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The ARIADNE project
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The ARIADNE software package is an tool for analysis and verification of nonlinear

hybrid systems.

• Hybrid systems are dynamic systems in comprising continuous evolution

interspersed by discrete events governed by guard condition.

It is based on computable analysis to provide semantics for general-purpose

rigorous numerical methods.

It includes support for many fundamental mathematical operations including:

• real numbers and double/multiple precision interval arithmetic,

• linear algebra and automatic differentiation,

• function models with evaluation and composition,

• solution of algebraic and differential equations,

• constraint propagation and nonlinear programming.

It is implemented as a pure library in C++, with a Python interface for scripting.
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ARIADNE should facilite writing correct code.

• We use a strong type system. All types say what kind of information they hold,

and conversions between types cannot gain information.

ARIADNE should have a clean conceptual framework.

• Standard class naming system. Different classes modelling the same concept

should support the same operations.

• This will be formalised with C++20 “concepts”.

ARIADNE should be theoretically complete and practically efficient.

• Support multiple-precision for accuracy and double-precision for speed.

It should be a joy to program with ARIADNE!

When it’s annoying, the annoyance should be for a reason...

like to stop you making a mistake!
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The ARIADNE website is

http://www.ariadne-
ps.org/

The material here is mostly focused on applications on hybrid systems.

ARIADNE is hosted at

https://github.
om/ariadne-
ps/ariadne/

You will probably want to use the up-to-date working branch.

You can download, compile and install the tool using:

git 
lone https://github.
om/ariadne-
ps/ariadne.git

mkdir ariadne/build; 
d ariadne/build/

git 
he
kout working


make -DCMAKE_CXX_COMPILER=
lang++ ../

make [-j <pro
esses>℄

sudo make install

make do
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Defining a hybrid system
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#in
lude <ariadne/ariadne.hpp >

using namespa
e Ariadne;

int main() {

HybridAutomaton ball("ball");

Real e = 0.5 _de
; / / C o e f f i c i e n t o f r e s t i t u t i o n

Real g = 9.8 _de
; / / S t a n d a r d a c c e l e r a t i o n due t o g r a v i t y

TimeVariable t;

RealVariable x("x");

RealVariable v("v");

Dis
reteLo
ation freefall ;

Dis
reteEvent boun
e ("boun
e ");

ball.new_mode (freefall ,{dot(x)=v,dot(v)=-g});

ball.new_guard (freefall ,boun
e ,x<=0, EventKind :: IMPACT );

ball.new_update (freefall ,boun
e ,freefall ,

{next(x)=x,next(v)=-e*v});



Computing the evolution of a hybrid system
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GeneralHybridEvolverType evolver(ball );

evolver.
onfiguration (). set_maximum_en
losure_radius (2.0);

evolver.
onfiguration (). set_maximum_step_size (1.0/32);

HybridSet initial_set (freefall ,{2<=x <=2+1/10 _q ,0<=v <=0});

HybridTime evolution_time (1.5 ,4);

auto orbit = evolver.orbit (initial_set ,evolution_time ,

Semanti
s :: LOWER );

plot("boun
ingball -xv",

Axes2d (-0.1,x,2.1, -10.1,v,10.1) ,

Colour (0.0 ,0.5 ,1.0) , orbit );

plot("boun
ingball -tx",

Axes2d (0.0,t,1.5,- 0.1,x,2.1) ,

Colour (0.0 ,0.5 ,1.0) , orbit );

}



Results of hybrid system analysis
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Computing a real number (in C++)
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/ / F i l e : c o m p u t e _ a _ r e a l . c p p

/ / c l a n g ++ c o m p u t e _ a _ r e a l . c p p − l a r i a d n e −o c o m p u t e _ a _ r e a l

#in
lude <ariadne/ariadne.hpp >

using namespa
e Ariadne;

#define PRINT (expr) { std::
out <<#expr <<": " <<(expr)<<"\n"; }

int main() {

auto r = 6* atan (1/ sqrt (3_q ));

/ / D e f i n e a r e a l num ber .

/ / The ’ _q ’ c o n v e r t s t o an A r i a d n e R a t i o n a l

PRINT(r);

PRINT(r.
ompute(A

ura
y (123 _bits )));

/ / Compute w i t h a maximum e r r o r o f 1 / 2 ^ 1 2 3

PRINT(r.
ompute(Effort (123)));

/ / Compute e . g . u s i n g 123 b i t s o f p r e c i s i o n .

PRINT(r.
ompute(Effort (123)). get(pre
ision (75))

/ / Compute , and r e t u r n w i t h l e s s p r e c i s i o n

}



Computing a real number (in Python)
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# F i l e c o m p u t e _ a _ r e a l . py

from ariadne import *

if __name__ =='__main__ ':

r = 6* atan (1/ sqrt (3))

# D e f i n e a r e a l num ber .

# s q r t ( . . . ) c o n v e r t s t o an A r i a d n e R e a l

print r

print r.
ompute(A

ura
y (two_exp ( -123)))

# Compute w i t h a maximum e r r o r o f 1 / 2 ^ 1 2 3

print r.
ompute(Effort (123))

# Compute e . g . u s i n g 123 b i t s o f p r e c i s i o n .

print r.
ompute(Effort (123)). get(pre
ision (75))

# Compute an r e t u r n w i t h l e s s p r e c i s i o n



Computing a real number (Results)
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r: mul(6, atan(div(1,sqrt (3))))

r.
ompute(A

ura
y (123 _bits )):

[267257146016241686964920093290467695823/2^126

:66814286504060421741230023322616923957/2^124℄

r.
ompute(Effort (123)). get(pre
ision (75 _bits )):

3.14159265358979323846[2:3℄
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Enclosure sets
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• Define the point (or set of points) reached by the system at time t starting from

x0 at time t0 = 0 to be Ψ(x0, t).

