper bounds of state vector.

System
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Interval estimation

Bibliography
@ Interval estimation, introduced ifGouzé et al., 2000jand applied for :
@ Linear time-invariant systenisiazenc and Bernard, 2011]
@ Linear time-varying systeni&fimov et al., 2013]
@ Linear parameter varying systemgang et al., 2015]
@ Nonlinear systemgvieslem et al., 2008]
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Interval estimation

Bibliography
@ Interval estimation, introduced ifGouzé et al., 2000jand applied for :
@ Linear time-invariant systenisiazenc and Bernard, 2011]
@ Linear time-varying systeni&fimov et al., 2013]
@ Linear parameter varying systemgang et al., 2015]
@ Nonlinear systemgvieslem et al., 2008]

@ Interval estimation for switched systems

@ Continuous time switched systems
[He and Xie, 2015, Ethabet et al., 2017, Ifqir et al., 2018]
@ Discrete time switched systems
[Guo and Zhu, 2017, Rabehi et al., 2017, Dinh et al., 2019]

Contribution

The design of a new interval observer for Linear Parameteyiivg switched systems subject
to measurement noise and state disturbances using a golfgomulation.

v
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Interval Fault Detection

Large uncertainties

Advantages of interval FD metho A systematic way for residual
evaluation

No need to design residual evaluation
functions and threshold generatgrs
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Interval Fault Detection

Large uncertainties

Advantages of interval FD metho A systematic way for residual
evaluation

No need to design residual evaluation
functions and threshold generatgrs

Bibliography
@ Nonlinear systempPuig et al., 2006], [Raissi et al., 2010]
@ Linear uncertain systenilleseguer et al., 2010]
@ Linear parameter varying systeii@hang and Yang, 2017]
@ Switched systemgthabet et al., 2019]

= Some existing resultsannot provide accurate FD results.
= Robust fault detection design is needed.

Chaima ZAMMALI

8/75



Robustness

H. performances : energy-to-energy
@ Simultaneous FD and control for switched linear systéthsi et al., 2016]
@ Robust FD filter for time-varying delays switched systétisng et al., 2016]
@ Robust FD observer design for nonlinear systérhsu et al., 2017b]
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Robustness

H. performances : energy-to-energy
@ Simultaneous FD and control for switched linear systéthsi et al., 2016]
@ Robust FD filter for time-varying delays switched systétisng et al., 2016]
@ Robust FD observer design for nonlinear systérhsu et al., 2017b]

L. performances : peak-to-peak
@ FD observer design for linear parameter-varying systerasg et al., 2017]
@ FD observer for Takagi-Sugeno fuzzy systgatsu et al., 2017a]
@ L., observer for uncertain linear systeffisin et al., 2019]

Contribution

An interval method to detect sensor faults for discreteetswitched systems subject to
unknown but bounded disturbances is addressed based by themalism.
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Set-membership techniques

Intervals

Disturbances
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Set-membership techniques

Intervals

Disturbances
§ a

d<d<d

- Positive system theory
- Cooperativity constraint
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Cooperativity

Accurate FD

de <p, )D dlag(a g)

E||IpSOIdS

Cooperativity

Accurate FD

d, 7 e d1
de &(0,D), D = ||d||21n,
[Combastel, 2003], [Polyak et al., 2004],
[Combastel, 2015], [Tang et al., 2019],
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Contributions

Zonotopic appraoch
@ A fault detection method for a class of discrete-time swattBystems with actuator
faults is proposed.

@ Pole assignment technique to improve fault sensitivity.
¢ He design for the disturbance attenuation.
@ Aresidual evaluation based on a zonotopic method.

Ellipsoidal analysis
@ Arobust fault detection method for discrete-time switchgstems with sensor faults is
achieved.

@ An L criterion to attenuate the effects of uncertainties.
o Ellipsoidal analysis for residual evaluation.
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Outline

@ Interval estimation for synchronous switched systems

© Set-membership fault detection frameworks for switcheslesys
o Interval based-fault detection method
@ Zonotope based-fault detection method
@ Ellipsoid based-fault detection method

© Conclusion
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Interval estimation for synchronous switched syster
Set-membership fault detection frameworks for switcheziesys

Conclusion

Outline

@ Interval estimation for synchronous switched systems
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Interval estimation for synchronous switched syster

LTI systems

System description
Consider the following LTI system :

{ Xk+1
Yk

AcR™ ™ @c R andC ¢ RV*,

AXc+ &
Cx
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Interval estimation for synchronous switched syster

LTI systems

System description
Consider the following LTI system :
{ X1 = A+ &
Y« = Cx
AcR™ ™ @c R andC ¢ RV*,

Assumptions

© There exist two known functiong, ¢ : R — R"™ such thatp, < ¢ < G-
@ The initial statexy satisfiesty < Xg < Xg with Xg, Xg € R™,

© There exists a gaih such thatA — LC is Schur Stable and Nonnegative.
@ The pair(A,C) is supposed to be detectable.
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Interval estimation for synchronous switched syster

LTI systems

Goal

Estimate two states : an upper statend a lower one satisfying :

X <X <X, k=0
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Interval estimation for synchronous switched syster

LTI systems

Goal

Estimate two states : an upper statend a lower one satisfying :
X <X <X, k>0
Interval observer structure

{ Ricr1 = AR+ LYk — CRe) + By
X1 = A%+ LYk — CX) + @,
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Interval estimation for synchronous switched syster

LTI systems

Goal

Estimate two states : an upper statend a lower one satisfying :

X <X <X, k>0
Interval observer structure

{ Ricr1 = AR+ LYk — CRe) + By
X1 = A%+ LYk — CX) + @,

The interval observer should verify two conditions :
@ Cooperativity X, < X <X, vk >0
Q@ Stability of & = X — x¢ andg, = X — X
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Interval estimation for synchronous switched syster

Interval observer design

Cooperative system
Consider a system described by :

X1 =A%+l , UZy —RY keZy

with x € R™. This system is cooperative or nonnegative if and onlyif 0 for allk > 0,
Xo > 0 andA is a nonnegative matrix.
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Interval observer design

Cooperative system
Consider a system described by :

X1 =A%+l , UZy —RY keZy

with x € R™. This system is cooperative or nonnegative if and onlyif 0 for allk > 0,
Xo > 0 andA is a nonnegative matrix.

