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Switched systems

Definition
Switched systems represent a class of complex systems, composed of :

a finite number of continuous subsystems (modes)

a logical rule operates switching between subsystems
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Switched systems

Definition
Switched systems represent a class of complex systems, composed of :

a finite number of continuous subsystems (modes)

a logical rule operates switching between subsystems

Industrial systems
Switched systems represent an effective tool for describing industrial systems :
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Switched systems

Switched
systems

State estimationState control
Stability

Fault diagnosis

[Alessandri and Coletta, 2003]
[Barbot et al., 2007]
[Fliess et al., 2008]
[Bejarano and Fridman, 2011]
[Arichi et al., 2015]
[Huang et al., 2019],. . .

[Branicky, 1998]
[Liberzon and Morse, 1999]
[Hetel et al., 2006]
[Zhu and Antsaklis, 2015]
[Yang and Liberzon, 2017]
. . .

[Belkhiat et al., 2009]
[Wang et al., 2009]
[Jiang et al., 2011]

[Davoodi et al., 2013]
[Du et al., 2015]
[Zhai et al., 2016], [Su et al., 2020],. . .
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State estimation

A number of results are available for the estimation problem:

Luenberger Observers Kalman Filter Sliding mode observers Other observers

[Luenberger, 1964] [Kalman, 1960] [Levant, 2014] [Raïssi et al., 2012]

[Jouili et al., 2012] [Welch et al., 1995] [Fridman et al., 2008] [Ríos et al., 2015]

[Rego et al., 2017] [Yu et al., 2005] [Van Gorp et al., 2014] [Chen et al., 2016]

[Lu and Yang, 2017] [Beccuti et al., 2009] [Teong Ooi et al., 2015] [Alhelou et al., 2019]

...
...

...
...
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Interval estimation

In the presence of uncertainties
In some cases, point estimation (classical observer) cannot converge to the real states.
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Interval estimation

In the presence of uncertainties
In some cases, point estimation (classical observer) cannot converge to the real states.

Interval observers

compute the set of admissible values,
provide the lower and upper bounds of state vector.
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Interval estimation

Bibliography
Interval estimation, introduced in[Gouzé et al., 2000]and applied for :

Linear time-invariant systems[Mazenc and Bernard, 2011]
Linear time-varying systems[Efimov et al., 2013]
Linear parameter varying systems[Wang et al., 2015]
Nonlinear systems[Meslem et al., 2008]
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Linear time-invariant systems[Mazenc and Bernard, 2011]
Linear time-varying systems[Efimov et al., 2013]
Linear parameter varying systems[Wang et al., 2015]
Nonlinear systems[Meslem et al., 2008]

Interval estimation for switched systems

Continuous time switched systems
[He and Xie, 2015, Ethabet et al., 2017, Ifqir et al., 2018]
Discrete time switched systems
[Guo and Zhu, 2017, Rabehi et al., 2017, Dinh et al., 2019]

Contribution
The design of a new interval observer for Linear Parameter Varying switched systems subject
to measurement noise and state disturbances using a polytopic formulation.
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Interval Fault Detection

Advantages of interval FD methods

Large uncertainties

A systematic way for residual

evaluation

No need to design residual evaluation

functions and threshold generators
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Interval Fault Detection

Advantages of interval FD methods

Large uncertainties

A systematic way for residual

evaluation

No need to design residual evaluation

functions and threshold generators

Bibliography
Nonlinear systems[Puig et al., 2006], [Raïssi et al., 2010]

Linear uncertain systems[Meseguer et al., 2010]

Linear parameter varying systems[Zhang and Yang, 2017]

Switched systems[Ethabet et al., 2019]

⇒ Some existing resultscannot provide accurate FD results.
⇒ Robust fault detection design is needed.
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Robustness

H∞ performances : energy-to-energy
Simultaneous FD and control for switched linear systems[Zhai et al., 2016]

Robust FD filter for time-varying delays switched systems[Wang et al., 2016]

Robust FD observer design for nonlinear systems[Zhou et al., 2017b]
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Robustness

H∞ performances : energy-to-energy
Simultaneous FD and control for switched linear systems[Zhai et al., 2016]

Robust FD filter for time-varying delays switched systems[Wang et al., 2016]

Robust FD observer design for nonlinear systems[Zhou et al., 2017b]

L∞ performances : peak-to-peak
FD observer design for linear parameter-varying systems[Wang et al., 2017]

FD observer for Takagi-Sugeno fuzzy systems[Zhou et al., 2017a]

L∞ observer for uncertain linear systems[Han et al., 2019]

Contribution
An interval method to detect sensor faults for discrete-time switched systems subject to
unknown but bounded disturbances is addressed based on theL∞ formalism.
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- Positive system theory

- Cooperativity constraint

- Coordinate transformation

[Mazenc and Bernard, 2011],
[Raïssi et al., 2012],. . . [Combastel, 2003], [Polyak et al., 2004],

[Combastel, 2015], [Tang et al., 2019],. . .
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2 )

d∈ E (0,D), D = ‖d‖2
∞Ind
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Contributions

Zonotopic appraoch
A fault detection method for a class of discrete-time switched systems with actuator
faults is proposed.

Pole assignment technique to improve fault sensitivity.
H∞ design for the disturbance attenuation.
A residual evaluation based on a zonotopic method.

Ellipsoidal analysis
A robust fault detection method for discrete-time switchedsystems with sensor faults is
achieved.

An L∞ criterion to attenuate the effects of uncertainties.
Ellipsoidal analysis for residual evaluation.
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Outline

1 Interval estimation for synchronous switched systems

2 Set-membership fault detection frameworks for switched systems
Interval based-fault detection method
Zonotope based-fault detection method
Ellipsoid based-fault detection method

3 Conclusion
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Interval estimation for synchronous switched systems
Set-membership fault detection frameworks for switched systems

Conclusion

LTI systems

System description
Consider the following LTI system :

{

xk+1 = Axk+φk
yk = Cxk

A∈ R
nx×nx , φ ∈ R

nx andC∈ R
ny×nx .
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Conclusion

LTI systems

System description
Consider the following LTI system :

{

xk+1 = Axk+φk
yk = Cxk

A∈ R
nx×nx , φ ∈ R

nx andC∈ R
ny×nx .