• We need to compute evolved set Ψ(X0, tf ) for initial set X0 and final time tf ,

and the reached set Ψ(X0, [t0 : tf ]).

• Represent these sets as unions of enclosure sets over-approximating the true

result.



Enclosure sets
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• The point xf reached at time tf starting at time t0 from point x0 ∈ X0 under

flow φ0 is:

xf = φ0(x0, tf − t0).

• So assuming there are no discrete events,

Ψ(X0, tf ) = {φ0(x0, tf ) | x0 ∈ X0};
Ψ(X0, [t0 : tf ]) = {φ0(x0, t) | x0 ∈ X0 ∧ t0 ≤ t ≤ tf}.



Representation of enclosure sets
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• The point xf reached at time tf with a single event at time t1 starting at time

t0 from point x0 ∈ X0 is:

xf = φ1(r(φ0(x0, t1 − t0)), tf − t1).

• If a(x) ≥ 0 is an activation condition for the event, then t1 satisfies:

a(φ0(x0, t1 − t0)) ≥ 0.

• If p(x) ≤ 0 is an invariant in the first mode, we also have the constraint:

maxt∈[t0,t1] p(φ0(x0, t− t0)) ≤ 0.

• If c is increasing during the evolution, the constraint simplifies to:

p(φ0(x0, t1 − t0)) ≤ 0.
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• The point xf reached at time tf with a single event at time t1 starting at time

t0 from point x0 is:

xf = φ1(r(φ0(x0, t1 − t0)), tf − t1).

• If g(x) ≥ 0 is a guard condition for the event, then we have constraints:

maxt∈[0,t1] g(φ0(x0, t− t0)) ≤ 0 ∧ g(φ0(x0, t1 − t0)) = 0.
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• The point xf reached at time tf with a single event at time t1 starting at time

t0 from point x0 is:

xf = φ1(r(φ0(x0, t1 − t0)), tf − t1).

• If g(x) ≥ 0 is a guard condition for the event, then we have constraints:

maxt∈[0,t1] g(φ0(x0, t− t0)) ≤ 0 ∧ g(φ0(x0, t1 − t0)) = 0.

• If g is increasing during the evolution, solve t1 = γ1(x0), so

xf = φ1

(
r(φ0(x0, γ1(x0)− t0)), tf − γ1(x0)

)
.



Representation of enclosure sets
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The evolved set Ψ(X0, tf ) and reached set Ψ(X0, [t0 : tf ]) can be described in

terms of functions and constraints!

Represent an enclosure set as a constrained image set of the form

S = {x=f(z) | z ∈ D | g(z) ∈ C} = f(D ∩ g−1(C).

For example, with a single event, and an invariant p which is increasing:

Ψ(X0, t) = {x=φ1(r1(φ0(x0, t1 − t0)), t− t0) | x0∈X0 ∧ t1, t∈ [t0 : tf ]

| p(φ0(x0, t1 − t0)) ≤ 0 ∧ a(φ0(x0, t1 − t0)) ≥ 0 ∧ t1 ≤ t}
∪ {x=φ0(x0, t− t0) | x0∈X0 ∧ t∈ [t0 : tf ] | p(φ0(x0, t)) ≤ 0}.



Constrained image sets
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Constrained image sets are sufficiently general to be able to represent reach and

evolve sets arising in the evolution of a hybrid system, but sufficiently restrictive to

be reasonable to work with.

The max operator occurring when processing invariants is not directly handled,

but can often be simplified, and is otherwise approximated.

Operations on a constrained image set S = {f(z) | z ∈ D | g(z) ∈ C} reduce

to function composition:

• Image f(S) = {[f ◦ h](z) | z ∈ D | g(z) ∈ C}.

• Intersection S ∩ h−1(B) = {f(z) | z ∈ D | g(z) ∈ C ∧ [f ◦ h](z) ∈ B}.
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To verify system, construct a discretisation of the reachable set.

• Outer-approximate the initial set on a grid.

• For each cell:

◦ Compute an over-approximation of the flow tube and final set for a time

step h.

◦ Outer-approximate the evolved sets on the grid.

◦ Refine the grid as necessary to obtain a reasonable approximation.

• Repeat recursively until no new cells are found.



Fundamental operations
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The fundamental operations for computing the evolution of a hybrid system are:

• Solving the differential equation ẋ = f(x) to compute the flow φ of the

continuous dynamics:

φ̇(x, t) = f(φ(x, t)); φ(x, 0) = 0.

• Solving an algebraic equation to compute the crossing time τ with a guard set:

g(φ(x0, τ(x0))) = 0.

• Evaluating and composing functions to apply the flow or reset to an enclosure:

r(S)={[r ◦ f ](z) | z ∈ D | g(z) ∈ C}.

The fundamental operation for computing a discretisation of the evolution is:

• Solving a constraint satisfaction problem to test whether an enclosure set S
intersects a box B:

S ∩B = ∅ ⇐⇒ {z ∈ D | g(z) ∈ C ∧ f(z) ∈ B} = ∅.
All these operations must be performed rigorously and efficiently!
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Toolbox overview
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The computational kernel of ARIADNE is written in C++, and provides complete

support for the operations of rigorous numerics required.

Data types for functions and sets are based around abstract interfaces motivated

by computable analysis.

Four kinds of computational information are supported, approximate, validated,

effective and exact.

Core operations of arithmetic, linear algebra and automatic differentiation are

built-in.

Interfaces for various solvers are also defined, with each solver being required to

implement a closely-related set of operations.



Rigorous numerics
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The real numbers R and the set of continuous functions Rn → R
m have

continuum cardinality, so there is no possible way of describing all elements

exactly using a finite amount of data.

The main idea of rigorous numerics is to represent an element x of an

uncountable type X by a subset x̂ ⊂ X containing x.

The subset x̂ is taken from a countable collection X̂ of subsets of X , and has a

concrete description given by a finite amount of data.

