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Context I

Docking station

Autonomous ROV
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Context II

Autonomous ROV

Autonomous USV
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Underwater docking I
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Underwater docking II
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Approach of this thesis

Model the robot, its environment and its target as a
dynamical system;

Model the docking mission as a stability problem;

Prove, a priori, the feasibility of the mission
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Stability of discrete-time
systems
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Discrete systems

2. Stability of discrete-time systems

Discrete systems
Uncertain systems
Stability of discrete systems
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Discrete systems

Discrete systems

Definition (Discrete-time system)

A discrete dynamical system is a function φ : N×Rn → Rn such
that

1 φ (0, .) is the identity function : for any x ∈ Rn, φ (0, x) = x

2 φ (p, φ (q, x)) = φ (p + q, x) for any p, q ∈N and for any
x ∈ Rn.

Relationship with mathematical sequence

The successive states of the system form a mathematical sequence

xn = f (x0) (1)
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Uncertain systems

Uncertain systems [4]

Consider the system
xk+1 = f (xk) (2)

Uncertainties can originate from :

the initial condition x0 ∈ [x0];

the function f, which can depend of uncertain parameters
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Uncertain systems

Uncertain state

Definition (Interval [2])

An interval [x ] is a connected subset of R : [x−, x+]

An interval vector, or box, [x] is a vector, the members of which
are intervals.

Example

Consider a robot in the
ocean. Its position x can be
represented with an interval
vector [x].

[y]
[x]

[z]
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Uncertain systems

Functions, inclusion functions

x1

x2

y1

y2

x f ([x])

[f ] ([x])

[f ([x])]
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Uncertain systems

Centred form I

Definition (Centred form [3])

Let f : Rn → Rn, with Jacobian J and f (0) = 0.
The centred form of f is given by

[fc ] ([x]) = [J] ([x]) · [x] (3)

Remark

[fc ] is an inclusion function for f
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Uncertain systems

Centred form II
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Stability of discrete systems

2. Stability of discrete-time systems

Discrete systems
Uncertain systems
Stability of discrete systems
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Stability of discrete systems

Lyapunov’s definitions of stability (discrete)

Consider the discrete system described by

xk+1 = f (xk) (4)

such that f (x̄) = x̄

Definition (Stability)

The system is stable around x̄ if

∀ε > 0, ∃δ > 0, ‖x0 − x̄‖ < δ =⇒ ∀k ≥ 0, ‖xk − x̄‖ < ε (5)

Definition (Asymptotic stability)

The system is asymptotically stable around x̄ if it is stable and

∃δ > 0, ‖x0 − x̄‖ < δ =⇒ lim
k→∞

xk = x̄ (6)
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Stability of discrete systems

Proving stability of uncertain discrete systems

Some methods do exist :

using the Jury criterion [1];

using the eigenvalues [5]

Problem

How do we find the stability neighbourhoods ε and δ ?
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Stability of discrete systems

Stability contractor

Consider the system
xk+1 = f (xk)

such that f (0) = 0 with Jacobian Jf and initial condition [x0].

Definition

Let [a] ⊂ [x0] and [b] ⊂ [x0] such that 0 ∈ [a] and 0 ∈ [b]. A
stability contractor of rate α < 1 is an operator Ψ : IRn → IRn

which satisfies

[a] ⊂ [b] =⇒ Ψ ([a]) ⊂ Ψ ([b]) (monotonicity)

Ψ ([a]) ⊂ [a] (contractance)

Ψ (0) = 0 (equilibrium)

Ψ ([a]) ⊂ α · [a] =⇒ ∀k ≥ 1, Ψk ([a]) ⊂ αk · [a] (convergence)
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Stability of discrete systems

Iterative centred form as a stability contractor I

Theorem

The centred form
[
fkc
]
([x0]) enclosing fk ([x0]) is given by

[z0] = [x0]

[A0] = In

[zk+1] = [f ] ([zk ])

[Ak+1] = [Jf ] ([zk ]) · [Ak ][
fkc

]
([x0]) = [Ak ] · [x0]

(7)

Furthermore, if ∃k > 0 such that
[
fkc
]
([x0]) ⊂ [x0], then

[
fkc
]
is a

stability contractor and the system is asymptotically stable inside
[x0].
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Stability of discrete systems

Iterative centred form as a stability contractor II

d

x1
x2

x3 x4

fk (x1)

fk (x2)

fk (x3)
fk (x4)

[x0]

[
fkc
]
[x0]



Introduction Stability of discrete systems Stability of Kalman filters Conclusion

Proving stability of a discrete
Kalman filter
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Reminders about the Kalman filter

3. Proving stability of a discrete Kalman filter

Reminders about the Kalman filter
Stability of a localisation system
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Reminders about the Kalman filter

Kalman filters in robotics

Robot model

KalmanController
x̂k, Γk

uk

xk

Sensors

yk

Γα, Γβ

xk+1 = f (xk, uk)

yk = h (xk)

uk = g (x̂k)
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Reminders about the Kalman filter

Equations [6]

Two steps :

Prediction

x̂k+1 | k = f
(
x̂k | k ,uk

)
(predicted estimation)

Γk+1 | k = Fk · Γk | k · FT
k + Γα (predicted covariance)

