Interval Observers for Fault Detection and Estimation

 ${\sf Thomas} \ {\sf CHEVET}^{1,2} \quad {\sf Thach} \ {\sf Ngoc} \ {\sf DINH}^2 \quad {\sf Julien} \ {\sf MARZAT}^1 \quad {\sf Tarek} \ {\sf RA\"{I}SSI}^2$

¹DTIS, ONERA, Université Paris-Saclay, 91123 Palaiseau, France

²Cedric, Conservatoire National des Arts et Métiers, Paris, France

International Online Seminar on Interval Methods in Control Engineering $$8^{\rm th}$$ of October, 2021

General context

• Linear time-invariant (LTI) and linear parameter-varying (LPV) models:

$$\begin{cases} x_{k+1} = A(\rho_k)x_k + B(\rho_k)u_k + D(\rho_k)w_k \\ y_k = C(\rho_k)x_k + E(\rho_k)v_k \end{cases} \begin{cases} \dot{x}_t = A(\rho_t)x_t + B(\rho_t)u_t + D(\rho_t)w_t \\ y_t = C(\rho_t)x_t + E(\rho_t)v_t \end{cases}$$

with:

- \rightarrow constant ρ_k/ρ_t in the LTI case
- \rightarrow unknown but bounded (UBB) perturbation w_k/w_t and measurement noise v_k/v_t
- Fault: additive bias on the state/measurement equation, modification of A and/or B and/or C, ...
- Unknown input:
 - \rightarrow additive bias on the state equation
 - \rightarrow can be used to represent a fault signal

Table of contents

Sensor fault detection

Introduction

Proposed fault detection strategy

Proposed interval observer

Simulation results

Zonotopic observer for unknown input estimation

Interval observer for unknown input estimation

Conclusion

Table of contents

Sensor fault detection

Introduction

Proposed fault detection strategy Proposed interval observer Simulation results

Zonotopic observer for unknown input estimation

Interval observer for unknown input estimation

Conclusion

Context

- Work published in Chevet et al. (2021b)
- Continuous-time LPV system:

$$\begin{cases} \dot{x}_t = A(\rho_t)x_t + B(\rho_t)u_t + D(\rho_t)w_t \\ y_t = C(\rho_t)x_t + E(\rho_t)v_t \end{cases}$$

- → good approximation of nonlinear systems (Shamma 2012)
- \rightarrow support use of linear methods
- Sensor fault: additive bias on measured signal y_t
- Pointwise observer: risk of false positive due to uncertainties (Lamouchi et al. 2018)

Contribution

A robust interval observer for sensor fault detection for LPV systems subject to bounded perturbations

Considered model

LPV system subject to perturbations and additive sensor fault with constant output matrix:

$$\begin{cases} \dot{x}_t = A(\rho_t)x_t + B(\rho_t)u_t + D(\rho_t)w_t \\ y_t = Cx_t + f_t \end{cases}$$
 (1)

- state $x_t \in \mathbb{R}^{n_x}$, input $u_t \in \mathbb{R}^{n_u}$, output $y_t \in \mathbb{R}^{n_y}$, perturbation $w_t \in \mathbb{R}^{n_w}$, fault $f_t \in \mathbb{R}^{n_t}$, parameter $\rho_t \in \mathbb{R}^{n_\rho}$
- x_0 , w_t unknown but bounded:

$$\begin{array}{l} \rightarrow \ \underline{x}_{0} \leq x_{0} \leq \overline{x}_{0}, \ \text{with} \ \underline{x}_{0}, \overline{x}_{0} \in \mathbb{R}^{n_{x}}, \ \|\underline{x}_{0}\|, \|\overline{x}_{0}\| < \infty \\ \rightarrow \ \underline{w}_{t} \leq w_{t} \leq \overline{w}_{t}, \ \text{with} \ \underline{w}_{t}, \overline{w}_{t} \in \mathbb{R}^{n_{w}}, \ \forall t \geq 0, \ \|\underline{w}\|_{\infty} = \sup \left\{\|w_{t}\||t \geq 0\right\}, \|\overline{w}\|_{\infty} < \infty \end{array}$$