An implementation of an operation op : X1 × · · · ×Xn → Y is a procedure

ôp : X̂1 × · · · × X̂n → Ŷ such that the inclusion property holds:

x̂i ∋ xi for i = 1, . . . , n =⇒ ôp(x̂1, . . . , x̂n) ∋ op(x1, . . . , xn).

The implementation computes arbitrarily accurately if

limk→∞x̂i,k = {xi} =⇒ limk→∞ôp(x̂1,k, . . . , x̂n,k) = {op(x1, . . . , xn)}.

Interval arithmetic is an example of a method satisfying the inclusion property.



Computable analysis
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Computable analysis is the theory of which operations of continuous mathematics

can be computed arbitarily accurately.

It turns out that computable operators between spaces must be continuous, and

that almost all naturally-defined continuous operators are computable.

Computable operators can be implemented by rigorous numerical algorithms

acting on basic subsets of the space.

Arithmetic operations +,−,×,÷,max,min are computable R× R → R.

Comparison R . R must yield a Kleenean value in K = {T,F, ?}.

e.g. What is the result of 0.3333 · · · × 3− 1 . 0?

Evaluation, composition and integration of functions Rn → R
m are computable.

Differentiation is uncomputable, unless symbolic information is available.

Open and closed subsets of Rn are defined by their membership predicate R
n → K.

Located (overt and compact) subsets are defined by which open/closed sets they

intersect, so are specified by a function (Rn → K) → K.



Information
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In ARIADNE, classes have a prefix/tag indicating what information they provide.

• An Exa
t object is a finite, decidable description.

• An Effe
tive object has a complete but (potentially) infinite description.

• A Validated object provides partial information which is guaranteed correct.

• An Approximate object provides no guarantees about the value.

• A Raw (future: Rounded?) object has a finite description, decidable

comparisons, but approximate operations.

◦ Warning: Direct use of Raw objects is dangerous!

e.g. Instead of using raw FloatMP, use instead Bounds<FloatMP>.



Generic and concrete objects
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Generic classes represent mathematical objects, including Real numbers and

Fun
tion<Real(Real)>.

They are implemented in terms of interfaces reflecting defining operations.

• A Real number can be approximated by a Dyadi
 number to a given A

ura
y.

• A Fun
tion<RES(ARG)> can be evaluated on an object of type ARG.

Concrete classes represent data types used in numerical computation, typically

based on Floating-point numbers with Double/MultiplePre
ision.

Every concrete class models values of a particular generic type, and

supports (essentially) the same operations as the generic type it models.

e.g. Bounds<FloatMP> is a concrete class modelling a ValidatedReal.

Concrete classes are defined by a properties parameter, which must be given

during construction, and specifies how they are build from generic classes.

e.g. Bounds<FloatMP>(ValidatedReal y, MP pre
ision).
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Kleenean logic
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In ARIADNE, comparisons on Real numbers return Kleenean values:

operator >(Real , Real) -> Kleenean

Kleenean objects must first be 
he
ked using a given Effort:

Kleenean :: 
he
k(Effort ) -> ValidatedKleenean ;

ValidatedKleenean objects cannot be used directly in tests, but must be

converted to a builtin bool:

definitely (ValidatedKleenean k) -> bool;

possibly (ValidatedKleenean k) -> bool {

return not definitely (not k); }

ApproximateKleenean objects represent a “fuzzy” logical value which we don’t

know for sure is correct.

likely (ApproximateKleenean ) -> bool;

unlikely (ApproximateKleenean k) -> bool {

return not likely (k); }

Nonextensional decisions can be made using


hoose (LowerKleenean t, LowerKleenean f)

-> Nondeterministi
Boolean ;



Algebraic number types
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In Ariadne we provide concrete Integer, Dyadi
 and Rational numbers.

These are based on the GMP library and support the standard arithmetical

operations and extended values inf and NaN.

For example, we can write:

Integer z(5); / / The i n t e g e r 5

Dyadi
 w(11,3u); / / The d y a d i c 1 1 / 2 ^ 3

Rational q=z/w; / / The r a t i o n a l 4 0 / 1 1

A Natural number is a Positive<Integer>. A De
imal number type is

provided for convenience. In the future, we may support Algebrai
 numbers.

C++ allows user-defined literals:

• 5_z defines an Integer literal.

• 9.81_de
 or "19 391 202 883 189.81"_de
 define a De
imal literal.

• 22/7_q defines a Rational literal.

• 2.5_x defines an Exa
tDouble literal.



Real numbers

20 November 2020 Verification of Hybrid Systems with ARIADNE – 33 / 84

In ARIADNE, we try to be as agnostic as possible regarding the real number type.

Given a real number, need some way of extracting information about its value. We

currently use a two-stage process. We first create a ValidatedReal:

Real:: 
ompute(A

ura
y a) -> ValidatedReal;

/ / Compute t o w i t h i n +/− a

Real:: 
ompute(Effort e) -> ValidatedReal;

/ / Compute c o n v e r g e n t u p p e r and l o w e r b o u n d s

Concrete lower and upper bounds can then be extracted:

ValidatedReal -> Bounds <Dyadi
 >();

This approach has the advantage of not mixing the generic and concrete views.

We can use these to define comparisons

gtr(Real ,Real) -> Kleenean ; / / C o m p a r i s o n u n d e c i d a b l e

The lower/upper reals R≶ are defined as limits of increasing/decreasing

sequences of dyadics.



Rounded floating-point numbers
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ARIADNE currently supports Floating-point numbers based on double- and

multiple- precision, the latter implemented by MPFR.

The FloatDP class is finite, and the FloatMP class is graded into finite subsets

by the precision.

Operations characterised by the RoundingMode, which could be down(ward),

up(ward) or near(est).

To construct a rounded object, we need to specify both the rounding and the

precision.

Float <PR >( Rational q, RoundingMode rnd , PR pr);

Likewise, the rounding mode needs to be specified for non-exact operations e.g.

re
(RoundingMode , Float <PR >) -> Float <PR >;

These classes support exactly the same arithmetic and elementary functions as

the Real number class.



