Vulnerability analysis and attack detection for cyber-physical systems: a zonotopic approach

$\label{eq:Presented by: Jitao Li} \label{eq:Presented by: Jitao Li} Joint work with: Zhenhua Wang^1 and Lihua Xie^2$

¹School of Astronautics, Harbin Institute of Technology.

 2 School of Electrical and Electronic Engineering, Nanyang Technological University

January, 29th, 2021

Image: A math a math

2 Preliminaries

- Vulnerability Analysis
- 4 Attack Detection
- 5 Performance Analysis

・ロト ・回 ト ・ ヨト ・

Preliminaries

- 3 Vulnerability Analysis
- 4 Attack Detection
- 5) Performance Analysis

6 Conclusion

イロト イヨト イヨト イヨ

Cyber physical systems

 Cyber physical systems refer to a new generation of systems consists of computation, communication and physical process.

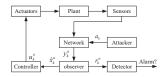


Image: A match the second s

Application fields

Security is important for CPS

Jitao Li (First)

Security

Attack

- Malicious adversaries may inject attacks to CPS.
- The motivation may be finance or terrorism.

Example

Stuxnet

- 2010 on Iranian Nuclear Facilities.
- 984 uranium enriching centrifuges are destroyed.

To avoid such catastrophes, system vulnerability analysis and attack detection are important.

System vulnerability

The system tolerance for potential stealthy attacks.

Vulnerability analysis

- Is it possible for a CPS to be destroyed by potential stealthy attacks?
- O How to verify the safety of a CPS for potential stealthy attacks?
- If a CPS is not safe, how to evaluate the degree of the threat of potential stealthy attacks?

Attack detection

Attack detection: The strategy to detect specific attack.

Types of attacks: denial-of-service attack (DoS), replay attack and

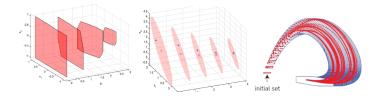

false-data-injection attack (FDI)

Image: A match the second s

Reachability analysis

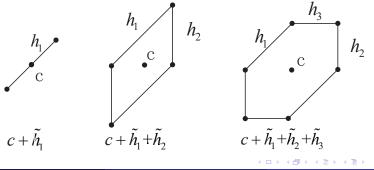
Reachability analysis

Compute a set which includes all possible state values based on available information

2 Preliminaries

- 3 Vulnerability Analysis
- 4 Attack Detection
- 5) Performance Analysis

6 Conclusion


イロト イヨト イヨト イヨ

Zonotope

A zonotope is defined as

$$\mathcal{Z} = \left\{ x \in \mathbb{R}^n : x = c + \sum_{i=1}^m h_i b_i, b_i \in \mathbb{B} \right\} = \langle c, H \rangle,$$

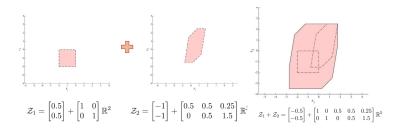
where c determines center and h_i determines the shape. The geometrical interpretation is the Minkowski sum of m line segments $\tilde{h}_i = h_i \mathbb{B}$.

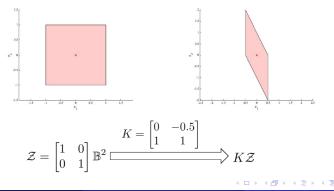
Property

Minkowski sum

The Minkowski sum of two zonotopes $Z_1 = \langle c_1, H_1 \rangle$ and $Z_2 = \langle c_2, H_2 \rangle$ is also a zonotope, and the following equality holds

 $\langle c_1, H_1 \rangle \oplus \langle c_2, H_2 \rangle = \langle c_1 + c_2, [H_1, H_2] \rangle.$




Image: A matching of the second se

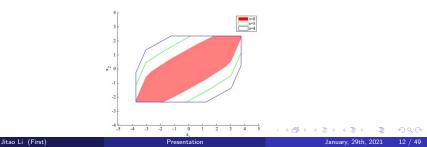
Property

Linear transformation

Given a zonotope $\mathcal{Z}=\langle p,H\rangle,$ its linear transformation associated with a matrix K is

