Interval Kalman Filter enhanced by lowering the covariance matrix upper bound

Tuan Anh Tran, Carine Jauberthie, Louise Trave-Massayes, Quoc Hung Lu

LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.

International Online Seminar on Interval Methods in Control Engineering July 16, 2021

(中) (四) (문) (문) (문) (문)

• a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)

- a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
- uncertain discrete time linear models with additive Gaussian measurement noises

- a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
- uncertain discrete time linear models with additive Gaussian measurement noises
- subject to bounded parameter uncertainties in state and observation matrices and also in the covariance matrices of the Gaussian noises

- a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
- uncertain discrete time linear models with additive Gaussian measurement noises
- subject to bounded parameter uncertainties in state and observation matrices and also in the covariance matrices of the Gaussian noises
- using the spectral decomposition of a symmetric matrix to provide a less conservative error covariance upper bound than the one provided by **UBIKF** [Tran et al., 2017]

- a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
- uncertain discrete time linear models with additive Gaussian measurement noises
- subject to bounded parameter uncertainties in state and observation matrices and also in the covariance matrices of the Gaussian noises
- using the spectral decomposition of a symmetric matrix to provide a less conservative error covariance upper bound than the one provided by **UBIKF** [Tran et al., 2017]
- an academic numerical example shows the efficiency of the proposed method w.r.t its precedent UBIKF

イロト 不得 トイヨト イヨト 三日

- a variance upper bound based interval Kalman filter : Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
- uncertain discrete time linear models with additive Gaussian measurement noises
- subject to bounded parameter uncertainties in state and observation matrices and also in the covariance matrices of the Gaussian noises
- using the spectral decomposition of a symmetric matrix to provide a less conservative error covariance upper bound than the one provided by **UBIKF** [Tran et al., 2017]
- an academic numerical example shows the efficiency of the proposed method w.r.t its precedent UBIKF
- a comparative analysis between the proposed method and the one in [Raka and Combastel, 2013] by simulating a two wheels vehicle model

A real interval, [x] : closed and connected subset (interval) of \mathbb{R} . A real interval matrix of dimension $p \times q$, $p, q \in \mathbb{N}^*$:

 $[X] = ([x_{ij}]), i \in \{1, ..., p\}, j \in \{1, ..., q\},\$

A real interval, [x] : closed and connected subset (interval) of \mathbb{R} . A real interval matrix of dimension $p \times q$, $p, q \in \mathbb{N}^*$:

$$[X] = ([x_{ij}]), \ i \in \{1, ..., p\}, \ j \in \{1, ..., q\},$$

Define

$$\begin{split} \sup([X]) &\triangleq (\sup([x_{ij}])) \equiv \overline{X} \quad , \quad \inf([X]) \triangleq (\inf([x_{ij}])) \equiv \underline{X}, \\ \min([X]) &\triangleq \frac{\overline{X} + \underline{X}}{2} \equiv X_m \quad , \quad \operatorname{rad}([X]) \triangleq \frac{\overline{X} - \underline{X}}{2} \equiv X_r \end{split}$$

as element-wise operators applying to [X].

A real interval, [x] : closed and connected subset (interval) of \mathbb{R} . A real interval matrix of dimension $p \times q$, $p, q \in \mathbb{N}^*$:

$$[X] = ([x_{ij}]), \ i \in \{1, ..., p\}, \ j \in \{1, ..., q\},$$

Define

$$\begin{split} \sup([X]) &\triangleq (\sup([x_{ij}])) \equiv \overline{X} \quad , \quad \inf([X]) \triangleq (\inf([x_{ij}])) \equiv \underline{X}, \\ \min([X]) &\triangleq \frac{\overline{X} + \underline{X}}{2} \equiv X_m \quad , \quad \operatorname{rad}([X]) \triangleq \frac{\overline{X} - \underline{X}}{2} \equiv X_r \end{split}$$

as element-wise operators applying to [X]. Denote also : $[X] = (\underline{X}, \overline{X})$.