Concrete models
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Given a type F supporting exact or rounded operations, we can derive several safe

approximation classes:

• Approximation<F> An approximation with no guarantees on the error.

• LowerBound<F> A lower bound on the value.

• UpperBound<F> An upper bound on the value.

• Bounds<F> Both a lower and upper bound.

• Ball<F,FE> An approximation together with an error bound (of type FE).

• (Exa
t)Value<F> An exact representation of some value.

Bounds, UpperBound and LowerBound are valid for any partially-ordered

space, and Ball for any metric space.

The supported operations, including comparisons, match that of the generic type.

operator >( LowerBound <F>, UpperBound <F>)

-> ValidatedLowerKleenean ; / / A v e r i f y a b l e t e s t

A numeric Lower/UpperBound is a Validated version of a Lower/UpperReal.

An Approximation can be seen as a Validated version of a Naive object.



Linear algebra
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Linear algebra is supported with Ve
tor<X> and Matrix<X> classes, supporting

standard arithmetic.

A vector (or matrix) can be constructed in many ways, such as from a

InitializerList or a generator.

Ve
tor <FloatMPApproximation > v({2,3,5}, MultiplePre
ision (128));

Ve
tor <Dyadi
 > v(size=3u, [&℄( SizeType i){ return 1/( two^i);});

/ / Use an anonym ous C++ f u n c t i o n t o g e n e r a t e v [ i ] = 1 / 2 ^ i .

Solvers for linear equations are provided:

PLUMatrix <X> plu=triangular_de
omposition (a);

Ve
tor <X> x = solve (plu ,b);

x=gauss_seidel_step (a,b, x);

Functionality for computing eigenvalues is in development, and already includes

QR factorisations.

Pair <OrthogonalMatrix <X>,UpperTriangularMatrix <X>>

qr=orthogonal_de
omposition (a);



Differential algebra
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Since differentiation is important for many numerical methods, but is formally

uncomputable, we need ways of (partial) derivatives from symbolic data.

Automatic differentiation is an approach to computing derivatives symbolically:

z = f(y);
dz

dx
= f ′(y)

dy

dx
;

d2z

dx2
= f ′′(y)

(dy
dx

)2
+ f ′(y)

d2y

dx2

ARIADNE supports automatic differentiation using the Differential object,

which stores the value of a quantity y, together with its partial derivatives with

respect to independent variables xi.

These can be created using named constructors:

Differential <X>:: variable (ArgumentSize n, Degree d, X x, Index i)

-> Differential <X>;

/ / C r e a t e d e r i v a t i v e s o f y ( x [ 0 ] , . . . , x [ n −1 ] ) t o d e g r e e d .

Explicit specialisations are provided for degrees 1, 2 and for a single independent

variable for efficiency.

Extract low-order derivatives: gradient(Differential<X>) -> Cove
tor<X>.



Commutative algebra
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In ARIADNE, we define an abstraction Algebra<X> for unital algebras A over a

scalar type X, supporting operations

add(A,A)->A; mul(A,A)->A;

add(A,X)->A; mul(A,X)->A;

norm(A) -> MagType <X>;

avg(A)->X;

Here the avg function on a should return c approximately minimising ‖a− c‖.

Analytic functions can be applied to any complete normed unital algebra, and we

have implemented generic code for elementary functions.



Function classes
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ARIADNE currently supports functions on Euclidean space, distinguishing S
alar

and Ve
tor arguments.

Function types are templated on the information provided P, and their signature.

Hence a Fun
tion<ValidatedTag,Real(RealVe
tor)> defines a validated

function R
n → R.

Functions can be evaluated on FloatBounds and FloatApproximation

objects, on Differential objects, on TaylorModels and on general

Algebras.

Fun
tion <... >:: operator () (FloatBounds <PR >) -> FloatBounds <PR >;

Concrete functions include Constant, Coordinate, Affine and Polynomial,

and other Symboli
 functions.



Function operations
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Use interval arithmetic to rigorously evaluate a function f : Rn → R at a point x
or over a range of values ⌊x⌉.

The range of a monotone function can be computed from its endpoints.

The range of a polynomial can be computed using Bernstein form:

p(x) =
∑m

j=0
cmi Bm

j (x) where Bm
j (x) = 1

2m

(
m

j

)
(1− x)j (1 + x)m−j .

Derivatives up to a given degree can be computed directly

f.derivatives (x,deg);

This method will fail if the function does not have enough information to compute

the derivative.

Functions classes support arithmetic f ⋆ g, elementary operations e.g. exp(f),

composition 
ompose(f,g), and vector operations join(f1,f2).

We are looking into providing support for lambda-calculus like syntax.



Function models/patches
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When computing approximations to functions, we are usually restricted to

compact domains.

For functions on compact domains, we can compute the supremum norm:

norm(Fun
tionPat
h <...> f) -> PositiveUpperReal ;

A Fun
tionPat
h is a function defined on a standard (interval or boxn) domain.

Concrete operations are provided by Fun
tionModels, which are balls around

an exact concrete representation over a standard domain.

A powerful rigorous calculus for continuous functions Rn → R is based around

the TaylorModels (Makino & Berz, 2003).

They have fast arithmetic operations, especially multiplication.

By sweeping terms into the error bound, the representation can be kept small.

By rescaling, they can represent functions on arbirary box domains.

Work on a ChebyshevModel class is in progress.



Taylor models
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A Taylor model for f : Rn → R on domain D =
∏n

i=1[ai :bi] is a tuple

f̂ = 〈s, p, e〉 where

s : [−1:+1]n → D is a scaling function,

p is a polynomial with coefficients in F, and

e is an error bound with value in F

satisfying

∀z ∈ [−1,+1]n, |f(s(z))−p(z)| ≤ e ⇐⇒ ‖f(x)−p(s−1(x))‖D,∞ ≤ e.

ba

s−1

−1 +10

e

f(x)

p(z)

x z

The error bound e is used to capture the round-off errors introduced by

floating-point arithmetic, and truncation errors of numerical methods.



