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@ a variance upper bound based interval Kalman filter :
Improved Minimum Upper Bound of Variance Interval Kalman
Filter (IUBIKF)

@ uncertain discrete time linear models with additive Gaussian
measurement noises

@ subject to bounded parameter uncertainties in state and
observation matrices and also in the covariance matrices of
the Gaussian noises

@ using the spectral decomposition of a symmetric matrix to
provide a less conservative error covariance upper bound than
the one provided by UBIKF [Tran et al., 2017]

@ an academic numerical example shows the efficiency of the
proposed method w.r.t its precedent UBIKF

@ a comparative analysis between the proposed method and the
one in [Raka and Combastel, 2013] by simulating a two

wheels vehicle model
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PRELIMINARY - Interval analysis

A real interval, [x] : closed and connected subset (interval) of R.

A real interval matrix of dimension p x g, p,q € N* :

[X] = ([XU]) S {17 ,P} , J € {17 "'7q}a
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A real interval matrix of dimension p x g, p,q € N* :

[X] = ([XU]) S {17 ,P} , J € {17 "'7q}a

Define
sup([X]) = (sup([xs1)) =X , inf([X]) = (inf(Bl)) = X,
mid([X]) £ X;K =X, . rad(x]) 2% EK = X,

as element-wise operators applying to [X].
Denote also : [X] = (X, X).
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PRELIMINARY - Interval analysis

Proposition 1 ([Tran et al., 2017])

Given an m x n real matrix M belonging to an interval matrix
[M] = ([mj]), there exist mn real values oJ € [—1,1] with
ie{l,...,m}, je{1,...,n} such that :

m n
M:Mm+ZZaUM£iJ)’a (1)
i=1 j=1

ij) . .
where MS 9 is an m x n matrix whose elements are zeros except
that

entry (i,j) = rad([mj]).

a. This expression is a developed form of the Hadamard product.
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PRELIMINARY - Interval analysis

Proposition 2 ([Tran, 2017])

Given an n X n real symmetric matrix M belonging to a symmetric
interval matrix [M] = ([mj;]), there exist n(n+ 1)/2 real values
ol € [-1,1] such that :

M= M, + diag (M,)diag (a') )
+ 7;11 f:i+1 aUM[((’:J)»(Jv’))7

where

@ diag (M,) is a diagonal matrix containing the radius of
diagonal elements of [M],

o diag (a') is a diagonal matrix with o/ issued from the
n(n+1)/2 real values o € [-1,1].

° Mﬁ(i’j)’(j’i)) is a symmetric matrix whose elements are zero

except that

entry (i,j) = entry (j,i) = rad([mj]),
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PRELIMINARY - Upper bounds of matrices

Positive semi-definite matrix : M = 0

Partial order of real square matrices

Let M, N be two real square matrices of the same dimension.
M is called an upper bound of N , denoted by N < M, if and
only if

M—N>=0.
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PRELIMINARY - Upper bounds of matrices

Proposition 3 ([Tran et al., 2017])

Given two non null matrices M, N with the same size and an
arbitrary real number 3 > 0, the following inequality holds :

MNT + NMT < 87*MMT + BNNT .

A
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PRELIMINARY - Upper bounds of matrices

Proposition 3 ([Tran et al., 2017])

Given two non null matrices M, N with the same size and an
arbitrary real number B > 0, the following inequality holds :

MNT + NMT < 37*MMT + BNNT. (3)

Proposition 4 ([Combastel, 2016])

Let M be a symmetric matrix and M = VDV'T be its spectral
decomposition, where V' is an orthogonal matrix and D is a
diagonal matrix. Let M+ = V|D|V'T, where |.| is the
element-by-element absolute value operator. Then

Mt =0 and Va € [-1,1], aM < MT.

\
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PRELIMINARY - Upper bounds of matrices

Proposition 5

Given an m x n real matrix M belonging to an interval matrix [M]
and a symmetric positive definite matrix P of order n, there exists
a symmetric positive definite matrix S of order m such that

MPMT < S.