 $K\langle p,H\rangle = \langle Kp,KH\rangle.$

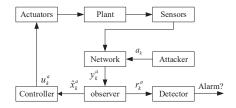
Property


Order reduction

 $\mathcal{Z}\langle c,H\rangle\subseteq\langle c,\downarrow_q(H)\rangle\text{: maintain large generator, over-approximate small one}$

() Reordering the columns of the matrix H in decreasing Euclidean norm:

$$H = [h_1, h_2, \cdots, h_m], ||h_j|| \ge ||h_{j+1}||, j = 1, \cdots m - 1.$$


2 Replacing the last m - q + n smallest columns by a diagonal matrix.

Cyber-Physical system

CPS

- State dynamics of physical plant.
- Remote estimator and controller.

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2 Preliminaries

3 Vulnerability Analysis

4 Attack Detection

5 Performance Analysis

6 Conclusion

・ロト ・回 ト ・ ヨト ・

Cyber-Physical system

Consider the plant is modeled as a discrete-time linear time invariant system

$$\begin{cases} x_{k+1} = Ax_k + Bu_k + w_k, \\ y_k = Cx_k + v_k, \end{cases}$$
(1)

where $x_k \in \mathbb{R}^{n_x}$ denotes the state, $y_k \in \mathbb{R}^{n_y}$ denotes the measurement, $u_k \in \mathbb{R}^{n_u}$ denotes the control input, $w_k \in \mathbb{R}^{n_w}$ is the process disturbance, and $v_k \in \mathbb{R}^{n_v}$ is the measurement noise.

• • • • • • • • • • • •

Assumptions

Assumption 1

(A, C) is detectable and (A, B) is stabilizable.

Assumption 2

 w_k , v_k and the initial state x_0 are unknown but peak bounded, i.e.

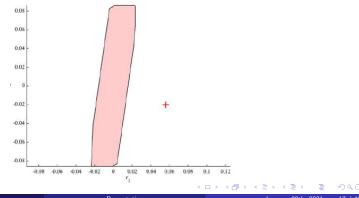
$$x_0 \in \overline{\mathcal{X}}_0 = \langle p_0, H_0 \rangle,$$
$$w_k \in \mathcal{Z}_w = \langle 0, H_w \rangle, v_k \in \mathcal{Z}_v = \langle 0, H_v \rangle.$$

Assumption 3

Estimator:
$$\hat{x}_{k+1} = A\hat{x}_k + Bu_k + L(y_{k+1} - CA\hat{x}_k - CBu_k),$$

Controller $u_k = K \hat{x}_k$

Any choice of L and K such that A - LCA and A + BK are stable is acceptable.


Jitao Li (First)

Detector

Estimation error: $e_k = x_k - \hat{x}_k$, Residual signal: $r_{k+1} = y_{k+1} - CA\hat{x}_k - CBu_k$

$$\begin{cases} e_{k+1} = (A - LCA)e_k + (I - LC)w_k - Lv_{k+1}, \\ r_{k+1} = CAe_k + Cw_k + v_{k+1}. \end{cases}$$

 $r_k \notin \mathcal{R}_k$ – Attack or fault is detected.

Attack model

To capture the attacks' impact on the system, we rewrite system (1) as

$$\begin{cases} x_{k+1}^{a} = Ax_{k}^{a} + Bu_{k}^{a} + w_{k}, \\ y_{k}^{a} = Cx_{k}^{a} + v_{k} + Fa_{k}, \end{cases}$$
(2)

where $(*)^a$ denotes the variable * in the presence of attacks, $a_k \in \mathbb{R}^{n_a}$ is the malicious attack signal, $F \subseteq \{\gamma_1, \cdots, \gamma_{n_y}\}$ is the attacker's sensor selection matrix and is unknown to system designers, where γ_i is the *i*th vector of the canonical basis of \mathbb{R}^{n_y} .

Assumption 3

The adversary knows the system parameters, i.e., A, B, C, L, K.