Proposition 1 ([Tran et al., 2017])

Given an $m \times n$ real matrix M belonging to an interval matrix $[M] = ([m_{ij}])$, there exist mn real values $\alpha^{ij} \in [-1, 1]$ with $i \in \{1, ..., m\}$, $j \in \{1, ..., n\}$ such that :

$$M = M_m + \sum_{i=1}^m \sum_{j=1}^n \alpha^{ij} M_r^{(i,j)}, a$$
 (1)

where $M_r^{(i,j)}$ is an $m \times n$ matrix whose elements are zeros except that

entry
$$(i,j) = rad([m_{ij}]).$$

a. This expression is a developed form of the Hadamard product.

PRELIMINARY - Interval analysis

Proposition 2 ([Tran, 2017])

Given an $n \times n$ real symmetric matrix M belonging to a symmetric interval matrix $[M] = ([m_{ij}])$, there exist n(n + 1)/2 real values $\alpha^{ij} \in [-1, 1]$ such that :

$$M = M_{m} + diag (M_{r}) diag (\alpha^{ii}) + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \alpha^{ij} M_{r}^{((i,j),(j,i))}, \qquad (2)$$

where

- diag (M_r) is a diagonal matrix containing the radius of diagonal elements of [M],
- diag (α^{ii}) is a diagonal matrix with α^{ii} issued from the n(n+1)/2 real values $\alpha^{ij} \in [-1,1]$.
- *M*^{((i,j),(j,i))} is a symmetric matrix whose elements are zero except that

$$entry(i,j) = entry(j,i) = rad([m_{ij}]),$$

Positive semi-definite matrix : $M \succeq 0$

Partial order of real square matrices

Let M, N be two real square matrices of the same dimension. M is called an **upper bound** of N, denoted by $N \leq M$, if and only if :

$$M-N \succeq 0.$$

Proposition 3 ([Tran et al., 2017])

Given two non null matrices M, N with the same size and an arbitrary real number $\beta > 0$, the following inequality holds :

 $MN^{T} + NM^{T} \preceq \beta^{-1}MM^{T} + \beta NN^{T}.$ (3)

Proposition 3 ([Tran et al., 2017])

Given two non null matrices M, N with the same size and an arbitrary real number $\beta > 0$, the following inequality holds :

 $MN^{T} + NM^{T} \preceq \beta^{-1}MM^{T} + \beta NN^{T}.$ (3)

Proposition 4 ([Combastel, 2016])

Let *M* be a symmetric matrix and $M = VDV^T$ be its spectral decomposition, where *V* is an orthogonal matrix and *D* is a diagonal matrix. Let $M^+ = V|D|V^T$, where |.| is the element-by-element absolute value operator. Then

 $M^+ \succeq 0$ and $\forall \alpha \in [-1, 1], \ \alpha M \preceq M^+.$

・ロト ・ 同ト ・ ヨト ・ ヨト

Proposition 5

Given an $m \times n$ real matrix M belonging to an interval matrix [M]and a symmetric positive definite matrix P of order n, there exists a symmetric positive definite matrix S of order m such that

$MPM^T \preceq S.$

The matrix S can be determined by using Propositions 1 and 4.

Proposition 6

Given a symmetric matrix M belonging to an interval symmetric matrix [M] of order n, there exists a symmetric positive definite matrix M^+ of order n such that

 $M \preceq M^+$.

The matrix M^+ can be determined by using Propositions 2 and 4.

Problem formulation

Considered System :

$$\begin{cases} x_k = A_k x_{k-1} + B_k u_k + w_k \\ y_k = C_k x_k + v_k \end{cases}$$

$$\tag{4}$$

where $x_k \in \mathbb{R}^{n_x}$ are state variables, $y_k \in \mathbb{R}^{n_y}$ measurements, $u_k \in \mathbb{R}^{n_u}$ inputs, $w_k \in \mathbb{R}^{n_x}$ state noises, $v_k \in \mathbb{R}^{n_y}$ measure noises. Considered System :

$$\begin{cases} x_k = A_k x_{k-1} + B_k u_k + w_k \\ y_k = C_k x_k + v_k \end{cases}$$

$$\tag{4}$$

where $x_k \in \mathbb{R}^{n_x}$ are state variables, $y_k \in \mathbb{R}^{n_y}$ measurements, $u_k \in \mathbb{R}^{n_u}$ inputs, $w_k \in \mathbb{R}^{n_x}$ state noises, $v_k \in \mathbb{R}^{n_y}$ measure noises. Assumptions (H)

