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INTRODUCTION
a variance upper bound based interval Kalman filter :
Improved Minimum Upper Bound of Variance Interval Kalman
Filter (iUBIKF)

uncertain discrete time linear models with additive Gaussian
measurement noises
subject to bounded parameter uncertainties in state and
observation matrices and also in the covariance matrices of
the Gaussian noises
using the spectral decomposition of a symmetric matrix to
provide a less conservative error covariance upper bound than
the one provided by UBIKF [Tran et al., 2017]
an academic numerical example shows the efficiency of the
proposed method w.r.t its precedent UBIKF
a comparative analysis between the proposed method and the
one in [Raka and Combastel, 2013] by simulating a two
wheels vehicle model
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PRELIMINARY - Interval analysis

A real interval, [x ] : closed and connected subset (interval) of R.
A real interval matrix of dimension p × q, p, q ∈ N∗ :

[X ] = ([xij ]) , i ∈ {1, ..., p} , j ∈ {1, ..., q},

Define

sup([X ]) M= (sup([xij ])) ≡ X , inf([X ]) M= (inf([xij ])) ≡ X ,

mid([X ]) M= X + X
2 ≡ Xm , rad([X ]) M= X − X

2 ≡ Xr

as element-wise operators applying to [X ].
Denote also : [X ] = (X ,X ).
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PRELIMINARY - Interval analysis

Proposition 1 ([Tran et al., 2017])
Given an m × n real matrix M belonging to an interval matrix
[M] = ([mij ]), there exist mn real values αij ∈ [−1, 1] with
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} such that :

M = Mm +
m∑

i=1

n∑
j=1

αijM(i ,j)
r , a (1)

where M(i ,j)
r is an m × n matrix whose elements are zeros except

that

entry (i , j) = rad([mij ]).

a. This expression is a developed form of the Hadamard product.
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PRELIMINARY - Interval analysis
Proposition 2 ([Tran, 2017])
Given an n × n real symmetric matrix M belonging to a symmetric
interval matrix [M] = ([mij ]), there exist n(n + 1)/2 real values
αij ∈ [−1, 1] such that :

M = Mm + diag (Mr )diag
(
αii)

+
∑n−1

i=1
∑n

j=i+1 α
ijM((i ,j),(j,i))

r ,
(2)

where
diag (Mr ) is a diagonal matrix containing the radius of
diagonal elements of [M],
diag

(
αii) is a diagonal matrix with αii issued from the

n(n + 1)/2 real values αij ∈ [−1, 1].
M((i ,j),(j,i))

r is a symmetric matrix whose elements are zero
except that

entry (i , j) = entry (j , i) = rad([mij ]),
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PRELIMINARY - Upper bounds of matrices

Positive semi-definite matrix : M � 0

Partial order of real square matrices
Let M,N be two real square matrices of the same dimension.
M is called an upper bound of N , denoted by N � M, if and
only if :

M − N � 0.
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PRELIMINARY - Upper bounds of matrices

Proposition 3 ([Tran et al., 2017])
Given two non null matrices M,N with the same size and an
arbitrary real number β > 0, the following inequality holds :

MNT + NMT � β−1MMT + βNNT . (3)

Proposition 4 ([Combastel, 2016])
Let M be a symmetric matrix and M = VDV T be its spectral
decomposition, where V is an orthogonal matrix and D is a
diagonal matrix. Let M+ = V |D|V T , where |.| is the
element-by-element absolute value operator. Then

M+ � 0 and ∀α ∈ [−1, 1], αM � M+.
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PRELIMINARY - Upper bounds of matrices

Proposition 5
Given an m × n real matrix M belonging to an interval matrix [M]
and a symmetric positive definite matrix P of order n, there exists
a symmetric positive definite matrix S of order m such that

MPMT � S.

The matrix S can be determined by using Propositions 1 and 4.
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PRELIMINARY - Upper bounds of matrices

Proposition 6
Given a symmetric matrix M belonging to an interval symmetric
matrix [M] of order n, there exists a symmetric positive definite
matrix M+ of order n such that

M � M+.