Assumptions
1 There exist two known functionsφ , φ : R→ R

nx such thatφ
k
≤ φk ≤ φ k.

2 The initial statex0 satisfiesx0 ≤ x0 ≤ x0 with x0, x0 ∈ R
nx .

3 There exists a gainL such thatA−LC is Schur Stable and Nonnegative.

4 The pair(A,C) is supposed to be detectable.
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Interval estimation for synchronous switched systems
Set-membership fault detection frameworks for switched systems

Conclusion

LTI systems

Goal
Estimate two states : an upper statexk and a lower onexk satisfying :

xk ≤ xk ≤ xk, k≥ 0

Chaima ZAMMALI 16 / 75



Interval estimation for synchronous switched systems
Set-membership fault detection frameworks for switched systems

Conclusion

LTI systems

Goal
Estimate two states : an upper statexk and a lower onexk satisfying :

xk ≤ xk ≤ xk, k≥ 0

Interval observer structure
{

xk+1 = Axk+L(yk−Cxk)+φ k
xk+1 = Axk+L(yk−Cxk)+φ

k

Chaima ZAMMALI 16 / 75



Interval estimation for synchronous switched systems
Set-membership fault detection frameworks for switched systems

Conclusion

LTI systems

Goal
Estimate two states : an upper statexk and a lower onexk satisfying :

xk ≤ xk ≤ xk, k≥ 0

Interval observer structure
{

xk+1 = Axk+L(yk−Cxk)+φ k
xk+1 = Axk+L(yk−Cxk)+φ

k

The interval observer should verify two conditions :

1 Cooperativity :xk ≤ xk ≤ xk, ∀k≥ 0

2 Stability of ek = xk−xk andek = xk−xk
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Interval estimation for synchronous switched systems
Set-membership fault detection frameworks for switched systems

Conclusion

Interval observer design

Cooperative system
Consider a system described by :

xk+1 = Axk+uk , u : Z+ → R
nx
+ , k∈ Z+

with x∈ R
nx . This system is cooperative or nonnegative if and only ifuk ≥ 0 for all k≥ 0,

x0 ≥ 0 andA is a nonnegative matrix.

a

b

aa

bb

supNonnegative

e

g
bounded
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Interval observer design

Cooperative system
Consider a system described by :

xk+1 = Axk+uk , u : Z+ → R
nx
+ , k∈ Z+

with x∈ R
nx . This system is cooperative or nonnegative if and only ifuk ≥ 0 for all k≥ 0,

x0 ≥ 0 andA is a nonnegative matrix.

supNonnegative

e
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ek+1 = (A−LC) ek +φk−φk
ek+1 = (A−LC) ek −φ
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Interval estimation for synchronous switched systems
Set-membership fault detection frameworks for switched systems

Conclusion

LPV switched system

System description
Consider the following discrete-time LPV switched system :

{

xk+1 = Aσ(k)(ησ(k))xk+Bσ(k)(ησ(k))uk+Wσ(k)wk

yk = Cxk+vk
, (1)

Wσ(k)wk = wσ(k) ∈ R
nx is the state disturbance.

v∈ R
ny is the measurement noise.

ησ(k) = [ηq1, ...,ηqr ]
T the collection of measured time varying parameters.

σ(k) : Z+ → I is the index of the active subsystem and assumed to be known.

I = 1,N,N ∈ Z+, N is the number of subsystems.
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Interval estimation for synchronous switched systems
Set-membership fault detection frameworks for switched systems

Conclusion

Assumptions

q= σ(k) ∈ I

1 Aq(ηq), Bq(ηq) depend affinely onηq :

Aq(ηq) = Aq0+ηq1Aq1+ ...+ηqrAqr

Bq(ηq) = Bq0+ηq1Bq1+ ...+ηqrBqr
,q∈ I

2 The initial statex0 satisfiesx0 ≤ x0 ≤ x0 with x0, x0 ∈ R
nx .

3 The measurement noise and the state disturbance are unknownbut bounded :

wq ≤ wq ≤ wq, |v| ≤ vJny ,q∈ I

4 ηq = [ηq1, ...,ηqr ]
T are constrained in polytopesEq. We denote byη(i)

q , i = 1, ...,g the
vertices of eachEq.

5 For all vertices ofEq and for allq∈ I , the pairs(Aq(η
(i)
q ),C) are detectable.
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Conclusion

Interval observer

Goal
The aim is to design an interval observer for discrete-time LPV switched systems defined by
(1) using a polytopic representation.
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Interval observer

Goal
The aim is to design an interval observer for discrete-time LPV switched systems defined by
(1) using a polytopic representation.

Interval observer structure

{

xk+1 =
(

Aq(ηq)−Lq(ηq)C
)

xk+Bq(ηq)uk+wq+Lq(ηq)yk+ |Lq(ηq)|vJny

xk+1 =
(

Aq(ηq)−Lq(ηq)C
)

xk+Bq(ηq)uk+wq+Lq(ηq)yk−|Lq(ηq)|vJny

,q∈ I
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Set-membership fault detection frameworks for switched systems

Conclusion

Cooperativity

Define the estimation errorsek = xk−xk andek = xk−xk.

The dynamics of the estimation errors are given by :

{

ek+1 = (Aq(ηq)−Lq(ηq)C)ek + χq
ek+1 = (Aq(ηq)−Lq(ηq)C)ek + χ

q

{

χq = wq−wq+Lq(ηq)v+ |Lq(ηq)|vJny

χ
q

= wq−wq−Lq(ηq)v+ |Lq(ηq)|vJny

Convex Form1

Aq(ηq) andLq(ηq) depend affinely ofηq. They can be written as a convex combination

⇒ Aq(ηq) =
g

∑
i=1

λiAq(η
(i)
q ) Aq(ηq

(i)) the vertices of the state matrices of each polytopeEq.

⇒ Lq(ηq) =
g

∑
i=1

λiLq(η
(i)
q ) Lq(ηq

(i)) the vertices of the observer gain of each polytopeEq.

