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Our target consists in creating a performant guidance law for Wheeled Mobile Robot (WMR) enabling, its 

movement from an initial position to final one, despite the existence of un-measurable states and  unknown 

but bounded uncertainties (slippage, external environmental disturbance and measurement noise).
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Flatness Control is used to transform the non linear

WMR model into a canonical Brunovsky form, for 

which it is easier to create a state feedback controller

Interval observer is developed to  

generates an envelope enclosing every 

feasible state despite the existence of 

unknown but bounded uncertainties 

Flatness control Interval observer

Guaranteed flatness based tracking control

Objective:
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The nonlinear system (1) is differentially flat if there exists an output         such as:F
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Flatness Based Tracking Control
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The matrix B is not singular if           . Under this assumption, the control can be defined as follows :0v 



Uncertain Kinematic Model
.

Lumped Disturbances
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In the presence of uncertainties

In some cases, point estimation (classical observer) cannot converge to the real states.

Interval observers

compute the set of admissible values,

provide the lower and upper bounds of state vector.
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A1. Pairs                 and                   are detectable.

A2. There exist         and        gains such that matrices                       and                         are Hurwitz and

Metzler (off diagonal elements are positive).

1 1( , )A C 2 2( , )A C

1 1 1( )A L C−

The main idea of designing interval observers of the uncertain system (15) is to create lower and upper 

bounds of the real states        and         which allows us to guarantee that  both latter belong to a specific 

interval. The interval observer design of system (15) requires the following assumptions :
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A3. The lumped uncertainties and  the measurements noise are  unknown but bounded.   
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Guaranteed Flatness Based Tracking Control
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Simulation Results

.
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Simulation Results
Simulation 1:

From Simulation 1, it can be firstly observed that the interval observers allows guaranteeing the estimation 

result of a WMR despite the presence of bounded uncertainties. In addition, it can be demonstrated that  

GFBTC permits the WMR to move in a precise interval containing the desired reference trajectory. 

Whereas, when applying FBTC to the uncertain WMR system, this latter diverges strongly from the 

reference. As a result, the controllers that are not based on an uncertain model, even if they are feedback 

controllers, may not work correctly



Simulation Results

. Simulation 2:

From Simulation 2, the effectiveness of GFBTC can be seen compared to FBTC. Furthermore, the 

width of the estimated interval increases compared the interval width obtained in simulation 1, and this 

is due to the augmentation of the value of uncertainties. In spite of this disadvantage, it can be observed 

that the WMR still moves in a precise interval containing the reference trajectory. 



.

Interval observer gains need to be further optimized in order to reduce the effect of 

uncertainties on the interval estimation accuracy of the WMR .

The combination of the interval observer and the flatness theory permits  to design a 

guaranteed tracking controller for a WMR despite the presence of un-measurable states and 

unknown but bounded  uncertainties( slippage, external environmental disturbances, 

measurement noise)

Perspectives

Conclusion 
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