The matrix M+ can be determined by using Propositions 2 and 4.
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Problem formulation

Considered System :{
xk = Akxk−1 + Bkuk + wk

yk = Ckxk + vk
(4)

where xk ∈ Rnx are state variables, yk ∈ Rny measurements,
uk ∈ Rnu inputs, wk ∈ Rnx state noises, vk ∈ Rny measure noises.

Assumptions (H)
Ak ,Bk ,Ck : unknown, deterministic and belonging to known
interval matrices [A], [B], [C ] respectively.
wk ∼ N (0,Qk), vk ∼ N (0,Rk) with Qk and Rk belonging
respectively to known interval matrices [Q] and [R].
The initial state x0 : centered Gaussian.
x0, {w1 : wk} and {v1 : vk} : mutually independent.
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Standard Kalman filter (SKF)

SKF −→ the minimum variance estimate x̂k|k of xk with the
associated covariance matrix Pk|k .

Notations :
x̂k|k−1 : the a priori state estimate vector at time k given
observations up to time k − 1,
x̂k|k : the a posteriori state estimate vector at time k given
observations up to time k,
Pk|k−1 : the a priori error covariance matrix,
Pk|k : the a posteriori error covariance matrix.

where

Pk|k−i = E
[
(x̂k|k−i − xk)(x̂k|k−i − xk)T

]
, i ∈ {0, 1}. (5)

Assuming that P0|0 = P0 and x0|0 = x0.
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Improved Minimum Upper Bound of Variance Interval
Kalman Filter (iUBIKF)

developed from the interval Kalman filter introduced in
[Tran et al., 2017], namely UBIKF,

aim to reduce the overestimation on the state estimation error
covariance, i.e. to obtain a less conservative upper bound P+

k|k
on the state estimation error covariance :

E
[
(x̂k|k − xk)(x̂k|k − xk)T

]
� P+

k|k . (6)

than the one obtained by UBIKF.

can be designed in two steps : prediction and correction.
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iUBIKF Prediction step
assuming that [x̂0|0] 3 x0 and P0 � P+

0|0.
performed similarly to the SKF using the natural interval
extension, as follows :[

x̂k|k−1
]

= [A]
[
x̂k−1|k−1

]
+ [B]uk . (7)

Find P+
k|k−1 such that :

AkP+
k−1|k−1A

T
k + Qk � P+

k|k−1, ∀Ak ∈ [A] ,Qk ∈ [Q] , (8)

where P+
k−1|k−1 is the upper bound of the a posteriori

covariance matrix at time k − 1, by using Proposition 5 and 6
as follows :

P+
k|k−1 = P+

k + Q+
k (9)

AkP+
k−1|k−1A

T
k � P+

k , Ak ∈ [A]
Qk � Q+

k , Qk ∈ [Q]
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iUBIKF Correction step

The a posteriori state estimate
[
x̂k|k

]
is computed by the

natural interval extension of the SKF :[
x̂k|k

]
=

[
x̂k|k−1

]
+ Kk

(
yk − [C ]

[
x̂k|k−1

])
, (10)[

x̂k|k
]

= (I − Kk [C ])
[
x̂k|k−1

]
+ Kkyk . (11)

given x̂k|k−1 ∈
[
x̂k|k−1

]
, Ck ∈ [C ] and Kk is a gain matrix.

Equation (11) is used to reduce the effect of the dependency
problem ([Jaulin et al., 2001]).

The box
[
x̂k|k

]
encloses all possible values of x̂k|k .
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iUBIKF Correction step

The gain matrix Kk is determined as follows :
Denote :

Pk|k = (I − KkCk)P+
k|k−1 (I − KkCk)T + KkRkKT

k , (12)

for Ck ∈ [C ] ,Rk ∈ [R], as the error covariance matrix after
the correction step.