1. [Hetel et al., 2006]
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Conclusion

Cooperativity

The error dynamics


















ek+1 = (Aq(ηq)−Lq(ηq)C)ek+ χq =
g

∑
i=1

λi

(

Aq(ηq
(i))−Lq(ηq

(i))C
)

ek + χq

ek+1 = (Aq(ηq)−Lq(ηq)C)ek+ χ
q
=

g

∑
i=1

λi

(

Aq(ηq
(i))−Lq(ηq

(i))C
)

ek + χ
q
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Cooperativity

The error dynamics


















ek+1 = (Aq(ηq)−Lq(ηq)C)ek+ χq =
g

∑
i=1

λi

(

Aq(ηq
(i))−Lq(ηq

(i))C
)

ek + χq

ek+1 = (Aq(ηq)−Lq(ηq)C)ek+ χ
q
=

g

∑
i=1

λi

(

Aq(ηq
(i))−Lq(ηq

(i))C
)

ek + χ
q

Proof

Aq(ηq)−Lq(ηq)C≥ 0⇐⇒ Aq(η
(i)
q )−Lq(η

(i)
q )C≥ 0 .

χq = wq−wq+Lq(ηq)v+ |Lq(ηq)|vJny ≥ 0.

e0 = x0−x0⇒ ek ≥ 0 , for all k≥ 0⇒ xk ≥ xk, for all k≥ 0.

Same arguments to prove thatxk ≤ xk.

Then, the following inclusion is satisfied :

xk ≤ xk ≤ xk
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Conclusion

Stability

Definition
The stability analysis is the property of a system to return to its equilibrium point after it has
been deviated from its initial position.
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Conclusion

Stability

Definition
The stability analysis is the property of a system to return to its equilibrium point after it has
been deviated from its initial position.

Input to State Stability (ISS)
When systems are subject to disturbances and noises, the ISScan be introduced.

The ISS property provides a natural framework about stability with respect to input
perturbations.

A system should be bounded if bounded inputs are injected andshould converge to
equilibrium when inputs tend to zero.
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Conclusion

Stability

Lemma : Input to State Stability (ISS)2

Consider the switched system (1), and let 0< α < 1, µ > 1. Suppose that there exist
Vσk : Rnx → R and twoK∞ functionsα1 andα2 such that for eachσk = q,q 6= l, if the
following conditions hold :

α1(‖ek‖2)≤ Vq(ek)≤ α2(‖ek‖2)

∆Vq(ek)≤−αVq(ek)

Vq(ek)≤ µVl(ek)

then, the error system is ISS for any switching signal with anADT τa ≥ τ∗a =− ln(µ)
ln(1−α)

.

τ∗a is the lower bound ofτa determined by both parametersα andµ.

2. [Zhu et al., 2018]
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Conclusion

Stability

Stability of each subsystem
The stability of each subsystem is satisfied based on :

∆Vq(ek)≤−αVq(ek)⇒ ∆Vq(ek)<−αeT
k Pqek+ γ2‖χq(k)‖

2
2

LMI-based problem














−(1−α)Pq 0 Aq(η
(i)
q )TPq−CTQq(η

(i)
q )T

(∗) −γ2In Pq

(∗) (∗) −Pq















� 0

A scalar 0< α < 1, a positive definite matrixPq ∈ R
nx×nx .
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Stability at the switching instants
The stability at the switching instants is satisfied based on:

Vq(ek)≤ µVl(ek)

LMI-based problem
[

Wl Pq

Pq Pq

]

� 0

whereWl = µPl

A scalarµ > 1.
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Bounded interval error width
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Remark

The interval error width is upper bounded byγ
2

α1α χ2 which should be made as small as
possible to enhance the performance of the proposed observer.
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Remark

The interval error width is upper bounded byγ
2

α1α χ2 which should be made as small as
possible to enhance the performance of the proposed observer.

The minimization ofγ allows reducing the upper estimation error.

The minimization ofµ allows looking for an optimum dwell time.

The optimum solution can be obtained by minimizing the objective function :

β µ +(1−β )γ

The weightβ is in the range[0,1]
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Stability

Remark

The interval error width is upper bounded byγ
2

α1α χ2 which should be made as small as
possible to enhance the performance of the proposed observer.

The minimization ofγ allows reducing the upper estimation error.

The minimization ofµ allows looking for an optimum dwell time.

The optimum solution can be obtained by minimizing the objective function :

β µ +(1−β )γ

The weightβ is in the range[0,1]

Remark
The same arguments show the boundedness of the lower estimation errorek
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A discrete-time LPV switched system defined with three subsystems,N = 3 is considered.
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Simulation results

A discrete-time LPV switched system defined with three subsystems,N = 3 is considered.

x= [x1,x2]
T ∈ R

2 is the state vector.

The state initial conditions are set asx0 = [1,1]T, x0 = [−2,−2]T andx0 = [2,2]T such
that :

x0 ≤ x0 ≤ x0

y∈ R is the output.

u= [1,1]T ∈ R
2 is the known input.

The measured time varying parametersηq = [ηq1,ηq2]
T for q= 1,2,3 are defined by :

η1 =

[

0.5(|sin(0.1k)|+1)
0.5(|cos(0.1k)|+1)

]

, η2 =

[

1.5|sin(0.1k)|+0.5
1.5|cos(0.1k)|+0.5

]

, η3 =

[

2.5|cos(0.1k)|+0.5
2.5|sin(0.1k)|+0.5

]

v is a uniformly distributed signal bounded byv= 0.5.

wq ∈ R
2 for q= 1,2,3 is the vector of disturbance with :

w1 = [0.9 0.8]Tsin(0.1k) w2 = [0.6 0.7]Tsin(0.2k) w3 = [0.9 0.8]Tsin(0.3k)
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Using the Matlab LMI toolbox Yalmip/Sedumi

The parametersα = 0.9, α1 = 2 are chosen to solve the optimization problem.