- A_k, B_k, C_k : unknown, deterministic and belonging to known interval matrices [A], [B], [C] respectively.
- w_k ∼ N(0, Q_k), v_k ∼ N(0, R_k) with Q_k and R_k belonging respectively to known interval matrices [Q] and [R].
- The initial state x_0 : centered Gaussian.
- x_0 , $\{w_1 : w_k\}$ and $\{v_1 : v_k\}$: mutually independent.

・ロット (四)・ (日)・ (日)・

SKF \longrightarrow the minimum variance estimate $\hat{\mathbf{x}}_{k|k}$ of \mathbf{x}_k with the associated covariance matrix $P_{k|k}$.

Notations :

- x̂_{k|k−1} : the *a priori* state estimate vector at time *k* given observations up to time *k* − 1,
- x̂_{k|k} : the *a posteriori* state estimate vector at time *k* given observations up to time *k*,
- $P_{k|k-1}$: the *a priori* error covariance matrix,
- *P_{k|k}* : the *a posteriori* error covariance matrix.

where

$$P_{k|k-i} = E\left[(\hat{\mathbf{x}}_{k|k-i} - \mathbf{x}_k) (\hat{\mathbf{x}}_{k|k-i} - \mathbf{x}_k)^T \right], \quad i \in \{0, 1\}.$$
 (5)

Assuming that $P_{0|0} = P_0$ and $\mathbf{x}_{0|0} = \mathbf{x}_0$.

Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)

• developed from the interval Kalman filter introduced in [Tran et al., 2017], namely **UBIKF**,

Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)

- developed from the interval Kalman filter introduced in [Tran et al., 2017], namely **UBIKF**,
- aim to reduce the overestimation on the state estimation error covariance, i.e. to obtain a less conservative upper bound $P_{k|k}^+$ on the state estimation error covariance :

$$E\left[(\hat{\mathbf{x}}_{k|k} - \mathbf{x}_k)(\hat{\mathbf{x}}_{k|k} - \mathbf{x}_k)^T\right] \leq P_{k|k}^+.$$
 (6)

than the one obtained by UBIKF.

Improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)

- developed from the interval Kalman filter introduced in [Tran et al., 2017], namely **UBIKF**,
- aim to reduce the overestimation on the state estimation error covariance, i.e. to obtain a less conservative upper bound $P_{k|k}^+$ on the state estimation error covariance :

$$E\left[(\hat{\mathbf{x}}_{k|k} - \mathbf{x}_k)(\hat{\mathbf{x}}_{k|k} - \mathbf{x}_k)^T\right] \leq P_{k|k}^+.$$
 (6)

than the one obtained by UBIKF.

• can be designed in two steps : prediction and correction.

iUBIKF Prediction step

- assuming that $[\hat{\mathbf{x}}_{0|0}] \ni \mathbf{x}_0$ and $P_0 \preceq P_{0|0}^+$.
- performed similarly to the SKF using the natural interval extension, as follows :

$$\left[\hat{\mathbf{x}}_{k|k-1}\right] = [A] \left[\hat{\mathbf{x}}_{k-1|k-1}\right] + [B]\mathbf{u}_k.$$
(7)

iUBIKF Prediction step

- assuming that $[\hat{\mathbf{x}}_{0|0}] \ni \mathbf{x}_0$ and $P_0 \preceq P_{0|0}^+$.
- performed similarly to the SKF using the natural interval extension, as follows :

$$\left[\hat{\mathbf{x}}_{k|k-1}\right] = [A] \left[\hat{\mathbf{x}}_{k-1|k-1}\right] + [B]\mathbf{u}_k.$$
(7)

