Interval Kalman Filter enhanced by lowering the covariance matrix upper bound

Tuan Anh Tran, Carine Jauberthie, Louise Trave-Massayes, Quoc Hung Lu

LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
International Online Seminar on Interval Methods in Control
Engineering
July 16, 2021

INTRODUCTION

- a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)

INTRODUCTION

- a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
- uncertain discrete time linear models with additive Gaussian measurement noises

INTRODUCTION

- a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
- uncertain discrete time linear models with additive Gaussian measurement noises
- subject to bounded parameter uncertainties in state and observation matrices and also in the covariance matrices of the Gaussian noises

INTRODUCTION

- a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
- uncertain discrete time linear models with additive Gaussian measurement noises
- subject to bounded parameter uncertainties in state and observation matrices and also in the covariance matrices of the Gaussian noises
- using the spectral decomposition of a symmetric matrix to provide a less conservative error covariance upper bound than the one provided by UBIKF [Tran et al., 2017]

INTRODUCTION

- a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
- uncertain discrete time linear models with additive Gaussian measurement noises
- subject to bounded parameter uncertainties in state and observation matrices and also in the covariance matrices of the Gaussian noises
- using the spectral decomposition of a symmetric matrix to provide a less conservative error covariance upper bound than the one provided by UBIKF [Tran et al., 2017]
- an academic numerical example shows the efficiency of the proposed method w.r.t its precedent UBIKF

INTRODUCTION

- a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
- uncertain discrete time linear models with additive Gaussian measurement noises
- subject to bounded parameter uncertainties in state and observation matrices and also in the covariance matrices of the Gaussian noises
- using the spectral decomposition of a symmetric matrix to provide a less conservative error covariance upper bound than the one provided by UBIKF [Tran et al., 2017]
- an academic numerical example shows the efficiency of the proposed method w.r.t its precedent UBIKF
- a comparative analysis between the proposed method and the one in [Raka and Combastel, 2013] by simulating a two wheels vehicle model

PRELIMINARY - Interval analysis

A real interval, $[x]$: closed and connected subset (interval) of \mathbb{R}. A real interval matrix of dimension $p \times q, p, q \in \mathbb{N}^{*}$:

$$
[X]=\left(\left[x_{i j}\right]\right), i \in\{1, \ldots, p\}, j \in\{1, \ldots, q\}
$$

PRELIMINARY - Interval analysis

A real interval, $[x]$: closed and connected subset (interval) of \mathbb{R}.
A real interval matrix of dimension $p \times q, p, q \in \mathbb{N}^{*}$:

$$
[X]=\left(\left[x_{i j}\right]\right), i \in\{1, \ldots, p\}, j \in\{1, \ldots, q\}
$$

Define

$$
\begin{array}{cl}
\sup ([X]) \triangleq\left(\sup \left(\left[x_{i j}\right]\right)\right) \equiv \bar{X} \quad, \quad \inf ([X]) \triangleq\left(\inf \left(\left[x_{i j}\right]\right)\right) \equiv \underline{X}, \\
\operatorname{mid}([X]) \triangleq \frac{\bar{X}+\underline{X}}{2} \equiv X_{m} \quad, \quad \operatorname{rad}([X]) \triangleq \frac{\bar{X}-\underline{X}}{2} \equiv X_{r}
\end{array}
$$

as element-wise operators applying to $[X]$.

PRELIMINARY - Interval analysis

A real interval, $[x]$: closed and connected subset (interval) of \mathbb{R}.
A real interval matrix of dimension $p \times q, p, q \in \mathbb{N}^{*}$:

$$
[X]=\left(\left[x_{i j}\right]\right), i \in\{1, \ldots, p\}, j \in\{1, \ldots, q\}
$$

Define

$$
\begin{array}{cl}
\sup ([X]) \triangleq\left(\sup \left(\left[x_{i j}\right]\right)\right) \equiv \bar{X} \quad, \quad \inf ([X]) \triangleq\left(\inf \left(\left[x_{i j}\right]\right)\right) \equiv \underline{X}, \\
\operatorname{mid}([X]) \triangleq \frac{\bar{X}+\underline{X}}{2} \equiv X_{m} \quad, \quad \operatorname{rad}([X]) \triangleq \frac{\bar{X}-\underline{X}}{2} \equiv X_{r}
\end{array}
$$

as element-wise operators applying to $[X]$.
Denote also : $[X]=(\underline{X}, \bar{X})$.