The following Lyapunov matrices are obtained :

P1 =

[

2.71 0
0 2.43

]

, P2 =

[

2 0
0 2

]

, P3 =

[

2.48 0
0 2.58

]

The observer gainsLq are given by :

L10 =
[

−0.0035 0
]T

, L11 =
[

0 0
]T

, L12 =
[

0 −0.045
]T

L20 =
[

−0.0263 0
]T

, L21 =
[

0 0
]T

, L22 =
[

0 0.0130
]T

L30 =
[

0.0118 0
]T

, L31 =
[

0 0
]T

, L32 =
[

0 −0.0100
]T

µ = 2⇒ τa > 0.301.

γ = 2.12.
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Switched system

System description
Consider the following discrete-time switched system :

{

xk+1 = Aqxk+Bquk+Dqwk
yk = Cxk+Dvvk+Ffk,

(2)

The known matricesAq, Bq, C, Dq, Dv andF are given with appropriate dimensions.
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Switched system

System description
Consider the following discrete-time switched system :

{

xk+1 = Aqxk+Bquk+Dqwk
yk = Cxk+Dvvk+Ffk,

(2)

The known matricesAq, Bq, C, Dq, Dv andF are given with appropriate dimensions.

Assumptions

1 The measurement noise and the state disturbance are unknownbut bounded :

w≤ w≤ w, v≤ v≤ v

2 The initial statex0 satisfiesx0 ≤ x0 ≤ x0 with x0, x0 ∈ R
nx .

3 The pairs(Aq,C) are detectable,∀q= 1, . . . ,N.
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Interval observer structure

The FD interval observer is proposed as follows :


















































ξ k+1 = TqAqxk+TqBquk+Lq(yk−Cxk)+∆
xk = ξ k+Nqyk

ξ
k+1

= TqAqxk+TqBquk+Lq(yk−Cxk)+∆
xk = ξ

k
+Nqyk

yk = C+xk−C−xk+Dv
+v−Dv

−v
y

k
= C+xk−C−xk+Dv

+v−Dv
−v

rk = yk−yk
rk = y

k
−yk
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Interval observer structure

The FD interval observer is proposed as follows :


















































ξ k+1 = TqAqxk+TqBquk+Lq(yk−Cxk)+∆
xk = ξ k+Nqyk

ξ
k+1

= TqAqxk+TqBquk+Lq(yk−Cxk)+∆
xk = ξ

k
+Nqyk

yk = C+xk−C−xk+Dv
+v−Dv

−v
y

k
= C+xk−C−xk+Dv

+v−Dv
−v

rk = yk−yk
rk = y

k
−yk

ξ k, ξ
k
∈ R

nx are intermediate variables.

xk, xk ∈ R
nx are the estimated upper and lower bounds ofxk.

∆ and∆ are bounded and given by :
{

∆ = (TqDq)
+w− (TqDq)

−w+(LqDv)
+v− (LqDv)

−v+(NqDv)
+v− (NqDv)

−v

∆ = (TqDq)
+w− (TqDq)

−w+(LqDv)
+v− (LqDv)

−v+(NqDv)
+v− (NqDv)

−v.
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Interval observer structure

Lq ∈ R
nx×ny andLq ∈ R

nx×ny are the observer gains.

Tq ∈ R
nx×nx , Tq ∈ R

nx×nx , Nq ∈ R
nx×ny andNq ∈ R

nx×ny are constant matrices that
should be designed to satisfy

Tq+NqC = Inx

Tq+NqC = Inx
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Interval observer structure

Lq ∈ R
nx×ny andLq ∈ R

nx×ny are the observer gains.

Tq ∈ R
nx×nx , Tq ∈ R

nx×nx , Nq ∈ R
nx×ny andNq ∈ R

nx×ny are constant matrices that
should be designed to satisfy

Tq+NqC = Inx

Tq+NqC = Inx

Remark

WhenTq = Inx , Tq = Inx , Nq = Onx andNq = Onx , the proposed interval observer is
equivalent to the classical interval observer.
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nx×ny are the observer gains.
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nx×nx , Tq ∈ R

nx×nx , Nq ∈ R
nx×ny andNq ∈ R

nx×ny are constant matrices that
should be designed to satisfy

Tq+NqC = Inx

Tq+NqC = Inx

Remark

WhenTq = Inx , Tq = Inx , Nq = Onx andNq = Onx , the proposed interval observer is
equivalent to the classical interval observer.

In the case of classical interval observers, the gain matricesLq andLq should be
designed such thatAq−LqC andAq−LqC are nonnegative∀q= 1, . . . ,N.
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Lq ∈ R
nx×ny andLq ∈ R

nx×ny are the observer gains.

Tq ∈ R
nx×nx , Tq ∈ R

nx×nx , Nq ∈ R
nx×ny andNq ∈ R

nx×ny are constant matrices that
should be designed to satisfy

Tq+NqC = Inx

Tq+NqC = Inx

Remark

WhenTq = Inx , Tq = Inx , Nq = Onx andNq = Onx , the proposed interval observer is
equivalent to the classical interval observer.

In the case of classical interval observers, the gain matricesLq andLq should be
designed such thatAq−LqC andAq−LqC are nonnegative∀q= 1, . . . ,N.

This Assumption is restrictive and conservative.
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Interval observer structure

Lq ∈ R
nx×ny andLq ∈ R

nx×ny are the observer gains.

Tq ∈ R
nx×nx , Tq ∈ R

nx×nx , Nq ∈ R
nx×ny andNq ∈ R

nx×ny are constant matrices that
should be designed to satisfy

Tq+NqC = Inx

Tq+NqC = Inx

Remark

WhenTq = Inx , Tq = Inx , Nq = Onx andNq = Onx , the proposed interval observer is
equivalent to the classical interval observer.

In the case of classical interval observers, the gain matricesLq andLq should be
designed such thatAq−LqC andAq−LqC are nonnegative∀q= 1, . . . ,N.

This Assumption is restrictive and conservative.

By introducing weighted matricesTq, Tq, Nq andNq, the proposed FD observer can
reduce the conservatism of gain matrices and provide more degree of freedom.

Chaima ZAMMALI 35 / 75



Interval estimation for synchronous switched systems
Set-membership fault detection frameworks for switched systems

Conclusion

Interval based-fault detection method
Zonotope based-fault detection method
Ellipsoid based-fault detection method

Error dynamics

The error dynamics
Let ek = xk−xk andek = xk−xk.

