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Motivation
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e Usual feedback solutions based on Lyapunov methods often fail to ensure

constraint satisfaction — Model Predictive Control
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Motivation

e What about robustness?

— Model uncertainties and noises — discrepancies between prediction
and real system:;

— Unavailable states — state estimation;

— How to ensure constraint satisfaction and feasibility?

Classical solutions: Tubes (rigid, homothetic), error set-membership estimation,
moving-horizon estimation (MHE), minmax optimization, multi-stage MPC, ...
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Motivation

e What about robustness?

X

Ilustration of loss of feasibility due to uncertainty
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Problem statement

Consider the following discrete-time LPV system:

X1 = A(O)xr + B(Op)uy + wy

_ (1)
Y = ka + (%%

where xj is the state vector, u; is the control input, y; is the measurement
vector, wy and vy are process and measurement noises, respectively.

Assumption 1: The additive perturbations wy € [wy, Wy| and v € [v, x| for
all k € Z., where w,@ € (" and v,7 € ¢5, are known signals. The scheduling
parameter is unmeasured, but takes values in a known bounded set ©.

Assumption 2: Initial conditions of (1) are bounded such as x; < xg < X, for
some known x,, xg € R".
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Problem statement

Assumption 3: There exist matrices Ag € R" " By € R"™™M and AA; €
R*™" AB; € R*" i = 1,...,v for some v € Z_, such that the following
relations are satisfied for all 6 € O:

A(Q) = Ag + i Ai(Q)AAi, B(Q) = By + i /\i(Q)ABi,
i=1 i=1
CA8) =1, A(68) € [0,1].
=1

Assumption 4: Let C > 0.
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Problem statement

Problem 1 (Robust constrained control) Design an output feedback control that
stabilizes (1) while respecting the following constraints

xreX, uelU, VkeZ,

having X and U as known convex bounded sets, for any possible realization of
disturbances w; and vy, and of the scheduling parameter 6.

I0-MPC
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Preliminaries

For our developments, we will need the following lemmas:

Lemma 1: [Efimov et al. 2013] Let x € R” be a vector variable, x < x < X for
some x,X € R". Then,

(1) if A € R"™*" is a constant matrix, then

ATx — A x<Ax < ATx— A x (2)

(2) if A € R™ " is a matrix variable and A < A < A for some A, A € R™*",
then

ATxt — A T xy —A T +A ¥ <Ax<A X —ATY —A x4+ A x

I0-MPC
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Preliminaries

Lemma 2: [Smith, 1995] For A € R"}*", the system
Xpp1 = Axp+wyi, w:Zy >R, we L, ke Zy

has a non-negative solution x; € R for all k € Z provided that xo > 0.

Lemma 3: [Farina and Rinaldi, 2000] A matrix A € R™" is Schur stable iff
there exists a diagonal matrix P € R*" P > 0, such that A' PA — P < 0.
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Interval estimators

An interval observer is a two-point set-membership estimator, with stability
guarantees. Under cooperativity conditions, they produce the following bounds:

X < X < X
Main idea: use the relation above to check constraints, since
X, %] CX = x; € X,

Main features: low computation complexity and ease of design (LMIs).

I0-MPC
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Interval estimators

Using the measurement vy:

14

1%
Xer1 = (Ag — LC)xp + Y Ai(0)AAixy + Ly + (Bo + Y Ai(0)AB;)uy — Loy + wy
=1

=1 j—

the following 1O can be proposed:

Ek—l—l — (AO — LOC)E]{ + AA_|_EI_(|_ + AA_Ek_ + Bouk + ABM; + Loyk — L;_Qk + Lo_ﬁk + wk

_ (4)
Xep1 = (Ao — LoC)xy — AAL x;0 — AA_T,T + Bouy — ABuy. + Loy — Ly O + Ly v + wy

where L, is the observer gain to be designed. Define the observer estimation
€rrors €y = X — Xj and € — Yk — Xk-

Lemma 4: Let assumptions 1-3 be satisfied. Then, provided that Ag — L,C
is non-negative, the estimation errors are non-negative, i.e., ¢, e > 0 for all

k > 0.

I0-MPC 15




Interval estimators

In order to derive stability conditions for 10 (4), let us rewrite it as:
Xk+1 — («40 — zoC1) Xk T «4+X}f T A—Xk_ + O

where Ay = diag (A, Ag) € _IRZ”XZ”, L, = diag(L,, L,) € R¥™>?P
diag (C,C) € R?**%" &, = vec(dy, 6y ), and

[ AaAL 0 [0 aA_
“4+—[—AA_ 0}' “4——[0 —AAJ’

O = Boug + ABu;” + Loy — L vy + Ly O + Wy,
Oy = Bouy — ABu; + Loy — Ly O + Ly v + wy.