- ρ_t unknown and unmeasurable:
 - $\rightarrow M(\rho_t) = M_0 + \Delta M(\rho_t), \ \forall M \in \{A, B, D\}$ $\rightarrow \Delta M(\rho_t) \text{ unknown but bounded, i.e. } \Delta M < \Delta M(\rho_t) < \overline{\Delta M}, \ \forall M \in \{A, B, D\}$
- $\|x\|_{\infty} < \infty$, $\|u\|_{\infty} < \infty \Rightarrow \|y\|_{\infty} < \infty$ if $f_t \equiv 0$

Prerequisites on interval analysis

Positive decomposition of a matrix

Let $M \in \mathbb{R}^{n \times m}$. Then $M = M^+ - M^-$ where $M^+ = \max\{\mathbf{0}, M\}$ and $M^+, M^- \geq \mathbf{0}$.

Lemma 1 (Efimov et al. 2012)

Let $x, \underline{x}, \overline{x} \in \mathbb{R}^{n_x}$ such that $\underline{x} \leq x \leq \overline{x}$

- (i) If $M \in \mathbb{R}^{m \times n}$ is a constant matrix, then $M^+x M^-\overline{x} < Mx < M^+\overline{x} M^-x$
- (ii) If $M \leq M \leq \overline{M}$, with $M, M, \overline{M} \in \mathbb{R}^{m \times n}$, then:

$$\underline{M}^+\underline{x}^+ - \overline{M}^+\underline{x}^- - \underline{M}^-\overline{x}^+ + \overline{M}^-\overline{x}^- \leq Mx \leq \overline{M}^+\overline{x}^+ - \underline{M}^+\overline{x}^- - \overline{M}^-\underline{x}^+ + \underline{M}^-\underline{x}^-$$

Table of contents

Sensor fault detection

Introduction

Proposed fault detection strategy

Proposed interval observer Simulation results

Zonotopic observer for unknown input estimation

Interval observer for unknown input estimation

Conclusion

Pointwise strategy

- → y_t Sensor 1: potentially affected by additive sensor fault
 - Sensor 2: fault free
 - Residual signal: $r_t = C\widehat{x}_t y_t$

Pointwise strategy

- → y_t Sensor 1: potentially affected by additive sensor fault
 - Sensor 2: fault free
 - Residual signal: $r_t = C\widehat{x}_t y_t$
 - Fault detection strategy:
 - ightarrow if $\emph{r}_{\emph{t}}=0
 ightarrow$ sensor 1 is fault free
 - ightarrow if $r_t
 eq 0
 ightarrow$ sensor 1 is affected by fault

Pointwise strategy

- → y_t Sensor 1: potentially affected by additive sensor fault
 - Sensor 2: fault free
 - Residual signal: $r_t = C\widehat{x}_t y_t$
 - Fault detection strategy:
 - ightarrow if $r_t=0$ ightarrow sensor 1 is fault free
 - ightarrow if $r_t
 eq 0
 ightarrow$ sensor 1 is affected by fault

Limitation of pointwise approach

In the presence of perturbations (w_t) and system uncertainties $(\Delta M, M \in \{A, B, D\})$, $r_t \neq 0$ even if sensor 1 is fault free \Rightarrow **risk of false positive**

Interval strategy

- Sensor 1: potentially affected by additive sensor fault
- Sensor 2: fault free
- Residual bounds: $\overline{r}_t = \overline{Cx}_t y_t$ and $\underline{r}_t = \underline{Cx}_t y_t$

Interval strategy

- Sensor 1: potentially affected by additive sensor fault
- Sensor 2: fault free
- Residual bounds: $\overline{r}_t = \overline{Cx}_t y_t$ and $\underline{r}_t = \underline{Cx}_t y_t$
- Fault detection strategy:
 - ightarrow if $\mathbf{0} \in [\underline{r}_t, \overline{r}_t]$, sensor 1 is fault free or affected by undetectable low-magnitude fault
 - ightarrow if $\mathbf{0}
 ot\in [\underline{r}_t,\overline{r}_t]$ sensor 1 is affected by fault