PRELIMINARY - Interval analysis

Proposition 1 ([Tran et al., 2017])

Given an $m \times n$ real matrix M belonging to an interval matrix $[M]=\left(\left[m_{i j}\right]\right)$, there exist mn real values $\alpha^{i j} \in[-1,1]$ with $i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}$ such that :

$$
\begin{equation*}
M=M_{m}+\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha^{i j} M_{r}^{(i, j)}, a \tag{1}
\end{equation*}
$$

where $M_{r}^{(i, j)}$ is an $m \times n$ matrix whose elements are zeros except that

$$
\operatorname{entry}(i, j)=\operatorname{rad}\left(\left[m_{i j}\right]\right)
$$

a. This expression is a developed form of the Hadamard product.

PRELIMINARY - Interval analysis

Proposition 2 ([Tran, 2017])

Given an $n \times n$ real symmetric matrix M belonging to a symmetric interval matrix $[M]=\left(\left[m_{i j}\right]\right)$, there exist $n(n+1) / 2$ real values $\alpha^{i j} \in[-1,1]$ such that :

$$
\begin{align*}
M= & M_{m}+\operatorname{diag}\left(M_{r}\right) \operatorname{diag}\left(\alpha^{i i}\right) \\
& +\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \alpha^{i j} M_{r}^{((i, j),(j, i))}, \tag{2}
\end{align*}
$$

where

- diag $\left(M_{r}\right)$ is a diagonal matrix containing the radius of diagonal elements of $[M]$,
- diag $\left(\alpha^{i i}\right)$ is a diagonal matrix with $\alpha^{i i}$ issued from the $n(n+1) / 2$ real values $\alpha^{i j} \in[-1,1]$.
- $M_{r}^{((i, j),(j, i))}$ is a symmetric matrix whose elements are zero except that

$$
\operatorname{entry}(i, j)=\operatorname{entry}(j, i)=\operatorname{rad}\left(\left[m_{i j}\right]\right)
$$

PRELIMINARY - Upper bounds of matrices

Positive semi-definite matrix : $M \succeq 0$

Partial order of real square matrices
Let M, N be two real square matrices of the same dimension. M is called an upper bound of N, denoted by $N \preceq M$, if and only if :

$$
M-N \succeq 0
$$

PRELIMINARY - Upper bounds of matrices

Proposition 3 ([Tran et al., 2017])
Given two non null matrices M, N with the same size and an arbitrary real number $\beta>0$, the following inequality holds :

$$
\begin{equation*}
M N^{T}+N M^{T} \preceq \beta^{-1} M M^{T}+\beta N N^{T} . \tag{3}
\end{equation*}
$$

PRELIMINARY - Upper bounds of matrices

Proposition 3 ([Tran et al., 2017])

Given two non null matrices M, N with the same size and an arbitrary real number $\beta>0$, the following inequality holds :

$$
\begin{equation*}
M N^{T}+N M^{T} \preceq \beta^{-1} M M^{T}+\beta N N^{T} . \tag{3}
\end{equation*}
$$

Proposition 4 ([Combastel, 2016])

Let M be a symmetric matrix and $M=V D V^{T}$ be its spectral decomposition, where V is an orthogonal matrix and D is a diagonal matrix. Let $M^{+}=V|D| V^{T}$, where $|$.$| is the$ element-by-element absolute value operator. Then

$$
M^{+} \succeq 0 \quad \text { and } \quad \forall \alpha \in[-1,1], \alpha M \preceq M^{+} .
$$

PRELIMINARY - Upper bounds of matrices

Proposition 5

Given an $m \times n$ real matrix M belonging to an interval matrix [M] and a symmetric positive definite matrix P of order n, there exists a symmetric positive definite matrix S of order m such that

$$
M P M^{T} \preceq S .
$$

The matrix S can be determined by using Propositions 1 and 4 .