{

ek+1 = (TqAq−LqC)ek+Hqdk+Fqf̃k
ek+1 = (TqAq−LqC)ek+Hqdk+Fqf̃k,

Hq =







In
Lq

T

Nq
T







T

, Hq =





In
Lq

T

Nq
T





T

, Fq =

[

(LqF)T

(NqF)T

]T

, Fq =

[

−(LqF)T

−(NqF)T

]T

,

dk =





∆−TqDqwk
Dvvk

Dvvk+1



 , dk =





−∆+TqDqwk
−Dvvk
−Dvvk+1



 , f̃k =

[

fk
fk+1

]

.
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Nonnegativity

Theorem
For the system (2), let Assumptions 1-3 be satisfied. Then, the relationxk ≤ xk ≤ xk holds in
fault free case (f = 0) for all k≥ 0 if TqAq−LqC andTqAq−LqC are nonnegative.
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Nonnegativity

Theorem
For the system (2), let Assumptions 1-3 be satisfied. Then, the relationxk ≤ xk ≤ xk holds in
fault free case (f = 0) for all k≥ 0 if TqAq−LqC andTqAq−LqC are nonnegative.

Proof
In fault free case (f = 0),

{

ek+1 = (TqAq−LqC)ek+∆+LqDvvk+NqDvvk+1−TqDqwk
ek+1 = (TqAq−LqC)ek−∆−LqDvvk−NqDvvk+1+TqDqwk.
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Nonnegativity

Theorem
For the system (2), let Assumptions 1-3 be satisfied. Then, the relationxk ≤ xk ≤ xk holds in
fault free case (f = 0) for all k≥ 0 if TqAq−LqC andTqAq−LqC are nonnegative.

Proof
In fault free case (f = 0),

{

ek+1 = (TqAq−LqC)ek+∆+LqDvvk+NqDvvk+1−TqDqwk
ek+1 = (TqAq−LqC)ek−∆−LqDvvk−NqDvvk+1+TqDqwk.

TqAq−LqC andTqAq−LqC are nonnegative. According to Assumption 1,

∆−TqDqwk+LqDvvk+NqDvvk+1 ≥ 0
−∆+TqDqwk−LqDvvk−NqDvvk+1 ≥ 0.
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Nonnegativity

Theorem
For the system (2), let Assumptions 1-3 be satisfied. Then, the relationxk ≤ xk ≤ xk holds in
fault free case (f = 0) for all k≥ 0 if TqAq−LqC andTqAq−LqC are nonnegative.

Proof
In fault free case (f = 0),

{

ek+1 = (TqAq−LqC)ek+∆+LqDvvk+NqDvvk+1−TqDqwk
ek+1 = (TqAq−LqC)ek−∆−LqDvvk−NqDvvk+1+TqDqwk.

TqAq−LqC andTqAq−LqC are nonnegative. According to Assumption 1,

∆−TqDqwk+LqDvvk+NqDvvk+1 ≥ 0
−∆+TqDqwk−LqDvvk−NqDvvk+1 ≥ 0.

e0 ≥ 0 ande0 ≥ 0⇒ ek ≥ 0 andek ≥ 0⇒ xk ≤ xk ≤ xk.
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Stability

In order to study the stability of the residual framers, a newaugmented state is proposed.

Augmented system

Let Ek = [ek
T ek

T]T andRk = [rk
T rk

T]T. The following augmented system can be
deduced :

{

Ek+1 = AqEk+Hqdk+F̃qf̃k
Rk = CEk+V ṽk+F fk,

Aq =

[

TqAq−LqC 0
0 TqAq−LqC

]

, Hq =

[

Hq 0
0 Hq

]

, F̃q =

[

Fq

Fq

]

, dk =

[

dk
dk

]

,

F =

[

−F
−F

]

, C =

[

C+ C−

−C− −C+

]

, V =

[

−Dv Dv
+ −Dv

−

−Dv −Dv
− Dv

+

]

, ṽk =





vk
v
v



 .
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Error dynamics

The error dynamics
{

Ek+1 = AqEk+Hqdk+F̃qf̃k
Rk = CEk+V ṽk+F fk,
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Error dynamics

The error dynamics
{

Ek+1 = AqEk+Hqdk+F̃qf̃k
Rk = CEk+V ṽk+F fk,

A subsystem decoupled from the effects of the sensor fault
{

E d
k+1 = AqE

d
k +Hqdk

Rd
k = C E d

k +V ṽk,
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Error dynamics

The error dynamics
{

Ek+1 = AqEk+Hqdk+F̃qf̃k
Rk = CEk+V ṽk+F fk,

A subsystem decoupled from the effects of the sensor fault
{

E d
k+1 = AqE

d
k +Hqdk

Rd
k = C E d

k +V ṽk,

A subsystem affected by the sensor fault
{

E
f
k+1 = AqE

f
k +F̃qf̃k

R
f
k = CE

f
k +F fk,

Ek = E
f
k +E d

k .
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Stability andL∞ performances

Stability andL∞ disturbance attenuation condition

The aim is to compute the FD observer gainsLq andLq such that the following conditions
hold :
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Stability andL∞ performances

Stability andL∞ disturbance attenuation condition

The aim is to compute the FD observer gainsLq andLq such that the following conditions
hold :

1 The error system is stable.
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Stability andL∞ performances

Stability andL∞ disturbance attenuation condition

The aim is to compute the FD observer gainsLq andLq such that the following conditions
hold :

1 The error system is stable.

2 Given scalarsγ > 0, γ1 > 0, γ2 > 0 and 0< λ < 1, then residual signal should satisfy the
following L∞ performance

||Rd||<
√

γ2
1(γ(λ (1−λ )kV0+ γθ 2

d ))+ γ2
2θ 2

v ,

V0 = E d
0

T
PqE

d
0

Pq ∈ R
2nx×2nx

θd andθv are known constants and represent theL∞ of d andṽ such thatθd = ‖d‖∞ and
θv = ‖ṽ‖∞.
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Stability andL∞ performances

Stability andL∞ disturbance attenuation condition

The aim is to compute the FD observer gainsLq andLq such that the following conditions
hold :

1 The error system is stable.

2 Given scalarsγ > 0, γ1 > 0, γ2 > 0 and 0< λ < 1, then residual signal should satisfy the
following L∞ performance

||Rd||<
√

γ2
1(γ(λ (1−λ )kV0+ γθ 2

d ))+ γ2
2θ 2

v ,

V0 = E d
0

T
PqE

d
0

Pq ∈ R
2nx×2nx

θd andθv are known constants and represent theL∞ of d andṽ such thatθd = ‖d‖∞ and
θv = ‖ṽ‖∞.

