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Introduction

Systems

ẋ (t) = f (x (t)) , x (0) = x0

y (t) = h (x (t))

Definitions

y1 corresponds to x0 = z1

y2 corresponds to x0 = z2

Observability
For all z1 6= z2 we have y1 6= y2.
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Statement of the Problem

How to check observability?

Find computational condition!

Simpler problem: Check
For all z1 6= z2 ∈ xI we have y1 6= y2.

xI interval vector
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Lie Series

Taylor series expansion of y

y (t) =
∞∑

k=0

tk

k!
(
Lk

fh
) (
x0
)

Lie derivative

(Lfh) (x) =
(

∂h
∂x

)
f(x)(

L0
fh
)

(x) = h(x)(
Ll+1

f h
)

(x) =
(
Lf L

l
fh
)
, l ≥ 1

f, h real analytic ⇒ y(t) real analytic.
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Reformulation

yi (t) =
∞∑

k=0

tk

k!
(
Lk

fh
) (
zi
)

When is y1(t) = y2(t)?

∞∑
k=0

tk

k!

(
Lk

fh
) (
z1) =

∞∑
k=0

tk

k!

(
Lk

fh
) (
z2)

⇓(
Lk

fh
) (
z1) =

(
Lk

fh
) (
z2) , k = 0, 1, 2, ...

Observability mapping

F (x) :=


h(x)

(Lfh) (x)(
L2

fh
)

(x)
...


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Injectivity Condition

F (z1) = F (z2)⇒ z1 = z2 uniquely

⇒ System is observable.
This is injectivity of F !

First step: finite number of columns
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Injectivity Condition

F (z1) = F (z2)
for z1, z2 ∈ xI ⇒ z1 = z2 uniquely
F (z1)− F (z2) = 0
Idea: Apply mean value theorem

g
(
z1
)
− g

(
z2
)

= ∂g

∂x
(ξ)
(
z1 − z2

)
,

g scalar, ξ between z1 and z2

g
(
z1)− g (z2) =


∂g1
∂x (ξ1)

...
∂gp

∂x (ξp)

(z1 − z2)

M =


∂g1
∂x (ξ1)

...
∂gp

∂x (ξp)

 ,M 6= ∂g
∂x (ξ)

M ∈ ∂g
∂x

(
xI
)

= M I Interval matrix
M full rank ⇒ z1 − z2 = 0⇒ g injective

g =

 g1
...
gp

 , gi
(
z1)− gi

(
z2) = ∂gi

∂x

(
z1 − z2)

8 / 10



Introduction Statement of the Problem Lie Series Reformulation Injectivity Condition

Injectivity Condition

Interval matrix M I full rank ⇒M full rank
⇒ F injective ⇒ system observable on xI

M I full rank?

Apply result of Jiri Rohn (sufficient condition)

In general NP hard

Application in the talk by Thomas Paradowski
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Thank you for your attention
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