Proposition 6

Given a symmetric matrix M belonging to an interval symmetric matrix [M] of order n, there exists a symmetric positive definite matrix M^{+}of order n such that

$$
M \preceq M^{+} .
$$

The matrix M^{+}can be determined by using Propositions 2 and 4.

Problem formulation

Considered System :

$$
\left\{\begin{array}{l}
x_{k}=A_{k} x_{k-1}+B_{k} u_{k}+w_{k} \tag{4}\\
y_{k}=C_{k} x_{k}+v_{k}
\end{array}\right.
$$

where $x_{k} \in \mathbb{R}^{n_{x}}$ are state variables, $y_{k} \in \mathbb{R}^{n_{y}}$ measurements, $u_{k} \in \mathbb{R}^{n_{u}}$ inputs, $w_{k} \in \mathbb{R}^{n_{x}}$ state noises, $v_{k} \in \mathbb{R}^{n_{y}}$ measure noises.

Considered System :

$$
\left\{\begin{array}{l}
x_{k}=A_{k} x_{k-1}+B_{k} u_{k}+w_{k} \tag{4}\\
y_{k}=C_{k} x_{k}+v_{k}
\end{array}\right.
$$

where $x_{k} \in \mathbb{R}^{n_{x}}$ are state variables, $y_{k} \in \mathbb{R}^{n_{y}}$ measurements, $u_{k} \in \mathbb{R}^{n_{u}}$ inputs, $w_{k} \in \mathbb{R}^{n_{x}}$ state noises, $v_{k} \in \mathbb{R}^{n_{y}}$ measure noises. Assumptions (H)

- A_{k}, B_{k}, C_{k} : unknown, deterministic and belonging to known interval matrices $[A],[B],[C]$ respectively.
- $w_{k} \sim \mathcal{N}\left(0, Q_{k}\right), v_{k} \sim \mathcal{N}\left(0, R_{k}\right)$ with Q_{k} and R_{k} belonging respectively to known interval matrices $[Q]$ and $[R]$.
- The initial state x_{0} : centered Gaussian.
- $x_{0},\left\{w_{1}: w_{k}\right\}$ and $\left\{v_{1}: v_{k}\right\}$: mutually independent.

Standard Kalman filter (SKF)

SKF \longrightarrow the minimum variance estimate $\hat{\mathbf{x}}_{k \mid k}$ of \mathbf{x}_{k} with the associated covariance matrix $P_{k \mid k}$.

Notations :

- $\hat{\mathbf{x}}_{k \mid k-1}$: the a priori state estimate vector at time k given observations up to time $k-1$,
- $\hat{\mathbf{x}}_{k \mid k}$: the a posteriori state estimate vector at time k given observations up to time k,
- $P_{k \mid k-1}$: the a priori error covariance matrix,
- $P_{k \mid k}$: the a posteriori error covariance matrix.
where

$$
\begin{equation*}
P_{k \mid k-i}=E\left[\left(\hat{\mathbf{x}}_{k \mid k-i}-\mathbf{x}_{k}\right)\left(\hat{\mathbf{x}}_{k \mid k-i}-\mathbf{x}_{k}\right)^{T}\right], \quad i \in\{0,1\} . \tag{5}
\end{equation*}
$$

Assuming that $P_{0 \mid 0}=P_{0}$ and $\mathbf{x}_{0 \mid 0}=\mathbf{x}_{0}$.

Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)

- developed from the interval Kalman filter introduced in [Tran et al., 2017], namely UBIKF,

Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)

- developed from the interval Kalman filter introduced in [Tran et al., 2017], namely UBIKF,
- aim to reduce the overestimation on the state estimation error covariance, i.e. to obtain a less conservative upper bound $P_{k \mid k}^{+}$ on the state estimation error covariance :

$$
\begin{equation*}
E\left[\left(\hat{\mathbf{x}}_{k \mid k}-\mathbf{x}_{k}\right)\left(\hat{\mathbf{x}}_{k \mid k}-\mathbf{x}_{k}\right)^{T}\right] \preceq P_{k \mid k}^{+} . \tag{6}
\end{equation*}
$$

than the one obtained by UBIKF.

Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)

- developed from the interval Kalman filter introduced in [Tran et al., 2017], namely UBIKF,
- aim to reduce the overestimation on the state estimation error covariance, i.e. to obtain a less conservative upper bound $P_{k \mid k}^{+}$ on the state estimation error covariance :

$$
\begin{equation*}
E\left[\left(\hat{\mathbf{x}}_{k \mid k}-\mathbf{x}_{k}\right)\left(\hat{\mathbf{x}}_{k \mid k}-\mathbf{x}_{k}\right)^{T}\right] \preceq P_{k \mid k}^{+} . \tag{6}
\end{equation*}
$$

than the one obtained by UBIKF.

- can be designed in two steps : prediction and correction.

iUBIKF Prediction step

- assuming that $\left[\hat{\mathbf{x}}_{0 \mid 0}\right] \ni \mathrm{x}_{0}$ and $P_{0} \preceq P_{0 \mid 0}^{+}$.
- performed similarly to the SKF using the natural interval extension, as follows :

$$
\begin{equation*}
\left[\hat{\mathbf{x}}_{k \mid k-1}\right]=[A]\left[\hat{\mathbf{x}}_{k-1 \mid k-1}\right]+[B] \mathbf{u}_{k} \tag{7}
\end{equation*}
$$

iUBIKF Prediction step

- assuming that $\left[\hat{\mathbf{x}}_{0 \mid 0}\right] \ni \mathrm{x}_{0}$ and $P_{0} \preceq P_{0 \mid 0}^{+}$.
- performed similarly to the SKF using the natural interval extension, as follows :

$$
\begin{equation*}
\left[\hat{\mathbf{x}}_{k \mid k-1}\right]=[A]\left[\hat{\mathbf{x}}_{k-1 \mid k-1}\right]+[B] \mathbf{u}_{k} \tag{7}
\end{equation*}
$$

- Find $P_{k \mid k-1}^{+}$such that :

$$
\begin{equation*}
A_{k} P_{k-1 \mid k-1}^{+} A_{k}^{T}+Q_{k} \preceq P_{k \mid k-1}^{+}, \quad \forall A_{k} \in[A], Q_{k} \in[Q] \tag{8}
\end{equation*}
$$

where $P_{k-1 \mid k-1}^{+}$is the upper bound of the a posteriori covariance matrix at time $k-1$, by using Proposition 5 and 6 as follows :

$$
\begin{align*}
P_{k \mid k-1}^{+} & =P_{k}^{+}+Q_{k}^{+} \tag{9}\\
A_{k} P_{k-1 \mid k-1}^{+} A_{k}^{T} & \preceq P_{k}^{+}, \quad A_{k} \in[A] \\
Q_{k} & \preceq Q_{k}^{+}, \quad Q_{k} \in[Q]
\end{align*}
$$

iUBIKF Correction step

- The a posteriori state estimate $\left[\hat{\mathrm{x}}_{k \mid k}\right]$ is computed by the natural interval extension of the SKF :