The matrix S can be determined by using Propositions 1 and 4.
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PRELIMINARY - Upper bounds of matrices

Proposition 6

Given a symmetric matrix M belonging to an interval symmetric
matrix [M] of order n, there exists a symmetric positive definite
matrix Mt of order n such that

M < M+,

The matrix M can be determined by using Propositions 2 and 4. )
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Problem formulation

Considered System :

(4)

{Xk = Arxx_1 + Brup + wy
Vi = Ciexic + vic

where x;, € R™ are state variables, yx € R™ measurements,
uix € R™ inputs, wy € R™ state noises, vx € R measure noises.
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Problem formulation

Considered System :

(4)

{Xk = Arxx_1 + Brup + wy
Vi = Ciexic + vic

where x;, € R™ are state variables, yx € R™ measurements,
uix € R™ inputs, wy € R™ state noises, vx € R measure noises.
Assumptions (H)

@ A, By, Ci : unknown, deterministic and belonging to known
interval matrices [A], [B], [C] respectively.

o wyx ~ N(0,Qk), vk ~ N (0, Ry) with Q and Ry belonging
respectively to known interval matrices [Q] and [R].

@ The initial state xg : centered Gaussian.

@ xo, {wy : wx} and {vq : v} : mutually independent.
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Standard Kalman filter (SKF)

SKF — the minimum variance estimate X, of xx with the
associated covariance matrix Pyy.
Notations :

® Xyk—1 : the a priori state estimate vector at time k given
observations up to time k — 1,

® Xk : the a posteriori state estimate vector at time k given
observations up to time k,

@ Pyjk—1 : the a priori error covariance matrix,

® Py : the a posteriori error covariance matrix.
where

Pik—-i=E {()A(k\k—i — X)) (Rijk—i — Xk)T} , i€{0,1}. (5)

Assuming that Pgjo = Py and xq)0 = Xo.
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Improved Minimum Upper Bound of Variance Interval

Kalman Filter (JUBIKF)

@ developed from the interval Kalman filter introduced in
[Tran et al., 2017], namely UBIKF,
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Improved Minimum Upper Bound of Variance Interval

Kalman Filter (JUBIKF)

@ developed from the interval Kalman filter introduced in
[Tran et al., 2017], namely UBIKF,

@ aim to reduce the overestimation on the state estimation error
covariance, i.e. to obtain a less conservative upper bound P/j\k
on the state estimation error covariance :

E {(f(k‘k — Xk)(ﬁk‘k — Xk)T:| j P:\k (6)
than the one obtained by UBIKF.

@ can be designed in two steps : prediction and correction.
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iUBIKF Prediction step

@ assuming that [Xgo] > X and Pp =< PSTO_

o performed similarly to the SKF using the natural interval
extension, as follows :

{)A(k\kfl} = [A] [’A(k71|k71} + [Blu. (7)
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iUBIKF Prediction step

@ assuming that [Xgo] > X and Pp =< PSTO_

o performed similarly to the SKF using the natural interval
extension, as follows :

{)A(k\kfl} = [A] [’A(k71|k71} + [Blu. (7)

e Find P:‘k_l such that :
AkPktl‘HA[ + Q=P YAE[ALQe[Q], (8)

where P, is the upper bound of the a posteriori

k—1|k—1
covariance matrix at time k — 1, by using Proposition 5 and 6
as follows :
Plj|k71 = Pi+Qy 9)
AkPIj_—1|k—1Alz— = Pf AcelA
Qe = QF, Qelq
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iIUBIKF Correction step

@ The a posteriori state estimate [)“(k“(} is computed by the
natural interval extension of the SKF :

[ﬁk\k] = {)A(k\k—l} + Ki (Yk —[C] [ﬁk|k—1D ., (10)
{)A(k\k} = (I-K«[C]) {)A(k\kfl} + Kk Yk (11)
given Xyjx—1 € [)A(k‘k_l}, Cx € [C] and K is a gain matrix.

Equation (11) is used to reduce the effect of the dependency
problem ([Jaulin et al., 2001]).