7@\
1

Xic — Xk
B = Xk — X

&:1=(A—LC) & + @ — &

= 6.1=(A-LC)g — ¢ +&
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Interval estimation for synchronous switched syster

Interval observer design

Cooperative system
Consider a system described by :

X1 =A%+l , UZy —RY keZy

with x € R™. This system is cooperative or nonnegative if and onlyif 0 for allk > 0,
Xo > 0 andA is a nonnegative matrix.

Xy — Xk
Xk Xk

oo

Nonnegative

em—(A LC)a + @y — &
em—(A LO)& — ¢+ &

Chaima ZAMMALI 17175



Interval estimation for synchronous switched syster

Interval observer design

Cooperative system
Consider a system described by :

X1 =A%+l , UZy —RY keZy

with x € R™. This system is cooperative or nonnegative if and onlyif 0 for allk > 0,
Xo > 0 andA is a nonnegative matrix.

B¢ = Xk — X
g>0 B = Xk — X
>0
ra
1= (A— L )@'+¢k—@
= o= (A )eK' @+
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Consider a system described by :

X1 =A%+l , UZy —RY keZy

with x € R™. This system is cooperative or nonnegative if and onlyif 0 for allk > 0,
Xo > 0 andA is a nonnegative matrix.

Xy — Xk
Xk Xk

oo

Schur Stable

em—(A LC)a + @y — &
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Interval estimation for synchronous switched syster

Interval observer design

Cooperative system
Consider a system described by :

X1 =A%+l , UZy —RY keZy

with x € R™. This system is cooperative or nonnegative if and onlyif 0 for allk > 0,
Xo > 0 andA is a nonnegative matrix.

=X — X
= Xk — Xk

oo

Bounded

&1= (A—LC) & '+cpk—cm

= o= (A-LC)a g+
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Interval estimation for synchronous switched syster

LPV switched system

System description
Consider the following discrete-time LPV switched system :

{Xk+1 = Aoy (No(k)) X+ Bo() (k) ) Uk +Woig Wk B

Yk = Cx+W

® W9 Wk = W) € R™ is the state disturbance.
@ ve R is the measurement noise.
® No(ky = [Nay ..,Nq]T the collection of measured time varying parameters.

@ 0(k): Z4+ — . is the index of the active subsystem and assumed to be known.
# =1,N,N € Z,, N is the number of subsystems.
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Interval estimation for synchronous switched syster

Assumptions

@ Aq(nq). Bq(ng) depend affinely omg :

Aq(Ng) = A+ NquAqr + -+ NarAgr qe.s
Bq(ng) = Bqo+ Nq1Baqr + -+ NgrByr

@ The initial statexy satisfiesty < Xg < Xg with xg, X € R™.
© The measurement noise and the state disturbance are unkuowaunded :
yYQ < VVq < VVq7 |V| < V\kw ,ge 54
©Q nq=[Nq.,--.Ng]" are constrained in polytopés;. We denote bwéi), i=1,..,
vertices of eacl.

@ For all vertices ofg and for allg € .7, the pairs(Aq(néD),C) are detectable.

Chaima ZAMMALI
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Interval estimation for synchronous switched syster

Interval observer

Goal

The aim is to design an interval observer for discrete-ti®® Iswitched systems defined by
(1) using a polytopic representation.
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Interval observer

Goal

The aim is to design an interval observer for discrete-ti®® Iswitched systems defined by
(1) using a polytopic representation.

o

Interval observer structure

{ X+1 = (Aq(Ng) — Lq(Ng)C) X+ Bq(Ng) Uk +Wq + Lq(Ng)Yk + [Lg(Ng) [V, qe.s
X1 = (Aq(Nq) —Lq(Nq)C) X+ Bq(Ng) Uk +Wq + Lq(Ng)Yk — ILa(Ng) [V,
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Interval estimation for synchronous switched syster

Interval observer

Goal

The aim is to design an interval observer for discrete-ti®® Iswitched systems defined by
(1) using a polytopic representation.

o

Interval observer structure

{ X+1 = (Aq(Ng) — Lq(Ng)C) X+ Bq(Ng) Uk +Wq + Lq(Ng)Yk + [Lg(Ng) [V, qe.s

X1 = (Aq(Nq) —Lq(Nq)C) X+ Bq(Ng) Uk +Wq + Lq(Ng)Yk — ILa(Ng) [V,

The interval observer should verify two conditions :
@ Cooperativity x, < xx <X, Vk>0
Q@ Stability of e = X — x¢ andg, = Xk — X
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Interval estimation for synchronous switched syster

Cooperativity

@ Define the estimation erroBg = Xy — X ande, = Xx — X.
@ The dynamics of the estimation errors are given by :

81

&1
Convex Form?