Interval strategy

- Sensor 1: potentially affected by additive sensor fault
- Sensor 2: fault free
- Residual bounds: $\overline{r}_t = \overline{Cx}_t y_t$ and $\underline{r}_t = \underline{Cx}_t y_t$
- Fault detection strategy:
 - ightarrow if $\mathbf{0} \in [\underline{r}_t, \overline{r}_t]$, sensor 1 is fault free or affected by undetectable low-magnitude fault
 - ightarrow if $\mathbf{0} \not\in [\underline{r}_t, \overline{r}_t]$ sensor 1 is affected by fault

Main requirement of the proposed interval observer

Attenuate effect of perturbations and system uncertainties on $[\underline{r}_t, \overline{r}_t]$ to detect low-magnitude faults

Table of contents

Sensor fault detection

Introduction

Proposed fault detection strategy

Proposed interval observer

Simulation results

Zonotopic observer for unknown input estimation

Interval observer for unknown input estimation

Conclusion

State framer

Differential-algebraic system inspired by Li et al. (2019):

$$\begin{cases} \dot{\underline{\xi}}_{t} = (TA_{0} - \underline{L}C)\underline{x}_{t} + TB_{0}u_{t} + \underline{L}y_{t} + \underline{\phi}_{t} + \underline{\chi}_{t} + \underline{\omega}_{t} \\ \underline{x}_{t} = \underline{\xi}_{t} + Ny_{t} \\ \dot{\overline{\xi}}_{t} = (TA_{0} - \overline{L}C)\overline{x}_{t} + TB_{0}u_{t} + \overline{L}y_{t} + \overline{\phi}_{t} + \overline{\chi}_{t} + \overline{\omega}_{t} \\ \overline{x}_{t} = \overline{\xi}_{t} + Ny_{t} \end{cases}$$

$$(2)$$

where:

- $L.\overline{L}$ observer gains
- T, N additional degrees of freedom (Wang et al. 2018):

$$T + NC = I \implies_{\substack{\text{(Rao and Mitra 1972)}}} \left[T \quad N \right] = \left[\begin{matrix} I \\ C \end{matrix} \right]^{\dagger} + \underbrace{\Xi}_{\text{free matrix}} \left(I - \left[\begin{matrix} I \\ C \end{matrix} \right]^{\dagger} \right)$$

• $\phi_{\star}, \overline{\phi}_t, \chi_{\star}, \overline{\chi}_t, \underline{\omega}_t, \overline{\omega}_t$ obtained with Lemma 1, satisfying:

$$\phi_t \leq T\Delta A(\rho_t)x_t \leq \overline{\phi}_t$$
 $\chi_t \leq T\Delta B(\rho_t)u_t \leq \overline{\chi}_t$ $\underline{\omega}_t \leq TD(\rho_t)w_t \leq \overline{\omega}_t$

$$\chi_t \leq T\Delta B(\rho_t)u_t \leq \overline{\chi}$$

$$\omega_t \leq TD(\rho_t)w_t \leq \overline{\omega}_t$$

Residual framer

Residual signal:

$$r_t = Cx_t - y_t$$

$$\begin{cases} \underline{r}_t = C^+ \underline{x}_t - C^- \overline{x}_t - y_t \\ \overline{r}_t = C^+ \overline{x}_t - C^- \underline{x}_t - y_t \end{cases}$$

Residual framer

Residual signal:

$$r_t = Cx_t - y_t$$

Residual framer:

$$\begin{cases} \underline{r}_t = C^+ \underline{x}_t - C^- \overline{x}_t - y_t \\ \overline{r}_t = C^+ \overline{x}_t - C^- \underline{x}_t - y_t \end{cases}$$

Theorem 1

For the considered model, if $TA_0 - \underline{L}C$ and $TA_0 - \overline{L}C$ are Metzler matrices^a, then, in the fault-free case:

$$\underline{x}_t \leq x_t \leq \overline{x}_t, \ \forall t \geq 0$$

^aA matrix $M \in \mathbb{R}^{n \times n}$ is Metzler if its off-diagonal elements are nonnegative (Chebotarev et al. 2015).