Assumption 4

The adversary has the required resources to launch any suitable attack signals.

Problem formulation

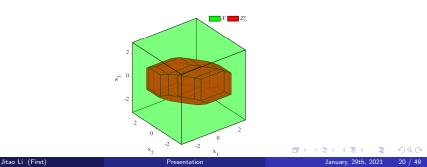
Safe region

 $\mathcal{X} = \langle x_s, H_s \rangle$, where x_s and H_s are known. Such a region may represent, for example, the constraint of the acceleration and the velocity of a vehicle.

Stealthy attack

An attack sequence is said to be stealthy if $r_k^a \in \mathcal{R}_k, \forall k \in \mathbb{N}_+$ holds.

Vulnerability analysis


- Is it possible for a CPS to be destroyed by potential stealthy attacks?
- One of the safety of a CPS for potential stealthy attacks?
- If a CPS is not safe, how to evaluate the degree of the threat of potential stealthy attacks?

Main idea

Vulnerability

Denote $\mathcal{Z}_{x_k}^a$ as the out-approximation of the reachable set of x_k^a .

- **()** The CPS is strictly vulnerable if $\exists a_k$ such that $\mathcal{Z}^a_{x_k}$ is unbounded.
- **2** The CPS is vulnerable if there exists a stealthy attack a_k such that $\mathcal{Z}_{x_k}^a \notin \mathcal{X}$.
- **③** The CPS is safe if $\mathcal{Z}_{x_k}^a \subseteq \mathcal{X}$ holds for any stealthy attack.

Strictly vulnerable

Strict vulnerability

 $\exists a_k \text{ such that } \Delta r_k \text{ is bounded while } \Delta e_k \text{ is unbounded.}$

$$\Delta e_{k+1} = (A - LCA)\Delta e_k - LFa_{k+1},$$

$$\Delta r_{k+1} = CA\Delta e_k + Fa_{k+1}.$$

Conditions for strict vulnerability

 Δe_k is unbounded iff \exists an eigenvector ζ corresponding to the unstable mode of A satisfies $\zeta \in \operatorname{range}(Q_{es}), -C\zeta \in \operatorname{range}(F)$, where Q_{es} is the controllability matrix of the pair $(A - LCA, -LF)^a$.

• • • • • • • • • • •

 $^{^{}a}$ Mo Y, Sinopoli B. False data injection attacks in control systems[C]//Preprints of the 1st workshop on Secure Control Systems. 2010: 1-6.

Vulnerable

Vulnerability

If there exists a stealthy attack a_k such that $\mathcal{Z}^a_{x_k} \nsubseteq \mathcal{X}$.

Vulnerability

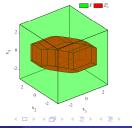
Calculate $\mathcal{Z}_{x_k}^a$ includes all possible x_k^a such that $r_k^a \in \mathcal{R}_k$.

$$\begin{cases} x_{k+1}^{a} = Ax_{k}^{a} + Bu_{k}^{a} + w_{k}, \\ y_{k}^{a} = Cx_{k}^{a} + v_{k} + Fa_{k}, \\ u_{k}^{a} = K\hat{x}_{k}^{a}, \\ r_{k+1}^{a} = y_{k+1}^{a} - CA\hat{x}_{k}^{a} - CBu_{k}^{a}. \end{cases}$$

イロト イヨト イヨト イヨ

(3)

Verification of safety


Zonotope containment

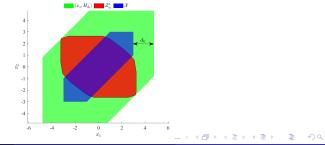
Consider two zonotopes $\langle c_1, H_1 \rangle$ and $\langle c_2, H_2 \rangle$, the relation $\langle c_1, H_1 \rangle \subseteq \langle c_2, H_2 \rangle$ holds if there exists a matrix Γ and a vector β such that ^a

$$H_1 = H_2\Gamma, c_2 - c_1 = H_2\beta, \left\| \begin{bmatrix} \Gamma & \beta \end{bmatrix} \right\|_{\infty} \le 1.$$

^aS. Sadraddini, R. Tedrake, Linear encodings for polytope containment problems, IEEE 58th CDC, 2019, pp. 4367–4372.