• Find $P_{k|k-1}^+$ such that :

 $A_k P_{k-1|k-1}^+ A_k^T + Q_k \leq P_{k|k-1}^+, \quad \forall A_k \in [A], Q_k \in [Q],$ (8) where $P_{k-1|k-1}^+$ is the upper bound of the a posteriori covariance matrix at time k-1, by using Proposition 5 and 6 as follows :

$$P_{k|k-1}^{+} = P_{k}^{+} + Q_{k}^{+} \qquad (9)$$

$$A_{k}P_{k-1|k-1}^{+}A_{k}^{T} \leq P_{k}^{+}, \quad A_{k} \in [A]$$

$$Q_{k} \leq Q_{k}^{+}, \quad Q_{k} \in [Q]$$

iUBIKF Correction step

• The **a posteriori state estimate** $[\hat{\mathbf{x}}_{k|k}]$ is computed by the natural interval extension of the SKF :

$$\begin{bmatrix} \hat{\mathbf{x}}_{k|k} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{x}}_{k|k-1} \end{bmatrix} + K_k \left(y_k - [C] \begin{bmatrix} \hat{\mathbf{x}}_{k|k-1} \end{bmatrix} \right), \quad (10) \\ \begin{bmatrix} \hat{\mathbf{x}}_{k|k} \end{bmatrix} = (I - K_k [C]) \begin{bmatrix} \hat{\mathbf{x}}_{k|k-1} \end{bmatrix} + K_k y_k. \quad (11)$$

given $\hat{\mathbf{x}}_{k|k-1} \in [\hat{\mathbf{x}}_{k|k-1}]$, $C_k \in [C]$ and K_k is a gain matrix. Equation (11) is used to reduce the effect of the dependency problem ([Jaulin et al., 2001]).

• The box $|\hat{\mathbf{x}}_{k|k}|$ encloses all possible values of $\hat{\mathbf{x}}_{k|k}$.

The gain matrix K_k is determined as follows :

• Denote :

 $P_{k|k} = (I - K_k C_k) P_{k|k-1}^+ (I - K_k C_k)^T + K_k R_k K_k^T, \quad (12)$ for $C_k \in [C], R_k \in [R]$, as the error covariance matrix after the correction step.

• Find upper bound $P_{k|k}^+$ sucht that

 $P_{k|k} \preceq P_{k|k}^+, \quad \forall C_k \in [C], R_k \in [R]$

• Find $K_k = \operatorname{argmin} \operatorname{tr} \{ P_{k|k}^+ \}$ where $P_{k|k}^+$ is a function of K_k .

iUBIKF Correction step Find $P_{k|k}^+$ s.t. $P_{k|k} \leq P_{k|k}^+, \forall C_k \in [C], R_k \in [R]$ For any $C_k \in [C], C_k = C_m + \sum_{i,j} \alpha^{ij} C_r^{(i,j)}$ (Proposition 1). Then

$$P_{k|k} = K_{k}R_{k}K_{k}^{T} + (I - K_{k}C_{m})P_{k|k-1}^{+}(I - K_{k}C_{m})^{T} + \sum_{i,j} (\alpha^{ij})^{2} [K_{k}C_{r}^{(i,j)}P_{k|k-1}^{+}(K_{k}C_{m} - I)^{T} + (K_{k}C_{m} - I)P_{k|k-1}^{+}(K_{k}C_{r}^{(i,j)})^{T}] + \sum_{i,j} (\alpha^{ij})^{2} K_{k}C_{r}^{(i,j)}P_{k|k-1}^{+}(C_{r}^{(i,j)})^{T} K_{k}^{T} + \frac{1}{2} \sum_{(m,l)\neq(i,j)} \alpha^{ij}\alpha^{ml}K_{k} [C_{r}^{(i,j)}P_{k|k-1}^{+}(C_{r}^{(m,l)})^{T} + (C_{r}^{(m,l)})P_{k|k-1}^{+}(C_{r}^{(i,j)})^{T}]K_{k}^{T}$$
(13)