Residual framer

Residual signal:

$$r_t = Cx_t - y_t$$

Residual framer:

$$\begin{cases} \underline{r}_t = C^+ \underline{x}_t - C^- \overline{x}_t - y_t \\ \overline{r}_t = C^+ \overline{x}_t - C^- \underline{x}_t - y_t \end{cases}$$

Theorem 1

For the considered model, if $TA_0 - \underline{L}C$ and $TA_0 - \overline{L}C$ are Metzler matrices^a, then, in the fault-free case:

$$x_t < x_t < \overline{x}_t, \forall t > 0$$

^aA matrix $M \in \mathbb{R}^{n \times n}$ is Metzler if its off-diagonal elements are nonnegative (Chebotarev et al. 2015).

With Theorem 1 and Lemma 1:

$$r_{t} < r_{t} < \overline{r}_{t}$$

Interval observer (Dinh et al. 2020)

The state framer (2) is an interval observer if $\overline{e}_t = \overline{x}_t - x_t$ and $\underline{e}_t = \underline{x}_t - x_t$ are bounded (ideally input-to-state stable)

Based on input-to-state stability (ISS) condition (Sontag and Wang 1995)

$$\dot{V}_t \le -\alpha V_t + \gamma \left\| \varepsilon_t \right\|^2$$

- $V_t = E_t^{\top} P E_t$ Lyapunov function $\rightarrow P \in \mathbb{R}^{2n_x \times 2n_x}, P \succ 0$ diagonal $\rightarrow E_t^{\top} = \left[\underline{e}_t^{\top} \ \overline{e}_t^{\top}\right]$
- $\gamma > 0$, $\alpha > 0$
- perturbation

$$\varepsilon_{t} = \begin{bmatrix} \underline{\chi}_{t} - T\Delta B(\rho_{t})u_{t} + \underline{\omega}_{t} - TD(\rho_{t})w_{t} \\ \overline{\chi}_{t} - T\Delta B(\rho_{t})u_{t} + \overline{\omega}_{t} - TD(\rho_{t})w_{t} \end{bmatrix}$$

Lyapunov function's time derivative

$$\begin{split} \dot{V}_{t} &= \dot{E}_{t} P E_{t} + E_{t}^{\top} P \dot{E}_{t} \\ &= E_{t}^{\top} \left(S^{\top} + S + \alpha P \right) E_{t} + \Phi_{t}^{\top} P E_{t} + E_{t}^{\top} P \Phi_{t} + E_{t}^{\top} P \varepsilon_{t} \\ &+ \varepsilon_{t}^{\top} P E_{t} - \alpha E_{t}^{\top} P E_{t} + \gamma \Phi_{t}^{\top} \Phi_{t} - \gamma \Phi_{t}^{\top} \Phi_{t} + \gamma \varepsilon_{t}^{\top} \varepsilon_{t} - \gamma \varepsilon_{t}^{\top} \varepsilon_{t} \\ &= \begin{bmatrix} E_{t} \\ \Phi_{t} \\ \varepsilon_{t} \end{bmatrix}^{\top} \begin{bmatrix} S + S^{\top} + \alpha P & P^{\top} & P^{\top} \\ P & -\gamma I_{2n_{x}} & \mathbf{0} \\ P & \mathbf{0} & -\gamma I_{2n_{x}} \end{bmatrix} \begin{bmatrix} E_{t} \\ \Phi_{t} \\ \varepsilon_{t} \end{bmatrix} - \alpha V_{t} + \gamma \left\| \varepsilon_{t} \right\|^{2} + \gamma \Phi_{t}^{\top} \Phi_{t} \end{split}$$

where

•
$$S = P(I_2 \otimes TA_0) - Y\Upsilon$$
, with $\Upsilon = I_2 \otimes C$, $Y = \text{diag}(\underline{L}, \overline{L})$

$$\bullet \ \Phi_t^\top = \left[(\underline{\phi}_t - T\Delta A(\rho_t) x_t)^\top \ (\overline{\phi}_t - T\Delta A(\rho_t) x_t)^\top \right]$$