- $\mathcal{Z}^a_{x_k} \nsubseteq \mathcal{X}$ –Vulnerable
- $\mathcal{Z}^a_{x_k} \subseteq \mathcal{X} ext{-Safe}$

Metric of vulnerability


Metric

For a vulnerable CPS, evaluate the threat degree of potential stealthy attacks.

One-sided Hausdorff distance

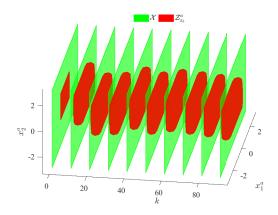
The one-sided Hausdorff distance from set $\mathcal{Z}^a_{x_k}$ to set \mathcal{X} is defined as

$$d(\mathcal{Z}^{a}_{x_{k}},\mathcal{X}) = \max_{a \in \mathcal{Z}^{a}_{x_{k}}} \min_{b \in \mathcal{X}} ||a - b||.$$

Simulatioin

LTI system

$$\begin{cases} x_{k+1}^a = Ax_k^a + Bu_k^a + w_k, \\ y_k^a = Cx_k^a + v_k + Fa_k, \end{cases}$$

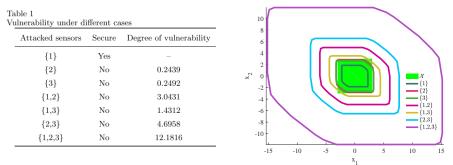

with

$$A = \begin{bmatrix} 0.62 & 0.21 & 0.03 \\ 0.08 & 0.72 & 0.54 \\ 0.02 & 0.02 & 0.65 \end{bmatrix}, B = \begin{bmatrix} 0.07 & 1 \\ 0.23 & 0.5 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Uncertainties: $w_k \in \langle 0, 0.2I \rangle$ and $v_k \in \langle 0, 0.1I \rangle$ Safe region: $\mathcal{X} = \langle 0, 3I \rangle$. Eigenvalue of A: $\begin{bmatrix} 0.8755 + 0.0000i \\ 0.5573 + 0.0540i \\ 0.5573 - 0.0540i \end{bmatrix}$, Thus $\mathcal{Z}^a_{x_k}$ is bounded.

Simulation

$$F = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$$
, safe



2

ъ

Image: A math a math

Simulation

If we can only protect one sensor from adversaries due to resource limitation, sensor 2 should be protected.

・ロト ・回 ト ・ ヨト ・

Preliminaries

3 Vulnerability Analysis

4 Attack Detection

5 Performance Analysis

6 Conclusion

・ロト ・回 ト ・ ヨト ・

System dynamics

System description

Consider linear time invariant system

$$\begin{cases} x_{k+1} = Ax_k + Bu_k + w_k, \\ y_k = Cx_k + v_k + a_k. \end{cases},$$

where a_k indicates the injected bias on sensor data.

Assumptions

- (A, C) is detectable and (A, B) is stabilizable.
- w_k , v_k and the initial state x_0 are unknown but peak bounded, i.e.

$$x_0 \in \overline{\mathcal{X}}_0 = \langle p_0, H_0 \rangle,$$

$$w_k \in \mathcal{Z}_w = \langle 0, H_w \rangle, v_k \in \mathcal{Z}_v = \langle 0, H_v \rangle.$$

Problem formulation

Predicted state set

Take the state x_{k-1} is bounded in the zonotope $\overline{\mathcal{X}}_{k-1} = \langle p_{k-1}, H_{k-1} \rangle \subseteq \mathbb{R}^{n_x}$ as a prior, given the system dynamic, the predicted state set is defined as the set of all possible solutions of x_k , i.e,

$$\mathcal{X}_{k/k-1} = \left\{ x_k \in \mathbb{R}^{n_x} : (x_k - Bu_{k-1}) \in (A\overline{\mathcal{X}}_{k-1} \oplus \mathcal{Z}_w) \right\}.$$

Measurement state set

Given the observervation equation and Assumption 2 holds, the measurement state set is defined as the set of all possible solutions x_k , which can be reached by y_k and v_k , i.e,

$$\mathcal{X}_{y_k} = \{ x_k \in \mathbb{R}^{n_x} : (y_k - Cx_k) \in \mathcal{Z}_v \}.$$

A B A B A B A

Problem formulation

Objective

- How to checking the existence of the intersection of $\mathcal{X}_{k/k-1}$ and \mathcal{X}_{y_k} ?
- What is the detection performance that the proposed method?