@ The box [)A(Mk} encloses all possible values of Xjqy.
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iIUBIKF Correction step

The gain matrix K is determined as follows :

@ Denote :
_ + T T
Pk|k = (/ — Kka) Pk|k71 (I — Kka) + KkRkKk , (12)

for Cx € [C], Rk € [R], as the error covariance matrix after
the correction step.

e Find upper bound P;r‘k sucht that
Pk\k = P;r‘k: VCk € [C] , Rk € [R]

e Find K = argmin tr{P;r‘k} where P;r‘k is a function of K.
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iIUBIKF Correction step
Find P/2L|k s.t. 'Dk\k = Pk*‘kﬂVCk c [C] , Ry € [R]

For any Cx € [C], Ck = Cin + 32 ~adcl) (Proposition 1).
Then

Pk = KR K + (1 — K G )P;r‘k l(l—Kka)T

+ Y (o) [K €D, (G — 1)
isj
+ (K Cm — 1) ’Dlj_|k—1 (chr(i’j)) T}
+ Y (o8) KeciDpg, (<O KT
ioj

1 ) -
+ 5 Z a”alek{C,(’J) ik 1<C(m’)>

(mD)2(i)
+ (ctm )>P:‘k1(C(’J)) KT (13)
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iIUBIKF Correction step

Find P/2L|k s.t. 'Dk\k = Pk*‘kﬂVCk c [C] , Ry € [R]

+ using Proposition 4 to find 5((,.27.’)’) such that

PN
.
3

iy, (cm) T+ (cimn) Py ()]

+ using Proposition 6 to find R, such that

R« = R/
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iIUBIKF Correction step

Find P/2L|k s.t. 'Dk\k = Pk*‘kﬂVCk c [C] , Ry € [R]

+ Writing
K CUIPL Ly (KiCn = )T
.. T
= (K€ P ) ((KiCm = 1) /P4 s)
£ Xy’
then :
.. SN\ T
[Kk CODP,y (KicCon — )T + (KiCon — 1) Py (KU CO) }
= XyT+wvxT"
< XXT 4+ vy’ (Proposition 3 with 5 =1)

.. N T
K CODP, (Cr(w)) K{ + (I = KiCom) Py (1 = KicCrn) T
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iIUBIKF Correction step

Find P/2L|k s.t. 'Dk\k = Pk*‘kﬂVCk c [C] , Ry € [R]

Finally

P KeREKY
(no +1) (1 = Kk Com) Pyl 1(/ — K Cm) "

QZch(w e (C(u)) KT

+ + Ik

1 (m.]) je
5 2 KU
(m.)) (i)
= Pl (14)

_l’_

where ng is the number of interval elements of the matrix [C], i.e.
ng = ny X ny.
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iIUBIKF Correction step

Find Kk = argmintr{P,, }

otr (Pf{r)
|k T
87}(’( 2KkR+— (n0+1)Pk|k 1Cm
+ 2(no + 1)KCnPl 1 Cmr
-
i i, (m,1)
+ 42 KiCOIPG,y (€M) + > Kas(
(m,N#(ij)
= 2Kk5k—2(n0—|—1) lk— 1CT
where
Sk = R{+(m+1)CuPy, lcg
. 1
(iJ) p+ (i) - (m,l)
+ 2ZC,JPHH(C,J) +2( /Z )5( f
I,J m,
otr (P
ot (i) =0 & Ki=(n+1)P], Cls"

0K
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iIUBIKF Correction step

With Ky = (no + )P, Ch S

Pl = (m0+1) (I = KiCo) P; (15)

Klk—1
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SIMULATION - Academic example

Consider the system

Xk+1 = AkXk + Wk,
Yk = Cixk + vk, k € N.

and assuming that parameter matrices belong respectively to :

[2.55,2.65]  [~1.43—1.37] [0.26,0.28]
[Al= | [6.57,6.83] [-3.47,-3.33] [2.55,2.65] | ,
[-0.77,-0.73]  [0.29,0.31]  [0.09,0.11]

[~8.24,~7.76] [-4.12,—3.88]  [1.94,2.06]
[C] = [[-2.06,—1.94] [-2.06,—1.94] [—6.18,—5.82]),
[-0.41,-0.39] [15.52,16.48]  [6.79,7.21]
[8,12] [-6,—4] [3.2,4.8]

[Q = [[-6,—4] [8,12] [1.6,2.4]),

[3.2,4.8] [1.6,2.4] [8.12]

[8,12] [-6,—4] [3.2,4.8]

Rl = |[-6,-4] [8,12] [1.6,2.4]].