Taylor models
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Taylor models can be computed using a Taylor series with remainder term; in

one-dimension we have

p(z) =
∑n−1

k=0
1
k!f

(k)(0) zk; e = rad
(
1
n! [f

(n)]([−1,+1])
)
.

The derivatives of f are computed using automatic differentiation.

A Taylor model f̂1 = 〈s, p1, e1〉 refines f̂2 = 〈s, p2, e2〉 if any function

represented by f̂1 is also represented by f̂2.

f̂1 refines f̂2 if ‖p2 − p1‖∞ + e1 ≤ e2.

To avoid growth of the number of coefficients, sweep small coefficients into the

uniform error:(∑
α cαx

α + cβx
β
)
+ e 7→ ∑

α cα + (|cβ|+u e).

Here, the fact that the domain of p is [−1,+1]n is a big advantage!

Coefficients of higher-order terms can be reduced by restricting to a subdomain.



Taylor models
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Standard functions operations, including evaluation, arithmetic, composition, and

antidifferentiation, are available for Taylor models.

If f̂ = 〈s, p, d〉 and ĝi = 〈t, qi, ei〉 are Taylor models, then the composition f̂ ◦ ĝ
can be computed by unscaling each (qi, ei) by s−1

i , and applying p to each

s−1
i ◦ qi. We obtain

f̂ ◦ ĝ = p
(
s−1
1 ◦ (q1 ± e1), . . . , s

−1
n ◦ (qn ± en)

)
± d.

The polynomial p can be efficiently evaluated by Horner’s rule.

A Taylor model f̂ = 〈s, p, e〉 can be antidifferentiated with respect to a variable xj
by∫

f(x) dxj =
1
2(bj − aj)

(
e+

∑
α

cα
αj+1 x

α+ǫj
)
.

If e = 0, then the polynomial can be differentiated term-by-term:

df/dxj =
2

bj−aj

∑
α αjcαx

α−ǫj .



Abstract sets
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Abstract classes of open, closed, regular, overt, compact and located sets are

given, defined by predicates:

OpenSet :: 
ontains (Point) -> LowerKleenean;

ClosedSet :: 
ontains (Point) -> UpperKleenean;

RegularSet :: 
ontains (Point) -> Kleenean ;

OvertSet :: interse
ts (OpenSet) -> LowerKleenean;

Compa
tSet :: subset (OpenSet) -> LowerKleenean;

Compa
tSet :: disjoint (OpenSet) -> LowerKleenean;

Lo
atedSet :: interse
ts (RegularSet ) -> Kleenean ;

Lo
atedSet :: subset (RegularSet ) -> Kleenean ;

Lo
atedSet :: disjoint (RegularSet ) -> Kleenean ;

A RegularSet “is” open and closed. A Lo
atedSet is both overt and compact.

We can compute preimages and preimages:

preimage (OpenSet , Fun
tion ) -> OpenSet;

preimage (RegularSet , Fun
tion ) -> RegularSet ;

image (OvertSet , Fun
tion ) -> OvertSet ;

image (Compa
tSet , Fun
tion ) -> Compa
tSet ;



Function and paving sets
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Concrete sets in ARIADNE are based on Interval and Box classes.

They include the paving-based GridTreePaving and GridCell.

Concrete sets based on functions include:

• ConstraintSet g−1(C), which are Regular.

• ImageSet f(D), which are Lo
ated.

• BoundedConstraintSetD ∩ g−1(C), which are Regular and Lo
ated.

• ConstrainedImageSet f(D ∩ g−1(C)), which are Lo
ated.

Tests for emptiness and intersection are implemented using constraint

propagation and nonlinear programming.
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Solver classes
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In ARIADNE, complicated operations are performed by solver classes.

These implement abstract interfaces providing support for a related class of

problems

This approach allows for different solution methods to be tried for the same kind of

problem.

Concrete implementations should support a common global accuracy parameter,

and may have other precision parameters.



Differential equations
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A differential equation integrator computes the flow φ of ẋ = f(x).

The IntegratorInterfa
e exposes functionality for solving differential

equations, including:

flow_bounds (ValidatedVe
torMultivariateFun
tion f,

Exa
tBox dom , ApproximateValue hsug)

-> Pair <Exa
tValue ,UpperBox >;

/ / F i n d a p a i r ( h , b b x ) s u c h t h a t t h e f l o w o f f

/ / s t a r t i n g i n dom f o r t i m e hmax s t a y s i n b b x

flow(ValidatedVe
torMultivariateFun
tion f,

Exa
tBox dom , Exa
tValue h, UpperBox bbx)

-> ValidatedVe
torMultivariateFun
tionPat
h ;

/ / F i n d p h i ( x0 , t ) s a t i s f y i n g d p h i / d t = f ( p h i )

/ / f o r x0 i n dom and t i n [ 0 , h ]



Differential equation integrators
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ARIADNE currently provides three integrators:

• Pi
ardIntegrator, which uses Picard’s iteration

φn+1(x0, t) = x0 +
∫ t

0 f(φn(x0, τ)) dτ.

Since the only operations used are 
ompose and antidifferentiate,

which are computable on Taylor models, we can apply Picard’s iteration to

Taylor models directly.

Picard’s iteration is a contraction for t ≤ h = 1/2LK.

• TaylorIntegrator, which computes the flow using a Taylor series

expansion.

• AffineIntegrator for computing the flow of an affine system ẋ = Ax+ b.

In practise, the Taylor integrator outperforms the Picard integrator, since it

generates sharper error bounds after fewer iterations.

These methods all require a bound for the flow starting in a box D with time step

h. Any set B satisfying D + hf(B) ⊂ B is guaranteed to be a bound.