Find upper bound P+
k|k sucht that

Pk|k � P+
k|k , ∀Ck ∈ [C ] ,Rk ∈ [R]

Find Kk = argmin tr{P+
k|k} where P+

k|k is a function of Kk .
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iUBIKF Correction step
Find P+

k|k s.t. Pk|k � P+
k|k ,∀Ck ∈ [C ] , Rk ∈ [R]

For any Ck ∈ [C ], Ck = Cm +
∑

i ,j α
ijC (i ,j)

r (Proposition 1).
Then

Pk|k = KkRkKT
k + (I − KkCm)P+

k|k−1 (I − KkCm)T

+
∑
i ,j

(
αij
)2 [

KkC (i ,j)
r P+

k|k−1 (KkCm − I)T

+ (KkCm − I)P+
k|k−1

(
KkC (i ,j)

r

)T
]

+
∑
i ,j

(
αij
)2

KkC (i ,j)
r P+

k|k−1

(
C (i ,j)

r

)T
KT

k

+ 1
2

∑
(m,l)6=(i ,j)

αijαmlKk

[
C (i ,j)

r P+
k|k−1

(
C (m,l)

r

)T

+
(
C (m,l)

r

)
P+

k|k−1

(
C (i ,j)

r

)T
]
KT

k (13)
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iUBIKF Correction step
Find P+

k|k s.t. Pk|k � P+
k|k ,∀Ck ∈ [C ] , Rk ∈ [R]

+ using Proposition 4 to find S(m,l)
(i ,j) such that[

C (i ,j)
r P+

k|k−1

(
C (m,l)

r

)T
+
(
C (m,l)

r

)
P+

k|k−1

(
C (i ,j)

r

)T
]
� S(m,l)

(i ,j)

+ using Proposition 6 to find R+
k such that

Rk � R+
k

17 / 31



iUBIKF Correction step
Find P+

k|k s.t. Pk|k � P+
k|k ,∀Ck ∈ [C ] , Rk ∈ [R]

+ Writing
KkC (i ,j)

r P+
k|k−1 (KkCm − I)T

=
(
KkC (i ,j)

r

√
P+

k|k−1

) (
(KkCm − I)

√
P+

k|k−1

)T

M= XY T

then :[
KkC (i ,j)

r P+
k|k−1 (KkCm − I)T + (KkCm − I)P+

k|k−1

(
KkC (i ,j)

r

)T
]

= XY T + YXT

� XXT + YY T (Proposition 3 with β = 1)

= KkC (i ,j)
r P+

k|k−1

(
C (i ,j)

r

)T
KT

k + (I − KkCm)P+
k|k−1 (I − KkCm)T
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iUBIKF Correction step
Find P+

k|k s.t. Pk|k � P+
k|k ,∀Ck ∈ [C ] , Rk ∈ [R]

Finally

Pk|k � KkR+
k KT

k
+ (n0 + 1) (I − KkCm)P+

k|k−1 (I − KkCm)T

+ 2
∑
i ,j

KkC (i ,j)
r P+

k|k−1

(
C (i ,j)

r

)T
KT

k

+ 1
2

∑
(m,l)6=(i ,j)

KkS(m,l)
(i ,j) KT

k

= P+
k|k , (14)

where n0 is the number of interval elements of the matrix [C ], i.e.
n0 = ny × nx .
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iUBIKF Correction step
Find Kk = argmin tr{P+

k|k}

∂tr
(
P+

k|k

)
∂Kk

= 2KkR+
k − 2(n0 + 1)P+

k|k−1C
T
m

+ 2(n0 + 1)KkCmP+
k|k−1C

T
m

+ 4
∑
i ,j

KkC (i ,j)
r P+

k|k−1

(
C (i ,j)

r

)T
+

∑
(m,l) 6=(i ,j)

KkS(m,l)
(i ,j)

= 2KkSk − 2(n0 + 1)P+
k|k−1C

T
m

where
Sk = R+

k + (n0 + 1)CmP+
k|k−1C

T
m

+ 2
∑
i ,j

C (i ,j)
r P+

k|k−1

(
C (i ,j)

r

)T
+ 1

2
∑

(m,l)6=(i ,j)
S(m,l)

(i ,j)

∂tr
(
P+

k|k

)
∂Kk

= 0 ⇔ Kk = (n0 + 1)P+
k|k−1C

T
mS−1

k
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iUBIKF Correction step

With Kk = (n0 + 1)P+
k|k−1C

T
mS−1

k ,

P+
k|k = (n0 + 1) (I − KkCm)P+

k|k−1. (15)
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SIMULATION - Academic example
Consider the system {

xk+1 = Akxk + wk ,

yk = Ckxk + vk , k ∈ N.