[3.2,4.8] [1.6,2.4] [8.12])
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SIMULATION - Academic example

e Comparison : iUBIKF v.s. UBIKF ([Tran et al., 2017])
e Performance evaluation criteria :
+ Root mean square error upper bound :

L

RMSE = sup (Z (xk — [?kk]f) /L

k=1

where (.)? and m are element-wise operators and L is the
number of iterations.

+ The percentage O where confidence intervals [/ ] contain
the corresponding real states xy :

I
]~

0 1(xk € [l ])/ L,
k=1
el = [Rup] + 3m 3m1

where diag(M) is the vector of diagonal elements of matrix M.
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SIMULATION - Academic example

Figure 1 — Real x; state component and the 30 confidence intervals [/, ]
obtained by the UBIKF and the iUBIKF
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SIMULATION - Academic example

Table 1 — UBIKF and iUBIKF comparative evaluation

UBIKF | iUBIKF
. | RMSE | 3.64 | 3.55
1 170(%) | 100 100
. | RMSE | 3.60 | 3.49
2170(%) | 100 100
RMSE | 2.88 | 2.83
% 170(%) | 100 100
Time (s) 15 30
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SIMULATION - Academic example

> 100 200 300 100 500 GOO 700 800 900 1,000

Figure 2 — P[,! for the UBIKF, the iUBIKF and max(Py],) for the
conventional Kalman filter
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SIMULATION - Case study from the automotive domain

@ based on the continuous-time non-linear model of the
dynamics of a two wheels vehicle that has been linearized and
discretized.
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SIMULATION - Case study from the automotive domain

@ based on the continuous-time non-linear model of the
dynamics of a two wheels vehicle that has been linearized and

discretized.

@ the resulting state space model has two states :

+ xp : the angular speed of the sideslip angle,
+ xp : the acceleration of the vehicle yaw.

e comparison : iUBIKF - UBIKF - the Interval Observer
(Int.Obs) proposed in [Raka and Combastel, 2013]
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SIMULATION - Case study from the automotive domain

1

1 N\A/\/VV\,\/\/\/\/\/\/W\/\/\/ —__ True value
- - - iUBIKF [#]
~= “ UBIKF (2]

%
R R N i  aAai -o SV =l
o Iz X = 2 Int. Obs. [z4]

200 300 400 500 600
1 l/\/WV\’\'/W\/\/\/\I/\/W\/\__'_'Tr;; valne
- - - \iUBIKF [&]
) et R el o UBIKF (@]
0 :-22}%5::/:;‘ﬁ_‘*ﬂA‘M!:"““\‘:\E?E:' A Int. Obs. [x3] g

Figure 3 — Estimation results for the UBIKF, the iUBKF and the interval
observer for the two wheels vehicle model — angular speed of the sideslip
angle x; (top) and acceleration of the vehicle yaw x; (bottom)
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SIMULATION - Case study from the automotive domain

Table 2 — UBIKF, iUBIKF, and Int.Obs comparative evaluation

UBIKF | iUBIKF | Int. Obs
x1 | RMSE | 0.17585 | 0.051212 | 1.1276
X2 | RMSE | 0.291 | 0.080989 | 1.1274
Time (s) | 2.3916 | 7.6362 | 0.40902
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CONCLUSION

@ The improved Minimum Upper Bound of Variance Interval
Kalman Filter (iUBIKF)
e provides a lower error covariance upper bound
o allows to bound the set of all possible state estimations given
by the Kalman filter for any admissible parameter uncertainties.
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CONCLUSION

@ The improved Minimum Upper Bound of Variance Interval
Kalman Filter (iUBIKF)

e provides a lower error covariance upper bound
o allows to bound the set of all possible state estimations given
by the Kalman filter for any admissible parameter uncertainties.
@ intended for systems of moderate dimension as it has not
been optimised for larger systems.

— This work shows that the integration of statistical and
bounded uncertainties in a same model can be successfully
achieved, which opens wide perspectives from a practical point of
view.
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