@ Ag(ng) and Lq(r]q) depend affinely of)q. They can be written as a convex combination

I
£
=
<

Lq(ng)C)& +Xq {7q = Wq—Wq+Lq(Ng)V+|Lq(Nq) [V,

Lq(na)C)&+ X, X, W —Wq — Lq(Ng)V+[Lq(11q) [9n,

Il
£
>
<

|

= Aq(ng) = ZA iAq(nd))  Aq(ng") the vertices of the state matrices of each polytige

= Lq(ng) = 21/\ iLq( nq Lq(nq") the vertices of the observer gain of each polyt&ge

1. [Hetel et al., 2006]
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Interval estimation for synchronous switched syster

Cooperativity

The error dynamics
( — Lg( nq[”) )é(JFYq

g
8cr1 = (Aq(1) —~ La(1a) )&+ X —ZA( (7") ~La(1g")C ) &+ X,

HMu:

&1 = (Ag(Ng) — Lq(Ng)C)a +
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Interval estimation for synchronous switched syster

Cooperativity

The error dynamics
( — Lg( nq[”) )é(JFYq

g
8cr1 = (Aq(1) —~ La(1a) )&+ X —ZA( (7") ~La(1g")C ) &+ X,

&1 = (Ag(Ng) — Lq(Ng)C)a +

HMu:

Proof

® Aq(Ng) —La(Mg)C > 0 = Aq(nd’) — La(n§’)C > 0.

Xq = Wq —Wq + Lq(Ng)V+[Lg(Ng) [V, > O.

B =Xp—X= & >0, forallk > 0= %« > x, forallk > 0.
Same arguments to prove that< x.

Then, the following inclusion is satisfied :

X < Xk < X
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Interval estimation for synchronous switched syster

Stability

Definition
The stability analysis is the property of a system to retaritstequilibrium point after it has
been deviated from its initial position.
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Interval estimation for synchronous switched syster

Stability

Definition
The stability analysis is the property of a system to retaritstequilibrium point after it has
been deviated from its initial position.

Input to State Stability (ISS)
When systems are subject to disturbances and noises, tlai3% introduced.
@ The ISS property provides a natural framework about stghilith respect to input
perturbations.

@ A system should be bounded if bounded inputs are injectedhodd converge to
equilibrium when inputs tend to zero.
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Interval estimation for synchronous switched syster

Stability

Lemma : Input to State Stability (ISS)

Consider the switched system (1), and let @ < 1, u > 1. Suppose that there exist
Vg, : R™ — R and two.%;, functionsa; anda; such that for eaclsy = q,q # 1, if the

following conditions hold :

ax(llexll2) < Va(&) < az([[&ll2)

AVq(ex) < —aVg(&)

Vq(&) < pVi(&)
In(u)

then, the error system is ISS for any switching signal witiA&T 15 > 15 = — n(i-a)"

14 is the lower bound of, determined by both parametersand 1.

2. [Zhuetal., 2018]

Chaima ZAMMALI
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Interval estimation for synchronous switched syster

Stability

Stability of each subsystem
The stability of each subsystem is satisfied based on :

AVq(&) < —aVg(&) = AVq(&) < —ag, PquJrVZHXq )13

LMI-based problem
~(1-aPq 0 Aq(ng)TPq—CTQq(ng)T
(%) —¥In Pq <0
(%) (%) —Pq

® Ascalar 0< a < 1, a positive definite matriRy € R,
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Interval estimation for synchronous switched syster

Stability

Stability at the switching instants

The stability at the switching instants is satisfied based on

Vo (&) < uVi(&)
LMI-based problem

@ whereW = uby
@ Ascalary > 1.

Chaima ZAMMALI 26/75




Interval estimation for synchronous switched syster

Stability

Bounded interval error width

0.2 | | |
0 0.5 1 15 2

Time
FIGURE — limy_se &2 < 2= X2

aa
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Interval estimation for synchronous switched syster

Stability

Remark

The interval error width is upper bounded QK‘%XZ which should be made as small as
possible to enhance the performance of the proposed observe
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Stability

Remark

The interval error width is upper bounded QK‘%XZ which should be made as small as
possible to enhance the performance of the proposed observe

@ The minimization ofy allows reducing the upper estimation error.
@ The minimization ofu allows looking for an optimum dwell time.

The optimum solution can be obtained by minimizing the dfdjedunction :
Bu+(1-B)y
The weightg is in the rang€d0, 1]
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Interval estimation for synchronous switched syster

Stability

Remark

The interval error width is upper bounded QK‘%XZ which should be made as small as
possible to enhance the performance of the proposed observe

@ The minimization ofy allows reducing the upper estimation error.
@ The minimization ofu allows looking for an optimum dwell time.

The optimum solution can be obtained by minimizing the dfdjedunction :

Bu+(1-B)y
The weightg is in the rang€d0, 1]

Remark
The same arguments show the boundedness of the lower astireatore,
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Interval estimation for synchronous switched syster

Simulation results

A discrete-time LPV switched system defined with three sstesys N = 3 is considered.
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Interval estimation for synchronous switched syster

Simulation results

A discrete-time LPV switched system defined with three sstesys N = 3 is considered.

o
o

X = [x1,%)]" € R?is the state vector.
The state initial conditions are setas=[1,1]7, xg = [-2,—2]T andXo = [2,2]" such
that :
Xo < X0 <X
y € R is the output.
u=[1,1]T € R?is the known input.
The measured time varying parametggs= [1q1, nqz]T for g=1,2,3 are defined by :
_ [ 0.5(sin(0.1k)| + 1) _ [ 1.5/sin(0.1k)| +0.5 _ [ 2.5|coq0.1k)|+0.5
M=1 05(cog0.1k)[+1) |’ T~ | 1.5/cog0.1k)|+05 |* = | 2.5sin(0.1k)| +0.5
vis a uniformly distributed signal bounded fay= 0.5.
wq € R? for g = 1,2, 3 is the vector of disturbance with :

wi=[0.9 08sin0.1k) w,=[0.6 0.7sin(0.2k) wz=[0.9 0.8]Tsin(0.3k)
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Interval estimation for synchronous switched syster