$$
\begin{align*}
& {\left[\hat{\mathbf{x}}_{k \mid k}\right]=\left[\hat{\mathbf{x}}_{k \mid k-1}\right]+K_{k}\left(y_{k}-[C]\left[\hat{\mathbf{x}}_{k \mid k-1}\right]\right)} \tag{10}\\
& {\left[\hat{\mathbf{x}}_{k \mid k}\right]=\left(I-K_{k}[C]\right)\left[\hat{\mathbf{x}}_{k \mid k-1}\right]+K_{k} y_{k} .} \tag{11}
\end{align*}
$$

given $\hat{\mathbf{x}}_{k \mid k-1} \in\left[\hat{\mathbf{x}}_{k \mid k-1}\right], C_{k} \in[C]$ and K_{k} is a gain matrix. Equation (11) is used to reduce the effect of the dependency problem ([Jaulin et al., 2001]).

- The box $\left[\hat{\mathbf{x}}_{k \mid k}\right]$ encloses all possible values of $\hat{\mathbf{x}}_{k \mid k}$.

iUBIKF Correction step

The gain matrix K_{k} is determined as follows :

- Denote :

$$
\begin{equation*}
P_{k \mid k}=\left(I-K_{k} C_{k}\right) P_{k \mid k-1}^{+}\left(I-K_{k} C_{k}\right)^{T}+K_{k} R_{k} K_{k}^{T}, \tag{12}
\end{equation*}
$$

for $C_{k} \in[C], R_{k} \in[R]$, as the error covariance matrix after the correction step.

- Find upper bound $P_{k \mid k}^{+}$sucht that

$$
P_{k \mid k} \preceq P_{k \mid k}^{+}, \quad \forall C_{k} \in[C], R_{k} \in[R]
$$

- Find $K_{k}=\operatorname{argmin} \operatorname{tr}\left\{P_{k \mid k}^{+}\right\}$where $P_{k \mid k}^{+}$is a function of K_{k}.

iUBIKF Correction step

Find $P_{k \mid k}^{+}$s.t. $P_{k \mid k} \preceq P_{k \mid k}^{+}, \forall C_{k} \in[C], R_{k} \in[R]$
For any $C_{k} \in[C], C_{k}=C_{m}+\sum_{i, j} \alpha^{i j} C_{r}^{(i, j)}$ (Proposition 1). Then

$$
\begin{align*}
P_{k \mid k}= & K_{k} R_{k} K_{k}^{T}+\left(I-K_{k} C_{m}\right) P_{k \mid k-1}^{+}\left(I-K_{k} C_{m}\right)^{T} \\
+ & \sum_{i, j}\left(\alpha^{i j}\right)^{2}\left[K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(K_{k} C_{m}-I\right)^{T}\right. \\
& \left.+\left(K_{k} C_{m}-I\right) P_{k \mid k-1}^{+}\left(K_{k} C_{r}^{(i, j)}\right)^{T}\right] \\
+ & \sum_{i, j}\left(\alpha^{i j}\right)^{2} K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T} K_{k}^{T} \\
+ & \frac{1}{2} \sum_{(m, l) \neq(i, j)} \alpha^{i j} \alpha^{m l} K_{k}\left[C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(m, l)}\right)^{T}\right. \\
& \left.+\left(C_{r}^{(m, l)}\right) P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T}\right] K_{k}^{T} \tag{13}
\end{align*}
$$

iUBIKF Correction step
 Find $P_{k \mid k}^{+}$s.t. $P_{k \mid k} \preceq P_{k \mid k}^{+}, \forall C_{k} \in[C], R_{k} \in[R]$

+ using Proposition 4 to find $S_{(i, j)}^{(m, /)}$ such that

$$
\left[C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(m, l)}\right)^{T}+\left(C_{r}^{(m, l)}\right) P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T}\right] \preceq S_{(i, j)}^{(m, l)}
$$

+ using Proposition 6 to find R_{k}^{+}such that

$$
R_{k} \preceq R_{k}^{+}
$$

iUBIKF Correction step

Find $P_{k \mid k}^{+}$s.t. $P_{k \mid k} \preceq P_{k \mid k}^{+}, \forall C_{k} \in[C], R_{k} \in[R]$