I0-MPC
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Interval estimators

The next result verifies stability:

Theorem 1: Let assumptions 1-3 be satisfied. If there exist diagonal matrices P,Q1,0Q5,03,
O 0, F € R¥*2" matrices T € R¥*2" and U € R?**?, such that the following

LMIs are verified:

PAy—UCy >0
P-Q -Qy -Q- 0 AjP-c/Uu']
* ~Q Y 0 AP
* * —Q3 O AlD >0
* * x T P
| * *x % p

13 > 0, I' > 0; Qll QZ/ Q3! Q—I—; 0O 2 0;
Q1 +min{Q, Q3} +2min{Q4, )} >0

then system (4) with a gain L, = P~1U is an IO for system (1), i.e., relation x; <
x; < X is satisfied for all k € Z and, in addition, x € £2" provided that & € ¢2".
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Interval estimators

To better illustrate the developments of this section, consider the following
prototype model:

05 06+6 0
Xk4+1 = 0, 03 k] Xk + H U + Wk

:0 1] Xk + Uk

Yk

W = [-0.1,0.1] x [-0.1,0.1], V =[-0.1,0.1], and ® = [0,—0.3].

Interpolating functions A = =8 and Ay = OO
Ok — 0k Ok — 0k

I0-MPC
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Interval estimators

Simulate the 10

=1, for k = [0,...49]

u, = —1, for k = [50, ... 100]

0, = —[0.3sin(0.1k)]|

wy = 0.1sin(k), v = 0.1sin(k)
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Interval estimators

As seen in (4), the IO requires the measurement y;, — unsuitable for prediction.

Solution: propose an interval predictor — an open-loop framer, i.e., indepen-
dent of y.

Recalling that vy = Cxy + vy, we can write the following relation under Lemma
1 and Assumption 4:

LyCz—L,CZ < LyCz < L;CZ — L, Cz.  (5)

then the terms L,y — Lyvr = LyCxy can be replaced by the bounding relations
above.

I0-MPC
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Interval estimators

The proposed IP:

Zkpr = (Ao — LpC)Zk + AALZ + AA _z + L CZ — L, Czy + Bouy + ABu| + Wy
zpp1 = (Ao — LpC)zy — AALz — AA_Z + L;Cgk — L, Czj + Bouy — ABuy. + wy
(6)

Define the prediction estimation errors €, = Xy — z; and € = Zy — Xj.

Lemma 5: Let assumptions 1-4 be satisfied. Then, provided that Ay — L,C

is non-negative, the prediction errors are non-negative, i.e., €,€, > 0 for all
keZ.,.

I0-MPC 21




Interval estimators

In order to derive stability conditions for IP (6), let us rewrite it as:
Zrn = (Ao +LpCo) Ze + AL 20 + A_Z7 + o,
where Ay, A+ and A_ are the same as for 10 (4), ip = diag(L,,L, ) € R?"*?P,

p’r—p
ox = vec(py, Bk) and
c —-C
(2= [—c C ]

Or = Bouyg + ABuj” + Wy, p, = Boux — ABu +wy.

I0-MPC
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Interval estimators

Theorem 2: Let assumptions 1-4 be satisfied. If there exist diagonal matrices P,
Q]_/ QZ; QS) Q—l—;Q—;‘P; I c RanZH and u+, u_ & RHXP’ SU_Ch that

bAy—UTC;+UC; >0

_p2 -Q1 Oy O 0 (152../40 + U~ C2)T_
* -Q -Y 0 (PAL) "
* * —Q3 0 (pzA_)T ~ 0
* * x* T P,

| % * *x % 2 ]

Q1,Q2,Q3,04,Q U, U >0, T>0, P,>0
P, = diag(Py, ), UT =diag(UT,U"), U =diag(U,U"),
Q= Q1 +min{Qy, Q3} +2min{Q),, O} >0

then (6) with gains L, = Pz_lu_ and L; = P{llfr is an IP for system (1), i.e.,
zi < x; <z holds for all k € Z, and (6) is ISS with respect to the input o € ¢3".

I0-MPC
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Interval estimators

Simulate the IP

up =1, for k = [0,...49]

up = —1, for k = [50,...100]

0, = —[0.3sin(0.1k)]|

wy = 0.1sin(k), v, = 0.1sin(k)
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Recall on MPC

How to prove stability — stabilizing ingredients:

e Terminal set Xy: the set that the endpoint of the prediction must reach;
e Terminal gain x: there exists a stabilizing controller;

e Terminal cost Vf.