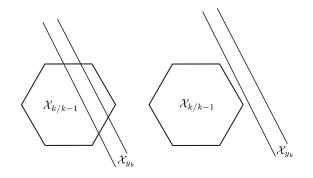
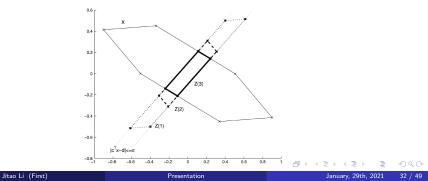


Image: A math a math


Set computation

Parameterized $\overline{\mathcal{X}}_k$

 $\exists L_k \in \mathbb{R}^{n_x \times n_y} \text{ such that } \mathcal{X}_{k/k-1} \cap \mathcal{X}_{y_k} \subseteq \overline{\mathcal{X}}_k = \langle p_k, H_k \rangle, \text{ where }$

$$p_{k} = Ap_{k-1} + Bu_{k-1} + L_{k}(y_{k} - CAp_{k-1} - CBu_{k-1}),$$

$$H_{k} = \begin{bmatrix} (A - L_{k}CA) \downarrow_{q} (H_{k-1}) & (I - L_{k}C)H_{w} & -L_{k}H_{v} \end{bmatrix}$$

Set computation

Size criterion

The size of the segments of the zonotope: $J_k = ||H_k||_F^2 = tr(H_k^T H_k)$

optimal correction matrix

By minimizing the size criterion J_k .

$$L_k = (AP_{k-1}A^T + Q_w)C^T Y_{k-1}^{-1},$$

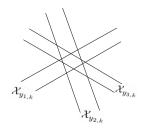
where

$$P_{k-1} = \downarrow_q (H_{k-1}) \downarrow_q (H_{k-1})^T, Q_w = H_w H_w^T,$$

$$Q_v = H_v H_v^T, Y_{k-1} = C(AP_{k-1}A^T + Q_w)C^T + Q_v.$$

イロト イヨト イヨト イ

Set computation


Predicted set

W

$$\mathcal{X}_{k/k-1} = \langle p_{k/k-1}^p, H_{k/k-1}^p \rangle = A \overline{\mathcal{X}}_{k-1} \oplus \{Bu_{k-1}\} \oplus \mathcal{Z}_w.$$

with $p_{k/k-1}^p = Ap_{k-1} + Bu_{k-1}, H_{k/k-1}^p = \begin{bmatrix} AH_{k-1} & H_w \end{bmatrix}.$

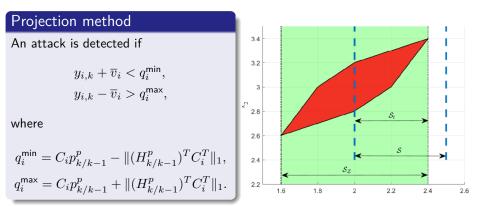
Measurement state set

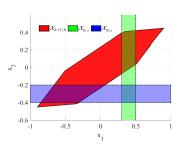
For the *i*-th subequation y_{i,k} = C_ix_k + v_{i,k}, the corresponding state set is X_{y_{i,k}} = {x_k ∈ ℝ^{n_x} : y_{i,k} - v̄_i ≤ C_ix_k ≤ y_{i,k} + v̄_i},
X_{y_k} = ∩^{ny}_{i=1} X<sub>y_{i,k}.
</sub>

イロト イヨト イヨト イ

Intersection checking based on projection

If
$$\exists \mathcal{X}_{y_{i,k}}$$
 such that $\mathcal{X}_{k/k-1} \cap \mathcal{X}_{y_{i,k}} = \emptyset$, we have $\mathcal{X}_{k/k-1} \cap \mathcal{X}_{y_k} = \emptyset$.