Simulation results

Using the Matlab LMI toolbox Yalmip/Sedumi

@ The parametera = 0.9, a; = 2 are chosen to solve the optimization problem.
@ The following Lyapunov matrices are obtained :

271 0 2 0 248 0
Pl:{ 0 243}’P2:{0 }’PF{ 0 2.58}

@ The observer gainlsq are given by :
Lio=[ —00035 0]",Liu=[0 0]", Lip=[ 0 -0045]"

Lo=| —00263 0]",Lyy=[ 0 0] Lp=[ 0 00130]"
Lso=[ 00118 0] ,Las=[ 0 0] ,Lspz=[ 0 —0.0100 "
@ U=2= T3 >0.301.
° y=212.
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Interval estimation for synchronous switched syster

Simulation results

0 10 20 30 40 0 10 20 30 40
Time Time

Time Time
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Outline

© Set-membership fault detection frameworks for switcheslesys
o Interval based-fault detection method
@ Zonotope based-fault detection method
@ Ellipsoid based-fault detection method
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Switched system

System description
Consider the following discrete-time switched system :

Yk = Cx+ Dyw + Ffy,

@ The known matricedy, By, C, Dg, Dy andF are given with appropriate dimensions.
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Switched system

System description

Consider the following discrete-time switched system :
{ X1
Yk

@ The known matricedy, By, C, Dg, Dy andF are given with appropriate dimensions.

Assumptions

@ The measurement noise and the state disturbance are unkubwaunded :
W<w<w, v<v<V

@ The initial statex satisfiesty < Xg < X with Xg, Xg € R™.
© The pairs(Aq,C) are detectabléjg=1,...,N.

Chaima ZAMMALI
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Interval observer structure

The FD interval observer is proposed as follows :

&1 = TaAgkt ToBauk+Lo(Yk— CX) +4
X = &x+Ngy

§k+l = IquXk+IquUk+Lq(YK_C2(i<)+é
),(k = ék +quk
VW« = C™X—C x+Dy"v-Dy v
Yo = C™%—C x%+Dyfv—-Dy Vv
Tk = Y=Y
e = Xk — Yk
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Interval observer structure

The FD interval observer is proposed as follows :

$ke1
Xk
L
Xk
Yk
Y
Tk
Ik

TaAdXk+ TaBquk + La(Vk — CXe)
&k + Nayk

+A

ToAgk + TqBquk +Lg(Yk — Cx) +4

E +quk

C*Xk—C X+Dytv—Dy v
C'x—C %+Dy'v—Dy Vv
Y — Yk

Y~ Yk

° &, &, € R™ are intermediate variables.
@ Xy, X € R™ are the estimated upper and lower boundsgof
@ A andA are bounded and given by :

A= (TyDq)"w— (TqDg) W+ (LgDv) "

(LgDv)"v+ (N

V—
Y

Chaima ZAMMALI
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Interval observer structure

@ LgeR™ MW andL, € R™*" are the observer gains.
@ Tge RMM, T4€ R™*™, Ng € R andNg € R™*"y are constant matrices that
should be designed to satisfy
Tq +ch |nx
Iq +ch - |nx
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Interval observer structure

@ LgeR™ MW andL, € R™*" are the observer gains.
@ Tge RMM, T4€ R™*™, Ng € R andNg € R™*"y are constant matrices that
should be designed to satisfy
Tq +ch |nx
Iq +ch - |nx

Remark

® WhenTg=In, Tq=In, Ng=On, andN, = On,, the proposed interval observer is
equivalent to the classical interval observer.
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Interval observer structure

@ LgeR™ MW andL, € R™*" are the observer gains.

@ Tq e R™ ™, Ty e R™™, Ng € R™™ andN,, € R™*™ are constant matrices that
should be designed to satisfy

Tq + ch |nx
Iq +ch - |nx

Remark

® WhenTg=In, Tq=In, Ng=On, andN, = On,, the proposed interval observer is
equivalent to the classical interval observer.

@ In the case of classical interval observers, the gain rrmfi@ andLq should be
designed such thatg — LqC andAq —LyCare nonnegativeq=1,...,N.
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Interval observer structure

@ LgeR™ MW andL, € R™*" are the observer gains.

@ Tq e R™ ™, Ty e R™™, Ng € R™™ andN,, € R™*™ are constant matrices that
should be designed to satisfy

Tq + ch |nx
Iq +ch - |nx

Remark
® WhenTg=In, Tq=In, Ng=On, andN, = On,, the proposed interval observer is
equivalent to the classical interval observer.

@ In the case of classical interval observers, the gain rrmfi@ andLq should be
designed such th# — LqC andAq — L,C are nonnegativeq=1,...,N.
@ This Assumption is restrictive and conservative.
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Interval observer structure

@ LgeR™ MW andL, € R™*" are the observer gains.

@ Tq e R™ ™, Ty e R™™, Ng € R™™ andN,, € R™*™ are constant matrices that
should be designed to satisfy

Tq + ch |nx
Iq +ch - |nx

Remark
® WhenTg=In, Tq=In, Ng=On, andN, = On,, the proposed interval observer is
equivalent to the classical interval observer.

@ In the case of classical interval observers, the gain rrmfi@ andLq should be
designed such thatg — LqC andAq —LyCare nonnegativeq=1,...,N.
@ This Assumption is restrictive and conservative.