16/31

iUBIKF Correction step Find $P_{k|k}^+$ s.t. $P_{k|k} \preceq P_{k|k}^+, \forall C_k \in [C], R_k \in [R]$

+ using **Proposition 4** to find $S_{(i,j)}^{(m,l)}$ such that

$$\left[C_{r}^{(i,j)}P_{k|k-1}^{+}\left(C_{r}^{(m,l)}\right)^{T}+\left(C_{r}^{(m,l)}\right)P_{k|k-1}^{+}\left(C_{r}^{(i,j)}\right)^{T}\right] \leq S_{(i,j)}^{(m,l)}$$

+ using **Proposition 6** to find R_k^+ such that

 $R_k \preceq R_k^+$

iUBIKF Correction step Find $P_{k|k}^+$ s.t. $P_{k|k} \preceq P_{k|k}^+, \forall C_k \in [C], R_k \in [R]$

+ Writing

$$\begin{split} \mathcal{K}_{k} C_{r}^{(i,j)} \mathcal{P}_{k|k-1}^{+} \left(\mathcal{K}_{k} C_{m} - I \right)^{T} \\ &= \left(\mathcal{K}_{k} C_{r}^{(i,j)} \sqrt{\mathcal{P}_{k|k-1}^{+}} \right) \left(\left(\mathcal{K}_{k} C_{m} - I \right) \sqrt{\mathcal{P}_{k|k-1}^{+}} \right)^{T} \\ &\triangleq X Y^{T} \end{split}$$

then :

$$\left[K_{k}C_{r}^{(i,j)}P_{k|k-1}^{+}(K_{k}C_{m}-I)^{T}+(K_{k}C_{m}-I)P_{k|k-1}^{+}(K_{k}C_{r}^{(i,j)})^{T}\right]$$

- = XY' + YX'
- $\preceq XX^T + YY^T$ (Proposition 3 with $\beta = 1$)

 $= K_k C_r^{(i,j)} P_{k|k-1}^+ \left(C_r^{(i,j)} \right)^T K_k^T + (I - K_k C_m) P_{k|k-1}^+ \left(I - K_k C_m \right)^T$

iUBIKF Correction step Find $P_{k|k}^+$ s.t. $P_{k|k} \preceq P_{k|k}^+, \forall C_k \in [C], R_k \in [R]$

Finally

$$P_{k|k} \leq K_{k}R_{k}^{+}K_{k}^{T} + (n_{0}+1)(I - K_{k}C_{m})P_{k|k-1}^{+}(I - K_{k}C_{m})^{T} + 2\sum_{i,j}K_{k}C_{r}^{(i,j)}P_{k|k-1}^{+}(C_{r}^{(i,j)})^{T}K_{k}^{T} + \frac{1}{2}\sum_{(m,l)\neq(i,j)}K_{k}S_{(i,j)}^{(m,l)}K_{k}^{T} = P_{k|k}^{+}, \qquad (14)$$

where n_0 is the number of interval elements of the matrix [C], i.e. $n_0 = n_y \times n_x$.

iUBIKF Correction step Find $K_k = \operatorname{argmin} \operatorname{tr} \{P_{k|k}^+\}$

$$\begin{aligned} \frac{\partial \mathrm{tr}\left(\mathbf{P}_{k|k}^{+}\right)}{\partial K_{k}} &= 2K_{k}R_{k}^{+} - 2(n_{0}+1)P_{k|k-1}^{+}C_{m}^{T} \\ &+ 2(n_{0}+1)K_{k}C_{m}P_{k|k-1}^{+}C_{m}^{T} \\ &+ 4\sum_{i,j}K_{k}C_{r}^{(i,j)}P_{k|k-1}^{+}\left(C_{r}^{(i,j)}\right)^{T} + \sum_{(m,l)\neq(i,j)}K_{k}S_{(i,j)}^{(m,l)} \\ &= 2K_{k}S_{k} - 2(n_{0}+1)P_{k|k-1}^{+}C_{m}^{T} \end{aligned}$$