Correction

x̂k | k = x̂k | k−1 +Kk · z̃k (corrected estimation)

Γk | k = (I−Kk ·Hk) · Γk | k−1 (corrected covariance)

z̃k = yk − h
(
x̂k | k−1

)
(innovation)

Sk = Hk · Γk | k−1 ·HT
k + Γβ (innovation’s covariance)

Kk = Γk | k−1 ·HT
k · S−1

k (Kalman gain)
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Reminders about the Kalman filter

Choosing the parameters I

Problem

Γα, Γβ, x̂0 | 0, Γ0 | 0
must be chosen
carefully.

a

b

x

x̂0

da

db

x

y

x̂1

x̂2
x̂3
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Reminders about the Kalman filter

Choosing the parameters II

Problem

Γα, Γβ, x̂0 | 0, Γ0 | 0
must be chosen
carefully.

a

b

x

x̂0

da

db

x

y
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Stability of a localisation system

3. Proving stability of a discrete Kalman filter

Reminders about the Kalman filter
Stability of a localisation system
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Stability of a localisation system

Localisation system I

a

b

x

x̂0

√
ya

√
yb

x

y

x̂1

x̂2
x̂3

The robot is not moving :

∀k > 0, xk = x0

Range measurements :

y = h (x)

=

(
(x − ax )

2 + (y − ay )
2

(x − bx )
2 + (y − by )

2

)
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Stability of a localisation system

Localisation system II

Note :

uk = 0

f
(
xk | k ,uk

)
= xk | k

Fk = I

Denote :

x̂k | k ↔ x̂k

Γk+1 | k ↔ Gk
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Stability of a localisation system

Problem

Goal

Find a stability neighbourhood δ around x such that x̂k → x

Method

Transform the localisation system into a discrete system;

Identify a fixed point of the system v̄;

Choose the parameters and the initial state of the system
[v0] 3 v̄;

Use the stability contractor to check stability.
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Stability of a localisation system

Formalisation I

The Kalman filter can be seen as a discrete system with state

vk = (x̂k , ŷk , σxk , σyk , σxyk ) (8)

where

Γk =

[
σ2
xk

σxyk
σxyk σ2

yk

]
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Stability of a localisation system

Formalisation II

(
x̂k+1

ŷk+1

)
=

(
x̂k
ŷk

)
+Kk · z̃k (corrected position)

Γk+1 = (I−Kk ·Hk) ·Gk (corrected covariance)

z̃k = yk − h (x̂k) (innovation)

Gk = Γk + Γα (predicted covariance)

Kk = Gk ·HT
k · S−1

k (Kalman gain)

Sk = Hk ·Gk ·HT
k + Γβ (innovation’s covariance)

Hk =
∂h

∂x
(x̂k) (observation matrix)

=⇒ we obtain a system of the form

vk+1 = p (vk)
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Stability of a localisation system

Formalisation III

Why keeping the covariance prediction equation ?

Gk = Γk + Γα

to add a Brownian motion...

... so as to avoid Γk → 0

x

x̂

ŷ

σx

σy

0

if Γα = 0 x

x̂

ŷ

σx

σy

0

if Γα 6= 0
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Stability of a localisation system

Initialisation

v̄ = (0, 0, σ0, σ0, 0)

[v0] =


[−ε1, ε1]
[−ε1, ε1]

[σ0 − ε2, σ0 + ε2]
[σ0 − ε2, σ0 + ε2]

[−ε2, ε2]

 3 v̄

ε1 = 1× 10−3

ε2 = 5× 10−5

σ0 = 3.66× 10−3

Γα =

[
0.01 0

0 0.01

]
Γβ =

[
1 0
0 1

]
a = (−5, 5)

b = (5, 5)
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Stability of a localisation system

Results

Results

[fc ] ([v0]− v̄) =


[
−3.5× 10−4, 3.6× 10−4

][
−3.5× 10−4, 3.6× 10−4

][
−4.63× 10−5, 4.68× 10−5

][
−4.73× 10−5, 4.79× 10−5

][
−1.48× 10−5, 1.49× 10−5

]

 ⊂ [v0]− v̄

=⇒ the EKF is stable inside [v0] and will converge towards v̄
=⇒ x̂→ x
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Conclusion
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Conclusion I

Our method allows to

Prove stability of discrete-time systems at an equilibrium
point;

Find a stability neighbourhood for the system...

... to approximate basins of attraction.

However

Limited to small neighbourhoods (centred form);

=⇒ requires additional bisection algorithms to be fully
usable on a real life system
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Conclusion I
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Conclusion II

Applied to an EKF, our method :

allows to validate a priori the EKF parameters...

... to ensure convergence towards the actual state of the
system.

Future prospects :

Apply to a moving robot (discrete-time);

and apply to a hybrid system : continuous-time model for the
robot, and discrete-time for the EKF & the controller.



Introduction Stability of discrete systems Stability of Kalman filters Conclusion

Conclusion II

Applied to an EKF, our method :

allows to validate a priori the EKF parameters...

... to ensure convergence towards the actual state of the
system.

Future prospects :

Apply to a moving robot (discrete-time);

and apply to a hybrid system : continuous-time model for the
robot, and discrete-time for the EKF & the controller.
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Thank you for your attention !

Questions ?
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