+ Writing

$$
\begin{aligned}
K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+} & \left(K_{k} C_{m}-I\right)^{T} \\
& =\left(K_{k} C_{r}^{(i, j)} \sqrt{P_{k \mid k-1}^{+}}\right)\left(\left(K_{k} C_{m}-I\right) \sqrt{P_{k \mid k-1}^{+}}\right)^{T} \\
& \triangleq X Y^{T}
\end{aligned}
$$

then :

$$
\begin{aligned}
& {\left[K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(K_{k} C_{m}-I\right)^{T}+\left(K_{k} C_{m}-I\right) P_{k \mid k-1}^{+}\left(K_{k} C_{r}^{(i, j)}\right)^{T}\right] } \\
= & X Y^{T}+Y X^{T} \\
\preceq & X X^{T}+Y Y^{T} \quad(\text { Proposition 3 with } \beta=1) \\
= & K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T} K_{k}^{T}+\left(I-K_{k} C_{m}\right) P_{k \mid k-1}^{+}\left(I-K_{k} C_{m}\right)^{T}
\end{aligned}
$$

iUBIKF Correction step
 Find $P_{k \mid k}^{+}$s.t. $P_{k \mid k} \preceq P_{k \mid k}^{+}, \forall C_{k} \in[C], R_{k} \in[R]$

Finally

$$
\begin{align*}
P_{k \mid k} & \preceq K_{k} R_{k}^{+} K_{k}^{T} \\
& +\left(n_{0}+1\right)\left(I-K_{k} C_{m}\right) P_{k \mid k-1}^{+}\left(I-K_{k} C_{m}\right)^{T} \\
& +2 \sum_{i, j} K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T} K_{k}^{T} \\
& +\frac{1}{2} \sum_{(m, l) \neq(i, j)} K_{k} S_{(i, j)}^{(m, l)} K_{k}^{T} \\
& =P_{k \mid k}^{+} \tag{14}
\end{align*}
$$

where n_{0} is the number of interval elements of the matrix [C], i.e. $n_{0}=n_{y} \times n_{x}$.

iUBIKF Correction step
 Find $K_{k}=\operatorname{argmin} \operatorname{tr}\left\{P_{k \mid k}^{+}\right\}$

$$
\begin{aligned}
\frac{\partial \operatorname{tr}\left(\mathrm{P}_{\mathrm{k} \mid \mathrm{k}}^{+}\right)}{\partial K_{k}} & =2 K_{k} R_{k}^{+}-2\left(n_{0}+1\right) P_{k \mid k-1}^{+} C_{m}^{T} \\
& +2\left(n_{0}+1\right) K_{k} C_{m} P_{k \mid k-1}^{+} C_{m}^{T} \\
& +4 \sum_{i, j} K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T}+\sum_{(m, l) \neq(i, j)} K_{k} S_{(i, j)}^{(m, l)} \\
& =2 K_{k} S_{k}-2\left(n_{0}+1\right) P_{k \mid k-1}^{+} C_{m}^{T}
\end{aligned}
$$

where

$$
\begin{aligned}
& S_{k}=R_{k}^{+}+\left(n_{0}+1\right) C_{m} P_{k \mid k-1}^{+} C_{m}^{T} \\
& \quad+2 \sum_{i, j} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T}+\frac{1}{2} \sum_{(m, l) \neq(i, j)} S_{(i, j)}^{(m, l)} \\
& \\
& \frac{\partial \operatorname{tr}\left(\mathrm{P}_{\mathrm{k} \mid \mathrm{k}}^{+}\right)}{\partial K_{k}}=0 \Leftrightarrow K_{k}=\left(n_{0}+1\right) P_{k \mid k-1}^{+} C_{m}^{T} S_{k}^{-1}
\end{aligned}
$$

iUBIKF Correction step

With $K_{k}=\left(n_{0}+1\right) P_{k \mid k-1}^{+} C_{m}^{T} S_{k}^{-1}$,

$$
\begin{equation*}
P_{k \mid k}^{+}=\left(n_{0}+1\right)\left(I-K_{k} C_{m}\right) P_{k \mid k-1}^{+} \tag{15}
\end{equation*}
$$