Lyapunov function's time derivative

$$\begin{split} \dot{V}_{t} &= \dot{E}_{t} P E_{t} + E_{t}^{\top} P \dot{E}_{t} \\ &= E_{t}^{\top} \left(S^{\top} + S + \alpha P \right) E_{t} + \Phi_{t}^{\top} P E_{t} + E_{t}^{\top} P \Phi_{t} + E_{t}^{\top} P \varepsilon_{t} \\ &+ \varepsilon_{t}^{\top} P E_{t} - \alpha E_{t}^{\top} P E_{t} + \gamma \Phi_{t}^{\top} \Phi_{t} - \gamma \Phi_{t}^{\top} \Phi_{t} + \gamma \varepsilon_{t}^{\top} \varepsilon_{t} - \gamma \varepsilon_{t}^{\top} \varepsilon_{t} \\ &= \begin{bmatrix} E_{t} \\ \Phi_{t} \\ \varepsilon_{t} \end{bmatrix}^{\top} \begin{bmatrix} S + S^{\top} + \alpha P & P^{\top} & P^{\top} \\ P & -\gamma I_{2n_{x}} & \mathbf{0} \\ P & \mathbf{0} & -\gamma I_{2n_{x}} \end{bmatrix} \begin{bmatrix} E_{t} \\ \Phi_{t} \\ \varepsilon_{t} \end{bmatrix} - \alpha V_{t} + \gamma \left\| \varepsilon_{t} \right\|^{2} + \gamma \Phi_{t}^{\top} \Phi_{t} \end{split}$$

where

•
$$S = P(I_2 \otimes TA_0) - Y\Upsilon$$
, with $\Upsilon = I_2 \otimes C$, $Y = \text{diag}(\underline{L}, \overline{L})$

$$\bullet \ \Phi_t^\top = \left[(\underline{\phi}_t - T\Delta A(\rho_t) x_t)^\top \ (\overline{\phi}_t - T\Delta A(\rho_t) x_t)^\top \right]$$

Problem: presence of Φ_t , nonlinear function of state

■ Bound provided by Zheng et al. (2016):

$$\Phi_t^{\top} \Phi_t \le E_t^{\top} Q E_t + \beta$$

where:

 $\rightarrow \beta$ positive constant

$$\rightarrow \ \ Q = 6 \cdot \mathsf{diag}(\underline{I}_{\phi}^2, \overline{I}_{\phi}^2), \ \mathsf{with} \ \underline{I}_{\phi} = \left\| (T\overline{\Delta A})^- \right\| + \left\| (T\underline{\Delta A})^- \right\|, \ \overline{I}_{\phi} = \left\| (T\overline{\Delta A})^+ \right\| + \left\| (T\underline{\Delta A})^+ \right\|$$

Bound provided by Zheng et al. (2016):

$$\Phi_t^{\top} \Phi_t \le E_t^{\top} Q E_t + \beta$$

where:

 $\rightarrow \beta$ positive constant

$$\rightarrow Q = 6 \cdot \mathsf{diag}(\underline{I}_{\phi}^2, \overline{I}_{\phi}^2), \text{ with } \underline{I}_{\phi} = \|(T\overline{\Delta A})^-\| + \|(T\underline{\Delta A})^-\|, \overline{I}_{\phi} = \|(T\overline{\Delta A})^+\| + \|(T\underline{\Delta A})^+\|$$

• Majoration of Lyapunov function's time derivative:

$$\dot{V}_{t} \leq \begin{bmatrix} E_{t} \\ \Phi_{t} \\ \varepsilon_{t} \end{bmatrix}^{\top} \underbrace{\begin{bmatrix} S + S^{\top} + \alpha P + \gamma Q & P^{\top} & P^{\top} \\ P & -\gamma I_{2n_{x}} & \mathbf{0} \\ P & \mathbf{0} & -\gamma I_{2n_{x}} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} E_{t} \\ \Phi_{t} \\ \varepsilon_{t} \end{bmatrix}}_{\mathbf{A}} - \alpha V_{t} + \gamma (\|\varepsilon_{t}\|^{2} + \beta) \quad (3)$$

Bound provided by Zheng et al. (2016):

$$\Phi_t^{\top} \Phi_t \le E_t^{\top} Q E_t + \beta$$

where:

 $\rightarrow \beta$ positive constant

$$\rightarrow Q = 6 \cdot \mathsf{diag}(\underline{I}_{\phi}^2, \overline{I}_{\phi}^2), \text{ with } \underline{I}_{\phi} = \|(T\overline{\Delta A})^-\| + \|(T\underline{\Delta A})^-\|, \overline{I}_{\phi} = \|(T\overline{\Delta A})^+\| + \|(T\underline{\Delta A})^+\|$$

• Majoration of Lyapunov function's time derivative:

$$\dot{V}_{t} \leq \begin{bmatrix} E_{t} \\ \Phi_{t} \\ \varepsilon_{t} \end{bmatrix}^{\top} \underbrace{\begin{bmatrix} S + S^{\top} + \alpha P + \gamma Q & P^{\top} & P^{\top} \\ P & -\gamma I_{2n_{x}} & \mathbf{0} \\ P & \mathbf{0} & -\gamma I_{2n_{x}} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} E_{t} \\ \Phi_{t} \\ \varepsilon_{t} \end{bmatrix}}_{\mathbf{A}} - \alpha V_{t} + \gamma (\|\varepsilon_{t}\|^{2} + \beta) \quad (3)$$

In terms of linear matrix inequalities

$$E_t$$
 bounded if $\Lambda \prec 0$

Performance

• By integration, condition (3) equivalent to:

$$V_t \le V_0 e^{-\alpha t} + \gamma (\|\varepsilon\|_{\infty}^2 + \beta) \tag{4}$$

Residual framer dynamics:

$$\underbrace{\begin{bmatrix} \underline{r}_t \\ \overline{r}_t \end{bmatrix}}_{R_t} = \underbrace{\begin{bmatrix} C^+ & -C^- \\ -C^- & C^+ \end{bmatrix}}_{\mathcal{C}} E_t$$

Performance

By integration, condition (3) equivalent to:

$$V_t \le V_0 e^{-\alpha t} + \gamma (\|\varepsilon\|_{\infty}^2 + \beta) \tag{4}$$

Residual framer dynamics:

$$\underbrace{\begin{bmatrix} \underline{r}_t \\ \overline{r}_t \end{bmatrix}}_{R_t} = \underbrace{\begin{bmatrix} C^+ & -C^- \\ -C^- & C^+ \end{bmatrix}}_{\mathcal{C}} E_t$$

If:

$$\|R_t\|^2 \le \mu \left(V_t + (\mu - \gamma)(\|\varepsilon\|_{\infty}^2 + \beta)\right)$$
 (5)

with $\mu > 0$, then, from (4), $\|R_t\|^2 \le \mu V_0 e^{-\alpha t} + \mu^2 (\|\varepsilon\|_{\infty}^2 + \beta)$

Performance

By integration, condition (3) equivalent to:

$$V_t \le V_0 e^{-\alpha t} + \gamma (\|\varepsilon\|_{\infty}^2 + \beta) \tag{4}$$

Residual framer dynamics:

$$\underbrace{\begin{bmatrix} \underline{r}_t \\ \overline{r}_t \end{bmatrix}}_{R_t} = \underbrace{\begin{bmatrix} C^+ & -C^- \\ -C^- & C^+ \end{bmatrix}}_{\mathcal{C}} E_t$$

If:

$$||R_t||^2 \le \mu \left(V_t + (\mu - \gamma)(||\varepsilon||_{\infty}^2 + \beta) \right)$$
 (5)

with $\mu > 0$, then, from (4), $||R_t||^2 \le \mu V_0 e^{-\alpha t} + \mu^2 (||\varepsilon||_{\infty}^2 + \beta)$

In terms of linear matrix inequalities

(5) is true if
$$\begin{bmatrix} P & \mathbf{0} & C^{\top} \\ \mathbf{0} & \mu - \gamma & \mathbf{0} \\ C & \mathbf{0} & \mu l_{2n_v} \end{bmatrix} \succeq 0$$

Interval observer

Theorem 2

For the proposed model and given $\alpha > 0$, $\eta > 0$, if there exists $\gamma > 0$, $\mu > 0$, $P \in \mathbb{R}^{2n_x \times 2n_x}$, with $P \succ 0$ diagonal, and $Y \in \mathbb{R}^{2n_x \times 2n_y}$ such that:

then (2) is a robust interval observer for (1) with performance $||R_t||^2 \le \mu V_0 e^{-\alpha t} + \mu^2 (||\varepsilon||_\infty^2 + \beta)$