where

$$S_{k} = R_{k}^{+} + (n_{0} + 1)C_{m}P_{k|k-1}^{+}C_{m}^{T} + 2\sum_{i,j}C_{r}^{(i,j)}P_{k|k-1}^{+}(C_{r}^{(i,j)})^{T} + \frac{1}{2}\sum_{(m,l)\neq(i,j)}S_{(i,j)}^{(m,l)} \frac{\partial \mathrm{tr}\left(\mathrm{P}_{k|k}^{+}\right)}{\partial K_{k}} = 0 \quad \Leftrightarrow \quad K_{k} = (n_{0} + 1)P_{\Box k|k}^{+} \int_{\mathbb{R}} C_{m}^{T}S_{k+\frac{n}{2}}^{-1} \int_{\mathbb{R}} S_{k+\frac{n}{2}}^{-1} \int_{\mathbb{$$

With
$$K_k = (n_0 + 1)P_{k|k-1}^+ C_m^T S_k^{-1}$$
,
 $P_{k|k}^+ = (n_0 + 1)(I - K_k C_m)P_{k|k-1}^+$. (15)

・ロト・西ト・ヨト・ヨー もくの

SIMULATION - Academic example

Consider the system

$$\begin{cases} \mathbf{x}_{k+1} = A_k \mathbf{x}_k + \mathbf{w}_k, \\ \mathbf{y}_k = C_k \mathbf{x}_k + \mathbf{v}_k, k \in \mathbb{N}. \end{cases}$$

and assuming that parameter matrices belong respectively to :

$$\begin{split} & [A] = \begin{pmatrix} [2.55, 2.65] & [-1.43 - 1.37] & [0.26, 0.28] \\ [6.57, 6.83] & [-3.47, -3.33] & [2.55, 2.65] \\ [-0.77, -0.73] & [0.29, 0.31] & [0.09, 0.11] \end{pmatrix}, \\ & [C] = \begin{pmatrix} [-8.24, -7.76] & [-4.12, -3.88] & [1.94, 2.06] \\ [-2.06, -1.94] & [-2.06, -1.94] & [-6.18, -5.82] \\ [-0.41, -0.39] & [15.52, 16.48] & [6.79, 7.21] \end{pmatrix}, \\ & [Q] = \begin{pmatrix} [8, 12] & [-6, -4] & [3.2, 4.8] \\ [-6, -4] & [8, 12] & [1.6, 2.4] \\ [3.2, 4.8] & [1.6, 2.4] & [8.12] \end{pmatrix}, \\ & [R] = \begin{pmatrix} [8, 12] & [-6, -4] & [3.2, 4.8] \\ [-6, -4] & [8, 12] & [1.6, 2.4] \\ [3.2, 4.8] & [1.6, 2.4] & [8.12] \end{pmatrix}. \end{split}$$

22 / 31

SIMULATION - Academic example

- Comparison : iUBIKF v.s. UBIKF ([Tran et al., 2017])
- Performance evaluation criteria :
 - + Root mean square error upper bound :

$$\overline{RMSE} = \sup\left(\sqrt{\left(\sum_{k=1}^{L} \left(\mathbf{x}_{k} - \left[\widehat{\mathbf{x}}_{k|k}\right]\right)^{2}\right)/L}\right),$$

where $(.)^2$ and $\sqrt{(.)}$ are element-wise operators and L is the number of iterations.

+ **The percentage** *O* where confidence intervals $[I_{c_k}]$ contain the corresponding real states \mathbf{x}_k :

$$O = \sum_{k=1}^{L} \mathbf{1}(\mathbf{x}_{k} \in [I_{c_{k}}])/L,$$

$$[I_{c_{k}}] = [\widehat{\mathbf{x}}_{k|k}] + \left[-3\sqrt{diag\left(P_{k|k}^{+}\right)}, 3\sqrt{diag\left(P_{k|k}^{+}\right)}\right],$$

where diag(M) is the vector of diagonal elements of matrix M.