SIMULATION - Academic example

Consider the system

$$
\left\{\begin{array}{l}
\mathbf{x}_{k+1}=A_{k} \mathbf{x}_{k}+\mathbf{w}_{k}, \\
\mathbf{y}_{k}=C_{k} \mathbf{x}_{k}+\mathbf{v}_{k}, k \in \mathbb{N} .
\end{array}\right.
$$

and assuming that parameter matrices belong respectively to :

$$
\begin{aligned}
{[A] } & =\left(\begin{array}{ccc}
{[2.55,2.65]} & {[-1.43-1.37]} & {[0.26,0.28]} \\
{[6.57,6.83]} & {[-3.47,-3.33]} & {[2.55,2.65]} \\
{[-0.77,-0.73]} & {[0.29,0.31]} & {[0.09,0.11]}
\end{array}\right), \\
{[C] } & =\left(\begin{array}{lll}
{[-8.24,-7.76]} & {[-4.12,-3.88]} & {[1.94,2.06]} \\
{[-2.06,-1.94]} & {[-2.06,-1.94]} & {[-6.18,-5.82]} \\
{[-0.41,-0.39]} & {[15.52,16.48]} & {[6.79,7.21]}
\end{array}\right), \\
{[Q] } & =\left(\begin{array}{lll}
{[8,12]} & {[-6,-4]} & {[3.2,4.8]} \\
{[-6,-4]} & {[8,12]} & {[1.6,2.4]} \\
{[3.2,4.8]} & {[1.6,2.4]} & {[8.12]}
\end{array}\right), \\
{[R] } & =\left(\begin{array}{lll}
{[8,12]} & {[-6,-4]} & {[3.2,4.8]} \\
{[-6,-4]} & {[8,12]} & {[1.6,2.4]} \\
{[3.2,4.8]} & {[1.6,2.4]} & {[8.12]}
\end{array}\right) .
\end{aligned}
$$

SIMULATION - Academic example

- Comparison : iUBIKF v.s. UBIKF ([Tran et al., 2017])
- Performance evaluation criteria :
+ Root mean square error upper bound :

$$
\overline{R M S E}=\sup \left(\sqrt{\left(\sum_{k=1}^{L}\left(\mathbf{x}_{k}-\left[\widehat{\mathbf{x}}_{k \mid k}\right]\right)^{2}\right) / L}\right)
$$

where (. $)^{2}$ and $\sqrt{(.)}$ are element-wise operators and L is the number of iterations.

+ The percentage O where confidence intervals [$I_{c_{k}}$] contain the corresponding real states \mathbf{x}_{k} :

$$
\begin{aligned}
O & =\sum_{k=1}^{L} \mathbf{1}\left(\mathbf{x}_{k} \in\left[I_{c_{k}}\right]\right) / L \\
{\left[I_{c_{k}}\right] } & =\left[\widehat{\mathbf{x}}_{k \mid k}\right]+\left[-3 \sqrt{\operatorname{diag}\left(P_{k \mid k}^{+}\right)}, 3 \sqrt{\operatorname{diag}\left(P_{k \mid k}^{+}\right)}\right]
\end{aligned}
$$

where $\operatorname{diag}(M)$ is the vector of diagonal elements of matrix M.