Sufficient conditions are given in terms of LMIs.
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Residual evaluation

FD decision
The corresponding FD decision scheme is made as follows :







0∈ [rk rk] Fault-free

0 /∈ [rk rk] Faulty

Chaima ZAMMALI 41 / 75



Interval estimation for synchronous switched systems
Set-membership fault detection frameworks for switched systems

Conclusion

Interval based-fault detection method
Zonotope based-fault detection method
Ellipsoid based-fault detection method

Residual evaluation

FD decision
The corresponding FD decision scheme is made as follows :







0∈ [rk rk] Fault-free

0 /∈ [rk rk] Faulty

Fault free case
In the fault free case, the output signal is consistent with the estimation of the proposed interval
observer.

yk ∈ [y
k

yk]⇒ 0∈ [y
k
−yk yk−yk]⇒ 0∈ [rk rk]
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Residual evaluation

Faulty case
In contrary case, an inconsistency on the output signal is detected and it indicates the existence
of a fault.

yk /∈ [y
k

yk]⇒ 0 /∈ [y
k
−yk yk−yk]⇒ 0 /∈ [rk rk]

5 10 15 20 25 30 35 40 45 50
Time

-0.04

-0.02

0

0.02

FIGURE – Fault-free case
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Time
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FIGURE – Faulty case
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Simulation results

A discrete-time switched system defined with three subsystems,N = 3 is considered.

The state initial conditions are set as

x0 = [0 0 0]T

x0 = [−0.1 −0.1 −0.1]T

x0 = [0.1 0.1 0.1]T.

wk ∈ R andvk ∈ R
2 are uniformly distributed signals such that :

|wk| ≤ 1.
|vk| ≤ [0.1 0.1].

The numerical simulation was carried out using Matlab optimization tools
(Yalmip/Sedumi).

FD results are given using Multiple Quadratic Lyapunov Functions.
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FIGURE – Evolution of the switching signal.
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FIGURE – Evolution of the fault.
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Simulation results
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FIGURE – Residual framers using fault detection TNL interval observer.

In the fault free case, the cooperativity property is ensured, 0∈ [rk rk].

When a fault occurs (k= 30), the fault is detected at the time instantk= 31 and
0 /∈ [rk rk].
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Simulation results
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FIGURE – FD performance comparison between the TNL and the interval approaches (Small fault).

The fault can be detected based on the TNL technique which is not the case when using
the classical interval approach.
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Interval vs zonotopic techniques
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Interval based-fault detection method

(TNL structure)
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High computational efficiency

Easy to implement
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High computational efficiency

Easy to implement

Strict design conditions

(TNL structure)

Nonnegativity ofTqAq−LqC andTqAq−LqC
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Interval vs zonotopic techniques

Interval based-fault detection method Zonotope based-fault detection method

High computational efficiency

Easy to implement

Strict design conditions

(TNL structure)

Accurate Fault Detection results

Relaxed design conditions

Nonnegativity ofTqAq−LqC andTqAq−LqC
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Problem statement

System description
Consider the following discrete-time switched system :

{

xk+1 = Aqxk+Bquk+Dwk+Fqfk

yk = Cxk+Dvvk

Objective
The design of a FD approach for the discrete-time switched systems

robust against disturbances (H∞ criterion)
sensitive to fault (Pole assignment)

The residual evaluation is achieved based on

zonotopic approaches
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Preliminaries

Definition
An s-order zonotopeZ is the affine image of a hypercubeBs = [−1, 1]s as follows :

Z = 〈p,H〉 = p+HB
s = {p+Hz, z∈ B

s}

wherep∈ R
n is the center ofZ andH ∈ R

n×s denotes the generation matrix ofZ.

FIGURE – 3-zonotope in a two dimension space FIGURE – 3-zonotope in a three dimension space

Chaima ZAMMALI 49 / 75



Interval estimation for synchronous switched systems
Set-membership fault detection frameworks for switched systems

Conclusion

Interval based-fault detection method
Zonotope based-fault detection method
Ellipsoid based-fault detection method

Assumption

FIGURE – x0 ∈ 〈p0,H0〉, H0 = diag(x) FIGURE – wk ∈ 〈0,Hw〉, Hw = diag(w)

FIGURE – vk ∈ 〈0,Hv〉, Hv = diag(v)
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Problem statement

Fault detection observer design
FDO structure

{

x̂k+1 = Aqx̂k+Bquk+Lq(yk−Cx̂k)

rk = yk−Cx̂k

x̂k is the estimation ofxk

Lq ∈ R
nx×ny are the observer gains.

Objective
Compute the FDO gainsLq :

sensitive to fault (Pole assignment)

robust against disturbances (H∞ criterion)
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Error dynamics

The error dynamics
{

ek+1 = (Aq−LqC)ek+Fqfk+Dwk−LqDvvk
rk = Cek+Dvvk
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Error dynamics

The error dynamics
{

ek+1 = (Aq−LqC)ek+Fqfk+Dwk−LqDvvk
rk = Cek+Dvvk

A subsystem decoupled from the effects offk
{

ed
k+1 = (Aq−LqC)ed

k +Dwk−LqDvvk

rd
k = Ced

k +Dvvk

A subsystem affected by the actuator fault
{

ef
k+1 = (Aq−LqC)ef

k+Fqfk
r f
k = Cef

k

whereek = ef
k+ed

k , ef
0 = 0 anded

0 = 0.
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Fault sensitivity condition

FDO gains
The FDO gainsLq are designed to improve fault sensitivity on residual signal such that :

(Aq−LqC)Fq = λFq (3)

whereλ is a scalar satisfying 0< λ < 1.
If the condition (3) holds, it follows that :

ef
k = λ k−1Fqf0+ ...+λFqfk−2+Fqfk−1

r f
k = λ k−1CFqf0+ ...+λCFqfk−2+CFqfk−1
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Fault sensitivity condition

FDO gains
The FDO gainsLq are designed to improve fault sensitivity on residual signal such that :

(Aq−LqC)Fq = λFq (3)

whereλ is a scalar satisfying 0< λ < 1.
If the condition (3) holds, it follows that :

ef
k = λ k−1Fqf0+ ...+λFqfk−2+Fqfk−1

r f
k = λ k−1CFqf0+ ...+λCFqfk−2+CFqfk−1

Remark
The residual signalrk depends on a weighting scalarλ .