Image: A math a math

Example

$$\begin{aligned} \mathcal{X}_{k/k-1} &= \left\langle \begin{bmatrix} 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0.2812 & 0.1968 & 0.4235\\ 0.0186 & 0.2063 & 0.2267 \end{bmatrix} \right\rangle \\ \mathcal{X}_{y_{1,k}} &= \left\{ x_k \in \mathbb{R}^2 : 0.3 \le \begin{bmatrix} 1 & 0 \end{bmatrix} x_k \le 0.5 \right\}, \\ \mathcal{X}_{y_{2,k}} &= \left\{ x_k \in \mathbb{R}^2 : -0.4 \le \begin{bmatrix} 0 & 1 \end{bmatrix} x_k \le -0.2 \right\}. \end{aligned}$$

Using projection method, we have

$$\begin{split} q_1^{\min} &= -0.9015, q_1^{\max} = 0.9015, \\ q_2^{\min} &= -0.4516, q_2^{\max} = 0.4516, \end{split}$$

The projection method fails, but $\mathcal{X}_{k/k-1} \cap \mathcal{X}_{y_k} = \emptyset$ holds

・ロト ・回ト ・ヨト

Intersection checking based on polytopic conversion

Polytopic conversion

$$\mathcal{X}_{k/k-1} \Longrightarrow \mathcal{P}_{k/k-1} = \{ x_k \in \mathbb{R}^{n_x} : Qx_k \le q \} .$$
$$\mathcal{X}_{y_k} \Longrightarrow \mathcal{P}_{y_k} = \{ x_k \in \mathbb{R}^{n_x} : Q_y x_k \le q_y \} .$$

An attack is detected if not $\exists x_k$ such that

$$\mathcal{P}_{k/k-1} \cap \mathcal{P}_{y_k} = \left\{ x_k \in \mathbb{R}^{n_x} : \begin{bmatrix} Q \\ Q_y \end{bmatrix} x_k \le \begin{bmatrix} q \\ q_y \end{bmatrix} \right\}$$

Features

- Projection: simple but less satisfactory
- Polytopic conversion: satisfactory but heavy computation

Jitao Li ((First
------------	--------

A D > A B > A B >

2) Preliminaries

- 3 Vulnerability Analysis
- 4 Attack Detection
- 5 Performance Analysis

6 Conclusion

・ロト ・回 ト ・ ヨト ・

Stealthy attack set

Stealthy attack set \mathcal{A}_k

For given detection method, any attack outside \mathcal{A}_k will be detected.

\mathcal{A}_k by projection

$$a_{i,k}| \le 2 \| (H_{k/k-1}^p)^T C_i^T \|_1 + 2\overline{v}_i,$$

where $a_{i,k}, i = 1, 2, \cdots, n_y$ is the *i*-th component of a_k .

\mathcal{A}_k by polytopic conversion

 $\mathcal{A}_k = \langle 0, H^a_k
angle$, with

$$H_k^a = \begin{bmatrix} CH_{k/k-1}^p & H_v & CH_{k/k-1}^p & H_v \end{bmatrix}.$$

イロト イヨト イヨト イヨ

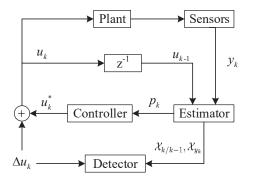
Example

• Predicted state set
$$\mathcal{X}_{k/k-1} = \langle \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0.2812 & 0.1968 & 0.4235 \\ 0.0186 & 0.2063 & 0.2267 \end{bmatrix} \rangle$$

• Noise $v_k \in \mathcal{Z}_v = \langle 0, \text{diag}(0.1, 0.1) \rangle$
• Output matrix $C = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

Features:

- \mathcal{A}_k by polytopic conversion $\subset \mathcal{A}_k$ by projection.
- a_k may not be detected if $a_k \in \mathcal{A}_k$.
- Particularly, replay attack cannot be detected.