I0-MPC




Recall on MPC

How to prove stability — stabilizing ingredients. Recall the classic axioms of
Mayne et al.:

Definition 1 The stabilizing ingredients are such that the following axioms are
verified:

1. Xy C X, closed and 0 € Xy: the state constraint is satisfied in Xy;
2. Kf(x) c U, Vx € Xy: the control constraint is satisfied in Xy;
3. f(x, Kf(x)) € Xy, Vx € X¢: Xy is positively invariant under Kf(x);

4. [V +L](x,x6(x)) <0, Vx € X¢: Vy is a local Lyapunov function.

I0-MPC 27




IP: Control design

How to design a feedback controller for the IP? Let us consider:
up = KZy + Ky 27 + KL Z_7 +RW (7)
where Wy = vec(wy, Wy ). This control leads to the following closed-loop:
Zen =KZ+ K 25 +K_Z_ +DW (8)

where K = Ay + EPCQ + BoK, Ky = Ax +BoKy D = 1, + ByR and By =
[By , By |-
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IP: Control design

This brings us to the following result:

Theorem 3: Let assumptions 1-4 be satisfied. If there exist matrices P, Q1,

Qs, O3, T, Oy, O_ ¥ € R¥*?" and Wy, Wy, W3, Wy € R™*?" guch that

P-Q -Qr -Q_ 0 W,/BJ +PD]]
* -Q -Y 0 W,Bj] +PA}
* x  —Q3 0 WyBJ+PAT| =0
* * * r I/\Q?BOT + P

R * * * P 1

P> OI I > 0! Q]/ QZI QBI Q+/Q— Z O;
Q= Q1 +min{Qy, Q3} +2min{Q4,Q_} >0,

then IP (6) under control (7) with gains K = W;P~1,K, = WP~ 1, K_
WP~ 1 R = W,P~1 is ISS with respect to the inputs W € ¢2.

I0-MPC
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IP: Control design

How to ensure that u, € U?

Corollary 1: Let there exist symmetric and positive definite matrices S € R"™*™

and Z € R¥*?" guch that U = {u € R™ : u'Su < 1} and W, € {W € R?" :
W' ZW < 1}, and the conditions of Theorem 4 be satisfied with additional

inequalities:
%F < min{K_lz,P}; P>xz71,
T Ip 0 0 W/ +W, ]
0 ip 0 Wi —W' |
0 0 3P W, B
Wi+ W W3 —W; Wy S_l =

for some constants # > 0 and x > 0, then control (7) satisfies the constraint

Uy c U for all Zk EXfXXf

I0-MPC 30




The predictive controller

Determine S, = {sg,...,SNy—1} solving the OCP

Sk .— arg Igin VN(Zko0,---» 2k N, SN)

N

with a cost function VN(Zko,..., ZkN,SN) = Vf(Zk,N) + Z?i_ol U(Zyir5i)-

under the following constraints:

Zko = Min{Xy, Zx_1,1}, Zro = max{xy, zx_11}

(9a) — intialization
Zy i+1 computed by X (9b)

(

(

— prediction using the IP
Zk,i—|—1 CXxX, s CU,
Zk,N S Xf X Xf

9¢) — state and input constraint

9d) — terminal constraint
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The predictive controller

Why initialize using information from both 10 and IP? Let V = [—0.5,0.5].

Comparison IO/IP in case of big meas. noise
2 -

1
X
X

—_— _E,l
S

0 20 40 60
Time steps [K]

)

1.5 72
X2
1 — -3
AR
0.5
S 0
0.5
J
1 F
1.51
;
_2 1 1 1 1
0 20 40 60 80

Time steps [k]
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The predictive controller

Algorithm 1: 10-MPC
Offline: Solve LMIs, estimate X ¢ and select ¥ = Py, < %P‘l and Y3 < %P‘l.

Input: Initial conditions xj, Xp and prediction horizon N.

Online:
1. for each decision instant k € Z; do
2. Measure y; and update 10 (4).
Initialize IP (6).

> W

Solve OCP (17) under constraints (9a)-(9d).
5. Assign up = S](‘) and apply to the system.
6. end for

I0-MPC




The predictive controller

Theorem 4: Let [x, Xg] C X and assumptions 1-4 be satisfied with [wy 1, Wg11] C
\wy., Wy ] for all k € Z,. Then, following Algorithm 1, the closed-loop system
composed by (1), (4) and (6) has the following features:

1. Recursive feasibility of reaching the terminal set in N steps;

2. ISS of dynamics (8) in X and practical ISS for (1);

3. Constraint satisfaction.

I0-MPC
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The LTI and the TD case

The same ideas were applied to linear time-invariant (LTI) and time-delayed
systems (TD):

Xki1 = Aoxx + A1xp_p + Buy + wy, keZ,
xk:(Pk, kE[—h,...,O]
Y = Cxy + vy

Main differences:
e Optimization of gains made through the interval width dx; = X} — x;.
XX

e Control design made regarding the interval center x; = =

e For the TD case, the Lyapunov-Krasovskii framework is required;

I0-MPC 35




Complexity

One of the main advantages of using IO/IP is their fixed complexity.