@ By introducing weighted matricekg, T, Ng andN,, the proposed FD observer can
reduce the conservatism of gain matrices and provide mgedef freedom
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Error dynamics

The error dynamics

Let® = X — X ande, = X — X
81 = (TqAq— LC)a+ Hadi+ Fefi

{ &+1 = (Iqu_LqC)g(+ﬂqgk+quk,
|nT In T (E F)T T (L F)T T
_ B N _ (G T
Ho=| Lq Hq= th Fq= { (NgF)T } Eq { C(NgF)T }
Nqg Ng
_ A~ TqDqwic —A+TDgwk | fo
dy = DyVk , O = —DyW fo= |
DvVk+1 —DyVikt1 +

Chaima ZAMMALI
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Nonnegativity

Theorem

For the system (2), let Assumptions 1-3 be satisfied. Thematationx, < xx <Xk holds in
fault free casef(= 0) for allk > 0 if TqAq — LqC andT 4Aq — LC are nonnegative.
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Theorem

For the system (2), let Assumptions 1-3 be satisfied. Thematationx, < xx <Xk holds in
fault free casef(= 0) for allk > 0 if TqAq — LqC andT 4Aq — LC are nonnegative.

Proof
@ In fault free casef(= 0),
{ &1 = (TgAq—LgC)a+A+ LoDy + NgDyVii 1 — TgDgwi
81 = (TgAq—LyC)a—A—LgDywik —NgDyiy1 + TgDgWi.
.
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Theorem

For the system (2), let Assumptions 1-3 be satisfied. Thematationx, < xx <Xk holds in
fault free casef(= 0) for allk > 0 if TqAq — LqC andT 4Aq — LC are nonnegative.

Proof
@ In fault free casef(= 0),

{ &1 = (TgAq—LqC)ex+A+LgDyVk +NgDyVic;1 — TgDgWi
&+1 = (TgAq—LqC)&—A —LgDyk — NgDyWi i1+ TqDgWk-
® TgAq—LqC andT Aq —LyC are nonnegative. According to Assumption 1,

E — TquWk + Eq vak + Nq vak+l
D+ TDqw — LoDy — NgDuViy.1

0
0.

(VA
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Theorem

For the system (2), let Assumptions 1-3 be satisfied. Thematationx, < xx <Xk holds in
fault free casef(= 0) for allk > 0 if TqAq — LqC andT 4Aq — LC are nonnegative.

Proof
@ In fault free casef(= 0),

{ &1 = (TgAq—LqC)ex+A+LgDyVk +NgDyVic;1 — TgDgWi
&+1 = (TgAq—LqC)&—A —LgDyk — NgDyWi i1+ TqDgWk-
® TgAq—LqC andT Aq —LyC are nonnegative. According to Assumption 1,

E — TquWk + Eq vak + Nq vak+l
D+ TDqw — LoDy — NgDuViy.1

0
0.

(VA

@ g >0andgy > 0= g > 0andg > 0= x <x¢ <X
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Stability

In order to study the stability of the residual framers, a megmented state is proposed.
Augmented system

Let&=[a' &) andZ=[r" r¢']". The following augmented system can be
deduced : .
Ekr1 = JZ/qéak + e%/ﬂqdk + eg\qfk
Py = CE+ VW + Fiy,

ToAq—LoC 0 He 01 ~ [F a
‘ 0 ToAg—LqC ‘ 0 Hg ‘

_F ct c D, D -Dy | . Vi
Z — ¢ = = =
F |: _F :| y ¢ |: _Cc- -_C+t :| y 4 |: Dy -Dy DV+ , Vi 3
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Error dynamics

The error dynamics

Skr1 =  Hgbk+ A0+ <?§qu
Ky = Cé+ YV W+ Fhy,
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Error dynamics

The error dynamics

Skr1 =  Hgbk+ A0+ <¢qﬁ<
Ky = Cé+ YV W+ Fhy,
A subsystem decoupled from the effects of the sensor fault
Gli = hél s g
Ry CE+ VU,
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Error dynamics

The error dynamics

Skr1 =  Hgbk+ A0+ f/-::qfk
Ky = Cé+ YV W+ Fhy,

A subsystem decoupled from the effects of the sensor fault

G = o+ Hd
> CE+ VY,

A subsystem affected by the sensor fault

f of =z
(gakf‘_l = Q/q(a:k + eg\qfk
A = CE + T,

S=6 +8.
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Stability andL., performances

Stability andL., disturbance attenuation condition

The aim is to compute the FD observer ngJasanqu such that the following conditions
hold :
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Stability andL., performances

Stability andL., disturbance attenuation condition

The aim is to compute the FD observer ngJasanqu such that the following conditions
hold :

@ The error system is stable.
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Stability andL., performances

Stability andL., disturbance attenuation condition

The aim is to compute the FD observer ngJasanqu such that the following conditions
hold :

@ The error system is stable.

@ Givenscalary > 0,y; >0, > 0and 0< A < 1, then residual signal should satisfy t
following L. performance

|\1’d|\<\/y2 (1— A)KVo+ y62)) + 262,
_ odl d
] V()—go Pq(gao
° Pq ERZHXXZHX

@ 6y and6, are known constants and representltheof d andv such thay = ||d||» and
= [[¥]eo-
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Stability andL., performances

Stability andL., disturbance attenuation condition

The aim is to compute the FD observer ngJasanqu such that the following conditions
hold :

@ The error system is stable.