SIMULATION - Academic example

Figure 1 - Real x_{1} state component and the 3σ confidence intervals [$I_{c_{k}}$] obtained by the UBIKF and the iUBIKF

SIMULATION - Academic example

Table 1 - UBIKF and iUBIKF comparative evaluation

		UBIKF	iUBIKF
x_{1}	$\overline{R M S E}$	$\mathbf{3 . 6 4}$	$\mathbf{3 . 5 5}$
	$O(\%)$	100	100
x_{2}	$\overline{R M S E}$	$\mathbf{3 . 6 0}$	$\mathbf{3 . 4 9}$
	$O(\%)$	100	100
x_{3}	$\overline{R M S E}$	$\mathbf{2 . 8 8}$	$\mathbf{2 . 8 3}$
	$O(\%)$	100	100
Time (s)		15	30

SIMULATION - Academic example

Figure $2-P_{k \mid k}^{+11}$ for the UBIKF, the iUBIKF and $\max \left(P_{k \mid k}^{11}\right)$ for the conventional Kalman filter

- based on the continuous-time non-linear model of the dynamics of a two wheels vehicle that has been linearized and discretized.
- based on the continuous-time non-linear model of the dynamics of a two wheels vehicle that has been linearized and discretized.
- the resulting state space model has two states:
$+x_{1}$: the angular speed of the sideslip angle,
$+x_{2}$: the acceleration of the vehicle yaw.
- comparison : iUBIKF - UBIKF - the Interval Observer (Int.Obs) proposed in [Raka and Combastel, 2013]

Figure 3 - Estimation results for the UBIKF, the iUBKF and the interval observer for the two wheels vehicle model - angular speed of the sideslip angle x_{1} (top) and acceleration of the vehicle yaw x_{2} (bottom)

Table 2 - UBIKF, iUBIKF, and Int.Obs comparative evaluation

		UBIKF	iUBIKF	Int. Obs
x_{1}	$\overline{R M S E}$	0.17585	0.051212	1.1276
x_{2}	$\overline{R M S E}$	0.291	0.080989	1.1274
Time (s)		2.3916	7.6362	0.40902

(1) The improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)

- provides a lower error covariance upper bound
- allows to bound the set of all possible state estimations given by the Kalman filter for any admissible parameter uncertainties.

CONCLUSION

(1) The improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)

- provides a lower error covariance upper bound
- allows to bound the set of all possible state estimations given by the Kalman filter for any admissible parameter uncertainties.
(2) intended for systems of moderate dimension as it has not been optimised for larger systems.

CONCLUSION

(1) The improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)

- provides a lower error covariance upper bound
- allows to bound the set of all possible state estimations given by the Kalman filter for any admissible parameter uncertainties.
(2) intended for systems of moderate dimension as it has not been optimised for larger systems.
\longrightarrow This work shows that the integration of statistical and bounded uncertainties in a same model can be successfully achieved, which opens wide perspectives from a practical point of view.

囯 Combastel，C．（2016）．
An Extended Zonotopic and Gaussian Kalman Filter（EZGKF） merging set－membership and stochastic paradigms：Toward non－linear filtering and fault detection．
Annual Reviews in Control， 42 ：232－243．
圊 Jaulin，L．，Kieffer，M．，Didrit，O．，and Walter，E．（2001）．
Applied interval analysis with examples in parameter and state estimation，robust control and robotics．
An emerging paradigm．Springer－Verlag．
Raka，S．－A．and Combastel，C．（2013）．
Fault detection based on robust adaptive thresholds：A dynamic interval approach．
Annual Reviews in Control，37（1）：119－128．
圊 Tran，T．A．（2017）．
Cadre unifié pour la modélisation des incertitudes statistiques et bornées ：application à la détection et isolation de défauts dans les systèmes dynamiques incertains par estimation．

PhD thesis.
Thèse de doctorat dirigée par Jauberthie, Carine et Le Gall, Françoise Automatique Toulouse 32017.

國 Tran, T. A., Jauberthie, C., Le Gall, F., and Travé-Massuyès, L. (2017).

Interval Kalman filter enhanced by positive definite upper bounds.
In Proceedings of the 20th IFAC World Congress, Toulouse, France.

THANKS FOR YOUR ATTENTION

AND

Q \& A!