Jitao Li (First)

• • • • • • • • • •

Replay attack

Replay attack

Record a period of y_k , then replay it when implementing attack: $y_k = y_{k-\Delta k}$

- $\Delta u_k \in \langle 0, H_u \rangle$ is randomly generated with a uniform distribution
- Δu_k is chosen independent of u_k^*

A D > A B > A B >

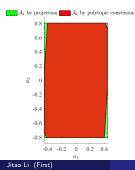
Analysis

Control performance loss: increased size of \mathcal{X}_k

 $\Delta J = \operatorname{tr}(\mathcal{L}(Q_u)),$ where $Q_u = H_u H_u^T$ and $\mathcal{L}(Q_u)$ is a linear operator defined as

$$\mathcal{L}(Q_u) = \sum_{i=0}^{\infty} (A + BK)^i BQ_u B^T ((A + BK)^i)^T$$

Detection performance: the deviation size of \mathcal{Y}_k under replay attacks.

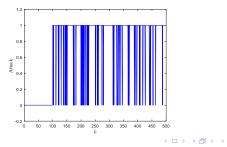

$$\begin{split} \Lambda &= 2 \mathrm{tr}(\mathcal{D}(Q_u)), \text{ where } \\ \mathcal{D}(Q_u) &= C(A+BK) \mathcal{D}(Q_u)(A+BK)^T C^T + C B Q_u B^T C^T \end{split}$$

Design of Δu_k

$$\begin{split} Q_u &= \underset{Q_u \succeq 0}{\arg \max} \quad 2 \mathrm{tr}(\mathcal{D}(Q_u)), \qquad \text{subject to} \quad \mathrm{tr}(\mathcal{L}(Q_u)) \leq \delta, \\ \text{where } \delta \text{ is the tolerable control performance loss.} \end{split}$$

System parameters:

$$A = \begin{bmatrix} 0.1046 & -0.0725\\ 1.7287 & 0.0974 \end{bmatrix}, B = \begin{bmatrix} 0.4198\\ 2.6429 \end{bmatrix}, C = I, |w_k| \le \begin{bmatrix} 0.1 & 0.1 \end{bmatrix}^T, |v_k| \le \begin{bmatrix} 0.1 & 0.1 \end{bmatrix}^T$$


- Polytopic conversion better than projection
- \mathcal{A}_k includes all possible stealthy attacks

・ロト ・回 ト ・ ヨト ・

Table: Computational time (CPU: Intel(R) Core(TM) i7-9750H @2.6GHz)

Method	Time
Projection	0.088760s
Polytopic conversion	$12.291986 \mathrm{s}$

$$a_k = [0.3 \quad 0.5]^T, k \ge 100$$

- Record $y_{50} y_{200}$, replay at k = 200 350
- From left to right: $|\Delta u(k)| \leq 0.1, \ |\Delta u(k)| \leq 0.3$

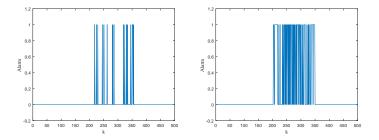


Image: A mathematical states and a mathem

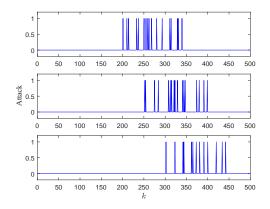


Fig: From top to bottom, detection results when the recorded sensor data $y_{50} \sim y_{200}$ is replayed at k = 200, k = 250 and k = 300, respectively

< □ > < 同 >

Preliminaries

- 3 Vulnerability Analysis
- Attack Detection
- 5) Performance Analysis

・ロト ・回 ト ・ ヨト ・

Conclusion

- A CPS vulnerability analysis and attack detection framework based on zonotopic reachability analysis is established.
- The capability of stealthy attacks is analyzed. This is helpful for establishing defence strategy.
- The detection of false data injection attack and replay attak is considered.

• • • • • • • • • •

Thank You. Questions?

(日)