@ Givenscalary > 0,y; >0, > 0and 0< A < 1, then residual signal should satisfy t
following L. performance

|\1’d|\<\/y2 (1— A)KVo+ y62)) + 262,
_ odl d
] V()—go Pq(gao
° Pq ERZHXXZHX

@ 6y and6, are known constants and representltheof d andv such thay = ||d||» and
= [[¥]eo-

Sufficient conditions are given in terms of LMIs.
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Residual evaluation

FD decision
The corresponding FD decision scheme is made as follows :

Oefry Ty Fault-free

0¢[rx T Faulty

Chaima ZAMMALI
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Residual evaluation

FD decision

The corresponding FD decision scheme is made as follows :
Oefry Ty Fault-free

0¢[rx T Faulty

Fault free case

In the fault free case, the output signal is consistent withestimation of the proposed inter
observer.

WE, YW =0€ly, Y% YW =0€[r Ty
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Residual evaluation

Faulty case

In contrary case, an inconsistency on the output signaltescter and it indicates the existence
of a fault.

WEY, W=0&, —Yk Y- =>0¢&[r Ty

10 15 20 25 30
Time

Time

FIGURE — Fault-free case FIGURE — Faulty case

Chaima ZAMMALI
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Simulation results

A discrete-time switched system defined with three subeyste = 3 is considered.
@ The state initial conditions are set as

°x=[0 0 Q'
° X=[-01 -01 -o01T
@ %=[01 01 o0

@ w, € R andy e R? are uniformly distributed signals such that :

e |wy| <1
e |w| <01 01].

@ The numerical simulation was carried out using Matlab oftation tools
(Yalmip/Sedumi).

@ FD results are given using Multiple Quadratic Lyapunov Rioms.
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Simulation results

35 : : : : 12 ; ; : :
3t ] 1t ]
25} ] 0.8 ]
2 ] 0.6 ]
1.5t ] 0.4f ]
1t 0.2 ]
05 20 40 _ 60 80 100 0 20 40 60 80 100
Time Time
FIGURE — Evolution of the switching signal. FIGURE — Evolution of the fault.
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Simulation results

1‘0 2‘0 éO l10 ‘SD ‘60 ‘70 ‘80 ‘ 90 100
FIGURE — Residual framers using fault detection TNL interval observ
@ In the fault free case, the cooperativity property is endudes [r), T].

@ When a fault occursk(= 30), the fault is detected at the time instlant 31 and
0¢[re T
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Simulation results

-05 L L L L
20 30 40 . 50 60 70
Time

FIGURE — FD performance comparison between the TNL and the intepgicaches (Small fault).

@ The fault can be detected based on the TNL technique whiabt iha case when using
the classical interval approach.
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Interval vs zonotopic techniques
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Interval vs zonotopic techniques

High computational efficiency

Easy to implement
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Interval vs zonotopic techniques

High computational efficiency

Easy to implement

Strict design conditions
Nonnegativity ofTqAq — LqC andT4Aq —L4C
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Interval vs zonotopic techniques

r-—-—-—---- - - - - - - = | - |

) ; I .
: Interval based-fault detection method | Zonotope based-fault detection metHod
(TNL structure) ' | !

High computational efficiency

Easy to implement

Strict design conditions
Nonnegativity ofTqAq — LqC andT4Aq —L4C
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Interval vs zonotopic techniques

r--——-——----—-—-—- - - - | Lo |
} ; I .
: Interval based-fault detection method | Zonotope based-fault detection metHod
| (TNL structure) ' | !
o | o |
High computational efficiency Accurate Fault Detection results
Easy to implement Relaxed design conditions

Strict design conditions
Nonnegativity ofTqAq — LqC andT4Aq —L4C
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Problem statement

System description

Consider the following discrete-time switched system :

Xir1 = AgX + Bl + Dwy + Fqf
Yk = Cx + Dy

Objective

@ The design of a FD approach for the discrete-time switchetegys
@ robust against disturbancds criterion)
& sensitive to fault (Pole assignment)

@ The residual evaluation is achieved based on
@ zonotopic approaches
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Definition
An s-order zonotop& is the affine image of a hyperculi = [—1, 1] as follows :
Z=(p,H) =p+HB®= {p+Hz zc B}

wherep € R" is the center oZ andH € R™S denotes the generation matrixof

/[ s =2 ] ood—

1T H=[1231]

B} o 1 2

FIGURE — 3-zonotope in a two dimension space FIGURE — 3-zonotope in a three dimension spac
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Assumption
] \
] | . ‘
|
t‘fI — Ty € <PU-VHQ>’< ) , wy, € (0, H‘,»)V ’
FIGURE —xg € {po,Ho), Ho = diag(x) FIGURE —w € (0,Hy), Hy = diag(w)

FIGURE — v € (0,Hy), Hy = diag(V)
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Problem statement

Fault detection observer design

FDO structure
X1 = AgRi + Bqui + Lg(Yk — C)
e = Yk — CX«

@ X is the estimation ofy
® Lg € R™* are the observer gains.

.
Objective
Compute the FDO gairlsy :
@ sensitive to fault (Pole assignment)
@ robust against disturbancds.{ criterion)
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The error dynamics

Q(+1 == (Aq - ch)w + quk + DWk - Lq vak
1% = Ceg+Dyw
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Error dynamics

The error dynamics
Q(+1 = (Aq - ch)w + quk + DWk - Lq vak
1% = Ce+Dyw
A subsystem decoupled from the effectdof
e, = (Aq—LqC)ef +Dwi— LgDyvi
rd = Cd+Dyw

A subsystem affected by the actuator fault

€1 = (Ag—LqC)el +Fqfi
rfk = qu

o wheree, = €| + €, € = 0 ande = 0.
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Fault sensitivity condition

FDO gains
The FDO gaind_q are designed to improve fault sensitivity on residual signah that :