Algebraic equations
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An algebraic equation solver computes the solution of a parameterised algebraic

equation f(a, h(a)) = 0.

The SolverInterfa
e provides a number of related operations, including:

solve (ValidatedVe
torMultivariateFun
tion f, Exa
tBox bx)

-> Ve
tor <ValidatedReal >;

/ / F i n d a s o l u t i o n o f f ( x ) = 0 i n b o x bx

impli
it ( ValidatedS
alarMultivariateFun
tion f,

Exa
tBox dom , Exa
tInterval 
odom)

-> ValidatedS
alarMultivariateFun
tionPat
h ;

/ / F i n d a f u n c t i o n h o v e r dom s a t i s f y i n g f ( x , h ( x ) ) = 0



Algebraic equation solvers
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ARIADNE currently provides two algebraic equation solvers:

• IntervalNewtonSolver based on the interval Newton operator

N(f, [X], x) = x−Df([X])−1 f(x)

• Kraw
ykzSolver based on the related Krawcykz operator.

K(f, [X], x) = x−Df−1(x)f(x)+
(
I−Df−1(x)Df(⌊x⌉n)

)
(⌊x⌉n−xn)

The Krawcykz solver is more reliable but slower.

Using Taylor models, can compute the solution x = h(a) in box X to

f(a, x) = 0 on box A, as long as Dxf(A,X) is nonsingular.

• For f : Rp × R → R, only need to compute a reciprocal, no matrix inversion

is required.



Computing crossings with guard sets

20 November 2020 Verification of Hybrid Systems with ARIADNE – 53 / 84

Crossings of the flow φ(x0, t) with the guard g(x) = 0 can be computed by

solving

[g ◦ φ](x0, t) = 0.

The time derivative of g ◦ φ is

d
dt
(g ◦ φ) = ∇g · φ̇ = (∇g · f) ◦ φ.

Hence transversality can be detected without computing the flow.

The crossing time τ(x) can be computed using the parameterised Krawczyk

operator:

τn+1(x) = τn(x)−
g(φ(x, τn(x))

(∇g · f)(φ(x̂, τn(x̂)))
with error

ǫn+1 =
(
1− (∇g · f)(φ(x, ⌊τ(x)⌉))

(∇g · f)(φ(x̂, τ(x̂)))
)
ǫn.

The convergence rate depends on the size of (∇g ·f)(φ(x,⌊τ(x)⌉).



Propagators
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Constraint propagation (Kearfott 1996, Jaulin et al. 2001) is a collection of

methods for testing feasibility of the constraint satisfaction problem

z ∈ D ∧ f(z) ∈ C.

ARIADNE implements a constraint propagation based on applying various

contractors to reduce the size of the box D, and remove unnecessary constraints.

• Box consistency.

• Hull consistency.

• Monotone hull consistency.

When all else fails, we split D into two sub-boxes. Splitting is performed based on

an estimation of the Jacobian to try to decrease the nonlinearity of the function

over the subdomains.



Computing discretisations of sets
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To discretise the evolved sets, we need to test whether

S = {h(z) | z ∈ D ∧ g(z) ∈ C}
intersects a box B.

We typically test the same enclosure against many boxes, any use intermediate

results for a box Bi to warmstart computation for a nearby box Bj .

We are unsually more interested in proving disjointness than finding an

intersection point.

• However, showing that S does intersect the box B shortcuts the computation.

• To prove existence of solutions in the presence of equality constraints, need an

algebraic equation solver.



Nonlinear programming
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Find a solution of the nonlinear programming problem

minimise f(x) subject to x ∈ D and g(x) ∈ C.

ARIADNE implements primal-dual interior-point methods as the core solution

methodology.

Since rigorous solutions are required, we need to eliminater parts of the domain

which cannot contain the optimum. Lagrange multipliers are used to construct

linear combinations of constraints which can be contracted by constraint

propagation.

For linear programming, ARIADNE implements a simple version of the simplex

algorithm, which can be used with exact, validated or approximate arithmetic.



Drawers
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A drawer is a solver for drawing a set on a canvas.

The problem of efficiently and accurately drawing a constrained image set

S = f(D ∩ g−1(C)) ⊂ R
2 is nontrivial!

ARIADNE implements various drawers:

• BoxDrawer, in which D is subdivided into boxes Di and [f ](Di) is drawn

whenever [g](Di) ∩ C 6= ∅.

• AffineDrawer draws sets 〈f〉(Di ∩ 〈g〉−1(C)), where 〈f〉 and 〈g〉 are

affine approximations to f and g.

The AffineDrawer usually achieves good accuracy with few subdivisions.
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Difficulties in computing the evolution
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There are several major practical difficulties when using the set and function

calculus for computing the evolution of a hybrid system:

• How to rigorously handle degenerate (non-transverse) crossings.

• How to schedule the events to avoid splitting the enclosure sets as much as

possible.

• How to manipulate the enclosure sets to maintain accurate

over-approximations without too heavy a computational burden.

• How to split large enclosure sets to continue the evolution in as efficient a way

as possible.



Degenerate crossings
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A grazing contact is a quadratic tangency of the flow line with the progress set

boundary, and is characterised by

L2
fp(y) < 0 whenever Lfp(y) = p(y) = 0.

In this case, we can compute the critical time µ(x0) at which the p(φ(x0, t))
reaches a maximum.

The progress condition then reduces to(
t1 ≤ µ(x0) ∧ p(φ0(x0, t1 − t0)) ≤ 0

)

∨
(
t1 ≥ µ(x0) ∧ p(φ0(x0, µ(x0)− t0)) ≤ 0

)
.

Where the flow has a cubic or higher-order tangency with the progress set

boundary, it is possible in principle to find formulae for the evolved sets using

higher-order singularity theory.

These formulae quickly become unwieldy, so when computing

over-approximations to the evolution, we use the fallback conditions

p(φ(x0, t1 − t0)) ≤ 0.