SIMULATION - Academic example

Figure 1 – Real x_1 state component and the 3σ confidence intervals $[I_{c_k}]$ obtained by the UBIKF and the iUBIKF

< ロ > < 回 > < 回 > < 回 > < 回 >

Table 1 – UBIKF and iUBIKF comparative evaluation

		UBIKF	iUBIKF
<i>x</i> ₁	RMSE	3.64	3.55
	<i>O</i> (%)	100	100
<i>x</i> ₂	RMSE	3.60	3.49
	<i>O</i> (%)	100	100
<i>x</i> 3	RMSE	2.88	2.83
	<i>O</i> (%)	100	100
Time (s)		15	30

SIMULATION - Academic example

Figure 2 – $P_{k|k}^{+11}$ for the UBIKF, the iUBIKF and $max(P_{k|k}^{11})$ for the conventional Kalman filter

SIMULATION - Case study from the automotive domain

• based on the continuous-time non-linear model of the dynamics of a two wheels vehicle that has been linearized and discretized.

- based on the continuous-time non-linear model of the dynamics of a two wheels vehicle that has been linearized and discretized.
- the resulting state space model has two states :
 - $+ x_1$: the angular speed of the sideslip angle,
 - $+ x_2$: the acceleration of the vehicle yaw.
- comparison : iUBIKF UBIKF the Interval Observer (Int.Obs) proposed in [Raka and Combastel, 2013]

SIMULATION - Case study from the automotive domain

Figure 3 – Estimation results for the UBIKF, the iUBKF and the interval observer for the two wheels vehicle model – angular speed of the sideslip angle x_1 (top) and acceleration of the vehicle yaw x_2 (bottom)

Table 2 – UBIKF, iUBIKF, and Int.Obs comparative evaluation

		UBIKF	iUBIKF	Int. Obs
<i>x</i> ₁	RMSE	0.17585	0.051212	1.1276
<i>x</i> ₂	RMSE	0.291	0.080989	1.1274
Time (s)		2.3916	7.6362	0.40902

CONCLUSION

- The improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
 - provides a lower error covariance upper bound
 - allows to bound the set of all possible state estimations given by the Kalman filter for any admissible parameter uncertainties.

CONCLUSION

- The improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
 - provides a lower error covariance upper bound
 - allows to bound the set of all possible state estimations given by the Kalman filter for any admissible parameter uncertainties.
- intended for systems of moderate dimension as it has not been optimised for larger systems.

CONCLUSION

- The improved Minimum Upper Bound of Variance Interval Kalman Filter (iUBIKF)
 - provides a lower error covariance upper bound
 - allows to bound the set of all possible state estimations given by the Kalman filter for any admissible parameter uncertainties.
- intended for systems of moderate dimension as it has not been optimised for larger systems.

 \longrightarrow This work shows that the integration of statistical and bounded uncertainties in a same model can be successfully achieved, which opens wide perspectives from a practical point of view.

Combastel, C. (2016).

An Extended Zonotopic and Gaussian Kalman Filter (EZGKF) merging set-membership and stochastic paradigms : Toward non-linear filtering and fault detection.

Annual Reviews in Control, 42 :232–243.

Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001). Applied interval analysis with examples in parameter and state estimation. robust control and robotics. An emerging paradigm. Springer-Verlag.

Raka, S.-A. and Combastel, C. (2013).

Fault detection based on robust adaptive thresholds : A dynamic interval approach.

Annual Reviews in Control, 37(1):119 – 128.

Tran, T. A. (2017).

Cadre unifié pour la modélisation des incertitudes statistiques et bornées : application à la détection et isolation de défauts dans les systèmes dynamiques incertains par estimation.

PhD thesis.

Thèse de doctorat dirigée par Jauberthie, Carine et Le Gall, Françoise Automatique Toulouse 3 2017.

- Tran, T. A., Jauberthie, C., Le Gall, F., and Travé-Massuyès, L. (2017).

Interval Kalman filter enhanced by positive definite upper bounds.

In *Proceedings of the 20th IFAC World Congress*, Toulouse, France.

THANKS FOR YOUR ATTENTION

AND

Q & A!