⇒ It is required to adjust the value ofλ in order to improve fault sensitivity.

⇒ A pole assignment method is proposed.
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Fault sensitivity condition

Lemma 1 [Ben-Israel and Charnes, 1963]

Given matricesA∈ R
a×b, B∈ R

b×c andC∈ R
a×c, if rank(B) = c, then the general solution of

theAB= C is
A= CB†+S(I −BB†)

whereS∈ R
a×b is an arbitrary matrix.

FDO gains
The FDO gainsLq can be obtained by solving (3) :

Lq = (AqFq−λFq)(CFq)
†+S(I −CFq(CFq)

†)

whereS∈ R
nx×ny is a matrix to be designed.
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Disturbance attenuation condition

H∞ method

The performance‖rd‖< γ
√

(‖w‖2+‖v‖2) is considered.
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Disturbance attenuation condition

H∞ method

The performance‖rd‖< γ
√

(‖w‖2+‖v‖2) is considered.

LMI-based optimization problem
To prove the stability and theH∞ performance :























−P+CTC ∗ ∗ ∗

0 −γ2In 0 ∗

DT
v C 0 DT

v Dv− γ2In ∗

PAq−QqC PD −QqDv −P























≺ 0

A scalarγ > 0, a positive definite matrixP∈ R
nx×nx , Qq ∈ R

nx×ny andLq = P−1Qq.
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Residual evaluation

FD decision
The corresponding FD decision scheme is made as follows :







rk ∈ Rk Fault-free

rk /∈ Rk Faulty

Theorem
The residual signalrk is bounded by the zonotopeRk = 〈0,Rk〉 andRk satisfies the following
iteration equation :

{

Rk = [CHk DvHv]
Hk+1 = [(Aq−LqC)↓l(Hk) DHw −LqDvHv]
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Residual evaluation

Lemma 2 [Combastel, 2003]
A high-dimensional zonotope can be bounded by a lower one viathe reduction operation.

The reduction operator can be described asZ = 〈p,H〉 ⊆ 〈p,↓l(H)〉.

↓l(H) represents the complexity reduction operator

n≤ l ≤ s denotes the maximum number of columns of generator matrixH.
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Simulation results

A discrete-time switched system defined with three subsystems,N = 3 is considered.

The initial statex0 is bounded by the zonotopeX0 = 〈p0,H0〉 with :

p0 =





0
0
0



 , H0 =





0.1 0 0
0 0.1 0
0 0 0.1





wk ∈ R andvk ∈ R
2 : bounded random signals by[−0.1,0.1].
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Simulation results

FIGURE – Residual and residual zonotope of the
proposed FD observer.

FIGURE – Residual and residual zonotope of
method without optimization.
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Interval vs zonotopic techniques
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Chaima ZAMMALI 60 / 75



Interval estimation for synchronous switched systems
Set-membership fault detection frameworks for switched systems

Conclusion

Interval based-fault detection method
Zonotope based-fault detection method
Ellipsoid based-fault detection method

Interval vs zonotopic techniques
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Zonotope based-fault detection method

Accurate Fault Detection results

Relaxed design conditions
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Accurate Fault Detection results

Relaxed design conditions
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Accurate Fault Detection results
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Interval vs zonotopic techniques

Zonotope based-fault detection method Ellipsoid based-fault detection method

Accurate Fault Detection results

Relaxed design conditions

Heavier computational burden

A good trade-off between FD accuracy
and computational complexity

Simple matrix calculations

No reduction operator
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Problem statement

System description
Consider the following discrete-time switched system :

{

xk+1 = Aqxk+Bquk+Dqwk

yk = Cxk+Dvv(k)+Ffk,

x∈ R
nx, u∈ R

nu, y∈ R
ny, f ∈ R

nf , w∈ R
nw andv∈ R

nv .

The known matricesAq, Bq, C, Dq, Dv andF are given with appropriate dimensions.

Objective
The aim is to develop a FD decision via ellipsoidal techniques for discrete-time switched
systems with sensor faults.
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Preliminaries

Definition
An ellipsoid setE (c,X)⊂R

n is given by :

E (c,X) = {x∈ R
n : (x−c)TX−1(x−c)≤ 1}.

The center ofE (c,X) is denoted byc∈ R
n. X ∈ R

n×n is a symmetric positive definite matrix
and represents the shape and size of the ellipsoidE (c,X).
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FIGURE – Ellipsoid set
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Preliminaries

Assumption
Assume that the initial statex0, the state disturbanceswk and the measurement noisevk are
unknown but bounded such that

x0 ∈ E (c0,X0), wk ∈ E (0,W)and vk ∈ E (0,V).

c0 ∈ R
nx is a known vector

X0 = x̃2
0Inx , W= ‖w‖2

∞Inw andV = ‖v‖2
∞Inv .

‖w‖∞ and‖v‖∞, assumed to be known, are theL∞ norm ofw andv.

The known constant ˜x0 is given such that‖x0−c0‖ ≤ x̃0.
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Problem statement

Fault detection observer design : TNL structure
{

x̂k+1 = TqAqx̂k+TqBquk+Nqyk+1+Lq(yk−Cx̂k)

rk = yk−Cx̂k

x̂k is the estimation ofxk, rk is the residual signal andLq ∈ R
nx×ny are the observer gains.