Event scheduling
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Care must be taken to avoid splitting the evolved set unnecessarily when a guard

is partially satisfied after a time step.

The most straightforward way of continuing the evolution is to split the set in two,

with one part taking the jump immediately, and the other part taking the jump at

the subsequent step.

This splitting doubles the work required for the subsequent evolution, and

introduces additional constraints.

The current implementation avoids splitting by “creeping” up to the guard set using

a smaller step size δ(x) .



Reconditioning
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The accuracy of computation on polynomial models p(z)± e is highly sensitive to

the value of e; if e is too large, subsequent computations lose accuracy very

quickly.

In ARIADNE, we implement the reconditioning of Kuhn (1998):

{p(z)± e | z ∈ [−1,+1]n}
= {p(z1) + ez2 ± 0 | (z1, z2) ∈ [−1,+1]n+1}

to eliminate the error terms e at the expense of extra variables.

Reconditioning can also be used to help control the complexity of the

representation of enclosure sets.

We have implemented the reduction process of Lohner (1987) for affine

enclosures without constraints:

If A = A′R with ‖R‖∞ ≤ 1, then

{Az + b | z ∈ [−1,+1]n} ⊂
{
A′ z + b | z ∈ [−1,+1]m

}
.



Splitting
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If enclosure sets become too big, then splitting is needed to avoid blow-up of

errors.

The simplest way of splitting is to subdivide the parameter domain along one of its

coordinate axes:

Si = f(Di ∩ g−1(C)) for i = 1, 2 with D = D1 ∪D2.

In ARIADNE, the splitting coordinate for the purpose of evolution is chosen to

reduce the sizes of the bounding boxes of the sets.

Splitting also has the beneficial effect of decreasing the coefficients of the scaled

polynomial models, and may result in redundant constraints which can be

removed from the representation.



Planned future improvements
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Intermediate variables Explicitly consider intermediate variables in the

description of the evolved sets:

{yf | (x0, t1, w1, x1) ∈ D | y1 = φ0(x0, t1) ∧ g1(w1) = 0

∧ x1 = r1(w1) ∧ yf = φ1(x1, tf − t1)}.
Precomputed flows Compute the flow over a large domain rather than

separately for each step. (Dang, Guernic & Maler, 2009).

Paralleletopic domains Using a paralleletope D = A−1([E]− c) rather than

a box B to bound the flow step.

Nonlinear reconditioning Find reconditioning techniques for nonlinear

enclosures and enclosures with constraints.
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Water tank system
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V

α

hmax

hmin

The water level h in a tank with continuous outflow and a valve-restricted inflow

needs to be controlled to between hmin and hmax.

By Torricelli’s law, ḣ = −a
√
h+ b α where α ∈ [0, 1] is the aperture of the inlet

valve, a and b are physical constants.

The valve can be opened or closed at a speed of 1/T .

The controller starts to open the value as soon as h ≤ hopen and starts to close

as soon as h ≥ hclose.

Model as a hybrid system with three components, the tank itself, the valve, and the

controller.



Water tank automaton
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Water tank evolution
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A computation of one evolution loop starting from {(opening, 0, 0)} using

ARIADNE is shown.

The result is a rigorous and accurate over-approximation of the exact reachable

set.

(Computation time ≈ 6s on a 2.4 GHz Intel Core 2 Duo with 4 Gb of memory.)



Heating system
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Ṫ = P δheating|on +K(Tav − Tamp cos(2πC)− T )



Comparison with Other Tools

Introduction

A Quick Look

Hybrid Systems

Foundations

Core

Solvers

Evolution

Examples

Other Tools

• Hybrid systems

• Rigorous numerics

Development

Conclusion

20 November 2020 Verification of Hybrid Systems with ARIADNE – 70 / 84



Tools for hybrid systems
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• HyperTech (Henzinger et al., 2000) uses boxes as enclosures,

• d/dt (Asarin, Dang & Maler, 2002) is a tool for affine systems with affine guards, and

uses polytopes as its enclosures. and can compute the solution of differential

inclusions with small noise terms.

• Methods of Kurzhanski & Varaiya (2002) use ellipsoids as enclosures, but cannot

perform infinite-time reachability analysis.

• Checkmate (Krohl et al., 2003) can handle nonlinear dynamics, but only affine guard

sets.

• HSOLVER (Ratschan, 2007) can handle nonlinear hybrid systems, but can only prove

safety properties.

• Phaver (Frehse, 2008) uses zonotopes as enclosures, can only handle

piecewise-affine-derivative systems and affine guards. Termination of an infinite-time

reachability computation is performed by testing if no new enclosures are generated.

• SpaceEx (Frehse, 2011) combines polyhedra and support function representations of

the state space, and guarantees local error bounds on the computation of systems

with piecewise affine dynamics and guards.

• Flow* (Chen, 2015) also used Taylor models to compute finite-time dynamics of

nonlinear hybrid systems.



Tools for hybrid systems
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• The level-set toolbox of Tomlin, Mitchell, Bayen & Oishi (2003) can be used for

reachability analysis. It uses a global representation in terms of the frontier of the

reached region, which can suffer from singularities occurring on the boundary during

the computation.

• KeYmaera (Platzer, 2008) combines logical and algebraic methods for hybrid theorem

proving.

• The class of monotone nonlinear systems with uncertainties was handled in Ramdani,

Meslem & Candau (2010) using a similar approach to ARIADNE.



Tools for rigorous numerics
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• AWA (Lohner, 1987) for ordinary differential equations.

• ADIODES (Stauning, 1997) for ordinary differential equations.

• VNODE (Nedialkov, Jackson & Corliss, 1999) for ordinary differential equations

• GAIO (Dellnitz, Froyland & Junge, 2001) for global analysis of dynamic systems.

• COSY INFINITY (Berz & Makino, 2006) for Taylor models and differential equations.

◦ Implemented in Fortran with a custom scripting language.