and assuming that parameter matrices belong respectively to :

[A] =

 [2.55, 2.65] [−1.43− 1.37] [0.26, 0.28]
[6.57, 6.83] [−3.47,−3.33] [2.55, 2.65]

[−0.77,−0.73] [0.29, 0.31] [0.09, 0.11]

 ,

[C ] =

[−8.24,−7.76] [−4.12,−3.88] [1.94, 2.06]
[−2.06,−1.94] [−2.06,−1.94] [−6.18,−5.82]
[−0.41,−0.39] [15.52, 16.48] [6.79, 7.21]

 ,

[Q] =

 [8, 12] [−6,−4] [3.2, 4.8]
[−6,−4] [8, 12] [1.6, 2.4]
[3.2, 4.8] [1.6, 2.4] [8.12]

 ,

[R] =

 [8, 12] [−6,−4] [3.2, 4.8]
[−6,−4] [8, 12] [1.6, 2.4]
[3.2, 4.8] [1.6, 2.4] [8.12]

 .
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SIMULATION - Academic example
Comparison : iUBIKF v.s. UBIKF ([Tran et al., 2017])
Performance evaluation criteria :
+ Root mean square error upper bound :

RMSE = sup


√√√√( L∑

k=1

(
xk −

[
x̂k|k

])2
)
/L

 ,

where (.)2 and
√

(.) are element-wise operators and L is the
number of iterations.

+ The percentage O where confidence intervals [Ick ] contain
the corresponding real states xk :

O =
L∑

k=1
1(xk ∈ [Ick ])/L,

[Ick ] =
[
x̂k|k

]
+
[
−3
√
diag

(
P+

k|k

)
, 3
√
diag

(
P+

k|k

)]
,

where diag(M) is the vector of diagonal elements of matrix M.
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SIMULATION - Academic example
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Figure 1 – Real x1 state component and the 3σ confidence intervals [Ick ]
obtained by the UBIKF and the iUBIKF
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SIMULATION - Academic example

Table 1 – UBIKF and iUBIKF comparative evaluation

UBIKF iUBIKF

x1
RMSE 3.64 3.55
O(%) 100 100

x2
RMSE 3.60 3.49
O(%) 100 100

x3
RMSE 2.88 2.83
O(%) 100 100

Time (s) 15 30
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SIMULATION - Academic example
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Figure 2 – P+11
k|k for the UBIKF, the iUBIKF and max(P11

k|k) for the
conventional Kalman filter
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SIMULATION - Case study from the automotive domain

based on the continuous-time non-linear model of the
dynamics of a two wheels vehicle that has been linearized and
discretized.

the resulting state space model has two states :
+ x1 : the angular speed of the sideslip angle,
+ x2 : the acceleration of the vehicle yaw.

comparison : iUBIKF - UBIKF - the Interval Observer
(Int.Obs) proposed in [Raka and Combastel, 2013]
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SIMULATION - Case study from the automotive domain

Figure 3 – Estimation results for the UBIKF, the iUBKF and the interval
observer for the two wheels vehicle model – angular speed of the sideslip
angle x1 (top) and acceleration of the vehicle yaw x2 (bottom)
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SIMULATION - Case study from the automotive domain

Table 2 – UBIKF, iUBIKF, and Int.Obs comparative evaluation

UBIKF iUBIKF Int. Obs
x1 RMSE 0.17585 0.051212 1.1276
x2 RMSE 0.291 0.080989 1.1274
Time (s) 2.3916 7.6362 0.40902
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CONCLUSION

1 The improved Minimum Upper Bound of Variance Interval
Kalman Filter (iUBIKF)

provides a lower error covariance upper bound
allows to bound the set of all possible state estimations given
by the Kalman filter for any admissible parameter uncertainties.

2 intended for systems of moderate dimension as it has not
been optimised for larger systems.

−→ This work shows that the integration of statistical and
bounded uncertainties in a same model can be successfully
achieved, which opens wide perspectives from a practical point of
view.
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