Assume that the number of hyperplanes needed to define X, U and X 5 depends
linearly on n, and that m = n. Therefore, the worst-case number of variables
for solving the constrained OCP is 10Nn (8Nn for the linear cases).

I0-MPC
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Numerical example (LPV)

Recall the LPV prototype example:

Xk+1 = lek

Y = [0 1] X + O

0.3

Constraints: X = [—12,3] x [-12,3], U =

Disturbances: W = [—0.1,0.1]?, V =

0.5 0.6+9k]x +[
k

—2,2]
(—0.1,0.1]

0
1

Interpolating functions A = =0 and A = _ bk

0 —0

Or—0x’

Select xy = vec(—7, —12) and Xy = vec(—6, —10). Prediction horizon N = 20,
simulation time span T = 20 steps x 100 runs.

]uk+wk

® = [-0.1,0.1]

I0-MPC
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Numerical example (LPV)

Evolution of the states

Control Input

Constraints

= Control Input

1.5
1F
15 1 1 1 1 1 1 1 1 1 1 B
0 2 4 6 8 10 12 14 16 18 20 0.5
S
_______________________ 05+t
Constraints 1
= [P trajectory
- Real trajectories 151
1 1 1 1 1 1 1 ‘2
0 2 4 6 8 10 12 14 16 18 20 0

Time steps [Kk]

10 15
Time steps [K]
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Numerical example (LPV)

Feasible Regions (IP)

Solver: fmincon (active set method)

For N = 10, computation time ol
0.22 + 0.0313 second/step with a
maximum of 0.7725 second.

-10 -

R
|

—

[

11

Constraint set
N=4
N=6
N=8

N =10
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Numerical example (LTT)

Consider the (linearized) CSTR model, given by the following matrices:

0.745 —0.002 5.6 x 107°
A= [5.610 0.780 } , B = [ 0.464 ]’ C= [0 1]
Constraints: X = [—2,2] x [—-10,5] and U = [—4.5,4.5]
Disturbances: W = [—0.02,0.02] x [—0.2,0.2] and V = [—0.3,0.3]
For a later comparison, the Tube-MPC from [Mayne et al, 2009] will be imple-

mented, taking an LQR controller for its design with matrices Qo = 0.11; and
Rpo =0.1.

Solver: quadprog, computation time: 0.0032 4 0.0021 second/step, maximum of
0.1358.

I0-MPC
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Numerical example (LTT)

States evolution (IO-MPC)

1.5
1 === Real trajectory
=== ]P Trajectory
wn Constraints
0 0.5

Tc

_10 —_ — I — — — - — S E— — —L —_

_—

Time steps [K]

0.5
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-2.5

-3.5

-4.5

Control input

1 1 1 1 1

10 20 30 40 50
Time steps [k]

60
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Numerical

example (LTT)

Feasible Regions (OPC)

1
AQF memmemmmm——-a-
1 1

— 2 Constraint Set
o IO-MPC

Tube-MPC
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Numerical example (TD)

Consider the following TD system:

05 —0.1 01 —03 0
k1 = {0.5 0.2 ] E ! 0 —0.1] Yk T H He Wk

vk =10 1] x+ vy
Constraints: X = [—9,3] x [-7,4] and U = [—1,1]

Disturbances: W = [—0.2,0.2]? and V = [—0.5,0.5]

and a known time-delay h = 10.

Solver: quadprog, computation time: 0.0032 4 0.0021 second/step, maximum of
0.1358.

I0-MPC
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Numerical example (TD)

Evolution of the states

Control inputs

0.8

0.6

0.2

0.2

06 Constraints

Constraints

= Control Input
-0.8

= [P trajectory

= Real trajectories R

| - 1 - 1 1

L 1 0 30 40 50 60

30
Time steps [k]

50 60 Time steps [K]
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Conclusions & perspectives

Conclusions:

e Developed new interval estimators for LTI, LPV and TD systems, as well
as their respective state feedback controllers;

e Proposed new robust output feedback MPC algorithms;

o [llustrated the methodologies with numerical experiments;

e Advantages: low fixed complexity, ease of design, low conservativeness.
Perspectives:

e Enhance the interval estimators and the proposed MPC algorithms aiming
to reduce conservativeness;

e Test their efficiency in practical scenarios.

I0-MPC
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Thank you for your
attention