◦ Introduced many important ideas in rigorous numerics, including Taylor function models.

• CAPD-Library (Mrozek et al., 2007) for analysis of nonlinear dynamic systems.

• Ibex (Chabert & Jaulin, 2011) for interval arithmetic and constraint programming.

• iRRAM (interactive/iterative Real RAM) (Müller, 2000)

◦ A utility for arbitrary-precision real number computation.

• AERN (Approximating Exact Real Numbers) (Konečný, 2005).

◦ Similar in scope to ARIADNE’s rigorous numerics, but implemented in Haskell.
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Improvements
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Improve the efficiency, especially of the differential equation solvers.

General clean-up of code base:

• Make sure expected operations are present and nonambiguous.

• Update Python interface to conform as fully as possible to C++ interface.

• Simplify to speed up compilation and development time.

• Introduce “Concepts” from new C++20 standard.

Improve the documentation!

• The main ARIADNE documentation is made with Doxygen.

• It’s very easy to make baad documentation with Doxygen!

We really need specific information from users to help improve the documentation!



Extensions (Core functionality)
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Linear algebra:

• Eigenvalues and eigenvectors

Function calculus:

• Chebyshev, Fourier, and Bernstein bases, rational approximation;

• Analytic, differentiable, piecewise-continuous, measurable,

and Sobolev function spaces;

• Lambda calculus.

Geometric calculus:

• Open covers, set-valued functions, simplification of sets.

Probability and stochastics:

• Distributions, random variables.

Dynamic systems:

• Parametrised systems, stiff ordinary differential equations, partial differential

equations, differential inclusions.



Extensions (Systems analysis)

20 November 2020 Verification of Hybrid Systems with ARIADNE – 77 / 84

• Evolution of hybrid systems with inputs and noise.

• Verification of linear temporal logic (LTL) formulae.

• Analysis of stochastic systems and dynamical games.

• Computation of optimal controllers.

• System reduction, including time-scale decomposition

• Modular analysis using assume-guarantee reasoning.



Verification of implementation
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Since the tool aims to provide a rigorous analysis of dynamic systems, we need to

make sure that the implementation is correct!

Unfortunately, C++ is too complicated a language for formal verification of the

code.

However, we can implement core functionality of an ARIADNE-like tool in a

language which allows verification of the algorithms and their implementation.

• Together with the groups of N. Müller, M. Konečný, M. Ziegler and

A. Simpson/A. Bauer, we have been looking at designing a verified language

for effective (exact) real computation. (Implemented in ML, verified using Coq?)

• M. Konečný and I used Haskell to implement ARIADNE’s real number calculus.

• M. Konečný has been experimenting with an Agda implementation of AERN

functionality.

• N. Müller has been attempting to verify iRRAM code.
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Summary
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ARIADNE is an open-source software tool for reachability analysis of nonlinear

hybrid systems.

It has a general-purpose functionality implementing types and operations from

computable analysis with data structures and algorithms from rigorous numerics.

It allows users to perform calculations yielding results which are not only

guaranteed to be correct, but to yield arbitrarily small error bounds.

The supported operations include interval arithmetic, linear algebra, automatic

differentiation, function models with evaluation and composition, solution of

algebraic and differential equations, constraint propagation and nonlinear

programming.



Future Work
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Ongoing work will focus on improvements to the efficiency and accuracy of the

tool, and the quality of the documentation.

Partially implemented future extensions include evolution of nondeterministic

hybrid systems described by differential inclusions (Zivanovic & Collins, 2010) and

verification of linear temporal logic formulae (Collins & Zapreev, 2009).

Theoretical work is in progress on the evolution of stiff continuous dynamics, the

analysis of stochastic systems and dynamical games, the computation of optimal

controllers, system reduction, including time-scale decomposition and

assume-guarantee reasoning.

The core functionality is being extended with support for the computation of

eigenvalues, lambda-calculus for defining function, Chebyshev and Bernstein

function models, multivalued functions, and probability distributions, random

variables and stochastic systems.



Financial support

20 November 2020 Verification of Hybrid Systems with ARIADNE – 82 / 84

This research was partially supported by the Nederlandse Organ-

isatie voor Wetenschappelijk Onderzoek (NWO) through Vidi grant

639.032.408 “Computational Topology for Systems and Control”.

This project has received funding from the European Union’s Horizon

2020 research and innovation programme under the Marie Skłodowska-

Curie grant agreement No 731143. [Computing with Infinite Data” (CID)]

This research has received funding from the European Commission through

projects

• IST-2001-33520 “Control and Computation”

• ICT-2007.3.7 “Control for Coordination of Distributed Systems”

This research was carried out the the Center for Mathematics and Computer

Science (CWI) in Amsterdam (2003-2010), and Maastricht University (2011-).



Acknowledgements

20 November 2020 Verification of Hybrid Systems with ARIADNE – 83 / 84

I would like to thank the many people have contributed to the ARIADNE project.

The original development mas mostly done by Alberto Casagrande, then a joint

PhD student of Tiziana Villa (Udine), and of Alberto Sangiovanni-Vincentelli

(PARADES, Roma).

Luca Geretti (in the group of Tiziano Villa, Verona) has been the main developer

and tester of the dynamical systems functionality, with significant contributions

from Davide Bresolin (Bologna).

Ivan Zapreev (CWI, Amsterdam) contributed to the geometry module and

semantics of hybrid systems. Sanja Zivanovic (CWI & Barry U., Miami) developed

the differential inclusions methods.

Jan H. van Schuppen (CWI) provided support and guidance throughout.



Try it yourself!
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You should try ARIADNE for yourself!

You can download, compile and install the tool using:

git 
lone https://github.
om/ariadne-
ps/ariadne.git

mkdir ariadne/build/; 
d ariadne/build/

git 
he
kout working


make -DCMAKE_CXX_COMPILER=
lang++ ../

make [-j <pro
esses>℄

sudo make install

make do