Tq ∈ R
nx×nx andNq ∈ R

nx×ny are constant matrices that should be designed to satisfy

Tq+NqC = Inx
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Problem statement

Fault detection observer design : TNL structure
{

x̂k+1 = TqAqx̂k+TqBquk+Nqyk+1+Lq(yk−Cx̂k)

rk = yk−Cx̂k

x̂k is the estimation ofxk, rk is the residual signal andLq ∈ R
nx×ny are the observer gains.

Tq ∈ R
nx×nx andNq ∈ R

nx×ny are constant matrices that should be designed to satisfy

Tq+NqC = Inx

Remark
If Tq andNq are chosen such thatTq = Inx andNq = 0, the proposed observer is reduced
to the commonly used Luenberger form.

The proposed structure can provide more design degrees of freedom by introducing
matricesTq andNq.
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Error dynamics

The error dynamics
{

ek+1 = Aqek+Dwqwk+Dvqdvk+1+Fqdf k+1
rk = Cek+Dvvk+Ffk

Aq = TqAq−LqC, Dwq = TqDq, Dvq = [−LqDv −NqDv],

Fq = [−LqF −NqF], dv = [v(k)T v(k+1)T]T, df = [f (k)T f (k+1)T]T.
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Error dynamics

The error dynamics
{

ek+1 = Aqek+Dwqwk+Dvqdvk+1+Fqdf k+1
rk = Cek+Dvvk+Ffk

Aq = TqAq−LqC, Dwq = TqDq, Dvq = [−LqDv −NqDv],

Fq = [−LqF −NqF], dv = [v(k)T v(k+1)T]T, df = [f (k)T f (k+1)T]T.

A subsystem decoupled from the effects offk
{

ed
k+1 = Aqed

k +Dwqwk+Dvqdvk+1
rd
k = Ced

k +Dvvk

A subsystem affected by the sensor fault
{

ef
k+1 = Aqef

k+Fqdf k+1
r f
k = Cef

k+Ffk
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Stability andL∞ performances

Stability andL∞ disturbance attenuation condition
The aim is to compute the FD observer gainLq such that the following conditions hold :
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Stability andL∞ performances

Stability andL∞ disturbance attenuation condition
The aim is to compute the FD observer gainLq such that the following conditions hold :

1 The error system is stable.

2 Given scalarsγw > 0, γv > 0, γ1 > 0, γ2 > 0 and 0< λ < 1, then residual signal should
satisfy the followingL∞ performance

‖rd
k‖<

√

γ1
2 θ + γ2

2‖v‖2
∞
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Stability andL∞ performances

Stability andL∞ disturbance attenuation condition
The aim is to compute the FD observer gainLq such that the following conditions hold :

1 The error system is stable.

2 Given scalarsγw > 0, γv > 0, γ1 > 0, γ2 > 0 and 0< λ < 1, then residual signal should
satisfy the followingL∞ performance

‖rd
k‖<

√

γ1
2 θ + γ2

2‖v‖2
∞

θ = (γw+ γv)(λ (1−λ )kVq0+ γw‖w‖2
∞ + γv‖dv‖

2
∞).

‖dv‖∞ is theL∞ norm ofdv.

Vq0 = ed
0

T
Pqed

0.

Pq ≻ 0∈ R
nx×nx .

Sufficient conditions are given in terms of LMIs.
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Residual evaluation

Residual evaluation
The residual evaluation is based on determining whether theresidual signalrk is
excluded from the residual ellipsoidE (0,Rk) or not.

The corresponding FD decision scheme is made as follows :






rk ∈ E (0,Rk) Fault-free

rk /∈ E (0,Rk) Faulty

The residual ellipsoidE (0,Rk) is obtained based on the following theorem.
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Residual evaluation

Theorem
Let x0 ∈ E (c0,X0) andx̂0 = c0, thenrk can be bounded by the ellipsoidE (0,Rk) andRk
satisfies the following iteration equations :

p∗v =

√

trace((LqDv)V(LqDv)T)

trace((NqDv)V(NqDv)T)
, Hv = (1+

1
p∗v

)(LqDv)V(LqDv)
T+(1+p∗v)(NqDv)V(NqDv)

T

p∗d =

√

trace(DwqWDT
wq
)

trace(Hv)
, Hd = (1+

1
p∗d

)DwqWD
T
wq

+(1+p∗d)Hv
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Simulation results

A discrete-time switched system defined with three subsystems,N = 3 is considered.

The initial conditions are chosen such that :

x0 = [1 1 1]T, x̂0 = [1 1 1]T, c0 = [0 0 0]T and X0 = I3.

The numerical simulation was carried out using Matlab optimization tools.

Two fault scenarios are considered in the sequel.
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Simulation results

FIGURE – Residual and residual ellipsoid based on
the proposed approach.

FIGURE – Residual and residual ellipsoid using a
Luenberger observer.
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An interval approach is developed for state estimation of discrete-time LPV switched
systems[Zammali et al., 2019a].

Stability and nonnegativity properties have been relaxed thanks to the polytopic
shape of the system parameters.
LMIs conditions are expressed on the vertices of each polytope.

Extensions of these results to the case of unknown switchingsignal and continuous-time
LPV switched systems are investigated and published in[Zammali et al., 2019b],
[Zammali et al., 2020a], [Zammali et al., 2020c].

A new interval observer-based (TNL structure) FD method fordiscrete-time switched
systems is designed usingL∞ performance[Zammali et al., 2020f].

The proposed approach allows reducing the conservatism of gain matrices and
offers more degrees of design freedom.

Interval techniques to detect sensor faults using theH∞ andL∞ criteria are published in
[Zammali et al., 2020b], [Zammali et al., 2020d].
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Set-membership FD frameworks have been developed for switched systems with
actuator fault using zonotopic analysis[Zammali et al., 2020g].

A novel pole assignment approach is designed to maximize thesensitivity of faults
on the residual signal.
H∞ performance is investigated to minimize the effect of disturbances.

Set-membership FD frameworks have been developed for switched systems with sensor
faults using ellipsoidal analysis[Zammali et al., 2020e].

A FD observer with a new structure is investigated.
The design conditions of the proposed observer are given in terms of LMIs using
Multiple Lyapunov Functions, with an Average Dwell Time switching signal.
An L∞ criterion is used to attenuate the effect of unknown but bounded
disturbances and measurement noise.
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