(Aq—LgC)Fq=AFq 3)

whereA is a scalar satisfying @ A < 1.
If the condition (3) holds, it follows that :

e{( = )\kleqfo +..+A quk—2 + quk—l

= AKICFqfo+...+ACFqfic 2+ CFgfic_1
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Fault sensitivity condition

FDO gains
The FDO gaind_q are designed to improve fault sensitivity on residual signah that :

whereA is a scalar satisfying @ A < 1.
If the condition (3) holds, it follows that :

e{( = )\kleqfo +..+A quk—2 + quk—l

= AKICFqfo+...+ACFqfic 2+ CFgfic_1

Remark

@ The residual signal, depends on a weighting scalar
@ = ltisrequired to adjust the value afin order to improve fault sensitivity.
@ = A pole assignment method is proposed.
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Fault sensitivity condition

Lemma 1 [Ben-Israel and Charnes, 1963]

Given matriced € R2*P, B ¢ RP*€ andC € R®*¢, if rank(B) = ¢, then the general solution of
theAB=Cis
A=CB'+5(1-BB")

whereSe R?*P is an arbitrary matrix.

FDO gains
The FDO gaind g can be obtained by solving (3) :

Ly = (AqFq—AFq)(CFq)"+S(I — CFy(CFg)")

whereSc R™*™ is a matrix to be designed.
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Disturbance attenuation condition

H. method
The performancérd| < y\/(w]2+ ||v|]2) is considered.
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Disturbance attenuation condition

H. method
The performancérd| < y\/(w]2+ ||v|]2) is considered.
LMI-based optimization problem
To prove the stability and thid., performance :

[—P+CTC * * ]

0 —V2ln 0 *
DIC 0 DIDy—y2l, | 9
PA;—QqC PD -QDy P
@ Ascalary > 0, a positive definite matriR € R™*™, Qq € R™" andLq = P~1Qq.
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Residual evaluation

FD decision
@ The corresponding FD decision scheme is made as follows :

rk € Ry Fault-free

rg ¢ Ry Faulty

Theorem

The residual signaly is bounded by the zonoto® = (0, R¢) andRy satisfies the following
iteration equation :

{ Ry [CHk DVHV]
Herr = [(Ag—LgC)i(Hk) DHw —LgDyHy]
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Residual evaluation

Lemma 2 [Combastel, 2003]
@ A high-dimensional zonotope can be bounded by a lower ontheigeduction operation.
@ The reduction operator can be describe@as (p,H) C (p,;(H)).
@ | (H) represents the complexity reduction operator
@ n < | < sdenotes the maximum number of columns of generator méitrix
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A discrete-time switched system defined with three subeysts = 3 is considered.
@ The initial statex is bounded by the zonotop& = (pg, Hp) with :

0 01 0 O
pp=|0]|.,H=| 0 01 0
0 0 0 o1

@ wi € R andvg € R? : bounded random signals y0.1,0.1].
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Simulation results

FIGURE — Residual and residual zonotope of the FIGURE — Residual and residual zonotope of
proposed FD observer. method without optimization.
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Interval vs zonotopic techniques
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Accurate Fault Detection results

Relaxed design conditions
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Interval vs zonotopic techniques
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Interval vs zonotopic techniques

[ [
[ [
| Zonotope based-fault detection metht», Ellipsoid based-fault detection methdd
| |
[
[

______________ |_______________I
Accurate Fault Detection results A good trade-off between FD accuracy
. . and computational complexit
Relaxed design conditions P piexity
. . Simple matrix calculations
Heavier computational burden P

No reduction operator
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Problem statement

System description
Consider the following discrete-time switched system :

Xit-1 = AgXk + BqUk + DgWi
Yk = Cx+ Dyv(k) + Ffy,

@ Xe R, ueR™, ye R, f e R™, we R™ andve R™.

@ The known matricedy, By, C, Dg, Dy andF are given with appropriate dimensions.

»

Objective

The aim is to develop a FD decision via ellipsoidal techngjfiee discrete-time switched
systems with sensor faults.
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Preliminaries
Definition
An ellipsoid set#’(c,X) C R" is given by :
&, X)={xeR": (x—¢)"TXL(x—c) <1}.

The center off’(c, X) is denoted by € R". X € R™" is a symmetric positive definite matrix
and represents the shape and size of the ellip§6adX).

£(c,X)
2 c=[0 07, X=[2 00 2

-2 -1 0 1 2

Xy

FIGURE — Ellipsoid set
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Preliminaries

Assumption

Assume that the initial statg), the state disturbanceg and the measurement noigeare
unknown but bounded such that

Xg € &(Co, Xp), Wi € &(0,W)and y € &(0,V).

@ ¢y € R is a known vector

@ Xo=%In, W= [w[ZIn, andV = [[v[ZIn,.

@ ||w||e and||v||e, @assumed to be known, are thg norm ofw andv.
@ The known constanty’is given such thalfxg — ol < Xo.
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Fault detection observer design : TNL structure

X1 = TaAgXk + TgBquk + NgYk+1 + Lg(Yk — CR)
'k = Yk — CX«

@ % is the estimation oy, ry is the residual signal arld; € R™*™ are the observer gain

@ Tgq e R™™ andNg € R™*™Y are constant matrices that should be designed to satisfy

o

Tq + NqC = |nx
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Fault detection observer design : TNL structure

X1 = TaAgXk + TgBquk + NgYk+1 + Lg(Yk — CR)
'k = Yk — CX«

o

@ % is the estimation oy, ry is the residual signal arld; € R™*™ are the observer gain
@ Tgq e R™™ andNg € R™*™Y are constant matrices that should be designed to satisfy

Tq + NqC = |nx

Remark

@ If Tq andNg are chosen such th@g = I, andNg = 0, the proposed observer is reducec
to the commonly used Luenberger form.

@ The proposed structure can provide more design degreeseafdm by introducing
matricesTq andNg.
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The error dynamics

&1 = g+ DugWk + Duqlvkr1 + Fqk 1
Mk = Ce+ Dy + Ffi
,qu:Tqu—ch7 @Wq :Tqu7 @vq: [—Lqu _NCIDVL

Fq=[-LF —NgFl, dv=[MKT vk+DT]T, dr=[f(K)T f(k+DT".
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The error dynamics

&1 = g+ DugWk + Duqlvkr1 + Fqk 1
re = Ce+Dyw + Ffy
q=TaAq —LqC, Py = ToDa, Pq=[-LaDv  —NgDy],

Fq=[-LF —NgFl, dv=[MKT vk+DT]T, dr=[f(K)T f(k+DT".

A subsystem decoupled from the effectdof

eﬂ+1 = ‘%eﬁ"‘gwqwk"‘@mdvkﬂ
rf = Cd+Dw

A subsystem affected by the sensor fault

f foo
e}<+1 = <%fek+=7qdfk+1
' = CG‘k + Ffk
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Stability andL., performances

Stability andL., disturbance attenuation condition
The aim is to compute the FD observer ghipsuch that the following conditions hold :
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Stability andL., performances

Stability andL., disturbance attenuation condition
The aim is to compute the FD observer ghipsuch that the following conditions hold :
@ The error system is stable.

@ Givenscalargt, >0, % >0,y1 >0,y >0and 0< A < 1, then residual signal should
satisfy the followingL. performance

Irgll < \/va2 6 +¥31IvII2
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Stability andL., performances

Stability andL., disturbance attenuation condition
The aim is to compute the FD observer ghipsuch that the following conditions hold :
@ The error system is stable.

@ Givenscalargt, >0, % >0,y1 >0,y >0and 0< A < 1, then residual signal should
satisfy the followingL. performance

Irgll < \/va2 6 +¥31IvII2

© 6= (¥ +K)(A(L=2)Vgq+ WullWiIZ + wlld[|3).
@ ||dy||w is theLe norm ofdy.

® Vgo=ed' el
® Pg>-0eRM™ M,

Sufficient conditions are given in terms of LMIs.

Chaima ZAMMALI 67/75



Interval based-fault detection method
Set-membership fault detection frameworks for switchesdesys Zonotope based-fault detection method
Ellipsoid based-fault detection method

Residual evaluation

Residual evaluation

@ The residual evaluation is based on determining whetheetfidual signaty is
excluded from the residual ellipsoifl(0, R¢) or not.

@ The corresponding FD decision scheme is made as follows :

re € £(0,R) Fault-free
r« ¢ £(0,R¢) Faulty

The residual ellipsoi@’(0, Ry) is obtained based on the following theorem.
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Ellipsoid based-fault detection method

Residual evaluation

Theorem

Let xg € &(cg, Xg) andXy = cp, thenry can be bounded by the ellipsa#{0, R¢) and Ry
satisfies the following iteration equations :

T
BB - o e smoa

trace Zw,W4;,)

o — 1 9 74 k
pg = tracaHy) Hg= (14 o ) DuigW P, + (1+Pg)Hy
Ca tracd‘%xk%-r) _ 1 T e
e = W7 Xy = (1+ pXTk)%Xk% + (1+pxk)Hd
. [tracgCX.CT) B 1 - . -
Pie =\ racapiy) T ) XC AR IDVDY
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A discrete-time switched system defined with three subeysts = 3 is considered.
@ The initial conditions are chosen such that :

X0:[1 1 ]']T7 5Z():[l 1 JlTv 00:[0 0 qT and X =13

@ The numerical simulation was carried out using Matlab ofatation tools.
@ Two fault scenarios are considered in the sequel.
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Set-membership fault detection frameworks for switchesdesys

Simulation results

14
Time instant k 13 04 02 0

13 1

r Time instant k 1
1

FIGURE — Residual and residual ellipsoid based dnlGURE — Residual and residual ellipsoid using a
the proposed approach. Luenberger observer.
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Conclusion

@ Aninterval approach is developed for state estimation sdite-time LPV switched
systems[Zammali et al., 2019a]

o Stability and nonnegativity properties have been relakadks to the polytopic
shape of the system parameters.
@ LMils conditions are expressed on the vertices of each podyto

Extensions of these results to the case of unknown switdigmal and continuous-time
LPV switched systems are investigated and publishg@aimmali et al., 2019b],
[Zammali et al., 2020a], [Zammali et al., 2020c]

@ A new interval observer-based (TNL structure) FD methodifecrete-time switched
systems is designed usihg performance[Zammali et al., 2020f]

@ The proposed approach allows reducing the conservatisrinfgatrices and
offers more degrees of design freedom.

Interval techniques to detect sensor faults usingthendL., criteria are published in
[Zammali et al., 2020b], [Zammali et al., 2020d]

.
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@ Set-membership FD frameworks have been developed forfsdtsystems with
actuator fault using zonotopic analyg§fammali et al., 2020g]

@ A novel pole assignment approach is designed to maximizeehsitivity of faults
on the residual signal.

¢ Ho performance is investigated to minimize the effect of disices.

@ Set-membership FD frameworks have been developed fortssdtsystems with sensor
faults using ellipsoidal analysigzammali et al., 2020e]

@ A FD observer with a new structure is investigated.

@ The design conditions of the proposed observer are givearinst of LMIs using
Multiple Lyapunov Functions, with an Average Dwell Time sstiing signal.

@ An L., criterion is used to attenuate the effect of unknown but dedn
disturbances and measurement noise.
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