- First inequality ensures $TA_0 \underline{L}C$, $TA_0 \overline{L}C$ Metzler (Chebotarev et al. 2015)
- Gain matrices L, \overline{L} obtained as diag $(L, \overline{L}) = P^{-1}Y$

Table of contents

Sensor fault detection

Introduction

Proposed fault detection strategy

Proposed interval observer

Simulation results

Zonotopic observer for unknown input estimation

Interval observer for unknown input estimation

Conclusion

Simulation parameters

• Dampened mass-spring system (Scherer 2012):

$$\begin{cases} \dot{x}_t = \begin{bmatrix} 0 & 1 \\ 2 + \rho_t & -1 \end{bmatrix} x_t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_t + w_t \\ y_t = \begin{bmatrix} 1 & 0 \end{bmatrix} x_t + f_t \end{cases}$$

 $ightarrow x_t^{\top} = \begin{bmatrix} p_t & \dot{p}_t \end{bmatrix}$, with p_t horizontal position of the mass, $\overline{x}_0 = -\underline{x}_0 = 0.1 \cdot \mathbf{1}_2$ $ightarrow \rho_t = \sin(0.3t)$, $u_t = \operatorname{sgn}(\sin(t))$, $w_t^{\top} = 0.1 \begin{bmatrix} \cos(2t) & \sin(3t) \end{bmatrix}$, $\overline{w}_t = -\underline{w}_t = 0.1 \cdot \mathbf{1}_2$ $ightarrow \Delta B(\rho_t) = \mathbf{0}$. $\Delta D(\rho_t) = \mathbf{0}$. $D_0 = I_2$, $\Delta D(\rho_t) = \mathbf{0}$ and:

$$A_0 = egin{bmatrix} 0 & 1 \ -2 & -1 \end{bmatrix} \qquad \qquad \overline{\Delta A} = -\underline{\Delta A} = egin{bmatrix} 0 & 0 \ 1 & 0 \end{bmatrix} \qquad \qquad B_0 = egin{bmatrix} 0 \ 1 \end{bmatrix}$$

• $\underline{I}_{\phi}=\overline{I}_{\phi}=1$ with:

$$T = \begin{bmatrix} 0.6 & 0 \\ -3 & 1 \end{bmatrix} \qquad \qquad N = \begin{bmatrix} 0.4 \\ 3 \end{bmatrix}$$

ullet lpha= 0.1, $\eta=$ 10 so that $\mu=\gamma=$ 0.3384 and $\underline{L}=\overline{L}=\begin{bmatrix}10&-2\end{bmatrix}^{ op}$

Sensor fault detection

Simulation results

• Sensor fault signal:

$$f_t = \left\{egin{array}{ll} 0.1 & ext{if } 2 \leq t \leq 4 \ 0.05 \cdot (t-7) & ext{if } 7 \leq t \leq 9 \ 0 & ext{otherwise} \end{array}
ight.$$

- Fault detected between t = 2 s and t = 4 s since $\mathbf{0} \notin [\underline{r}_t, \overline{r}_t]$
- Fault appearing at $t=7\,\mathrm{s}$ not detected before $t=7.3\,\mathrm{s}$ since $\mathbf{0}\in[\underline{r}_t,\overline{r}_t]$ between $t=7\,\mathrm{s}$ and $t=7.3\,\mathrm{s}$
- No false positive between t = 0s and t = 2s,
 t = 4s and t = 7s and for t > 9s

Table of contents

Sensor fault detection

Zonotopic observer for unknown input estimation

Introduction

State augmentation

Prediction/correction algorithm

Simulation results

Interval observer for unknown input estimation

Conclusion

Table of contents

Sensor fault detection

Zonotopic observer for unknown input estimation Introduction

State augmentation
Prediction/correction algorithm
Simulation results

Interval observer for unknown input estimation

Conclusion

Context

- Work published in Chevet et al. (2022) in collaboration with Zhenhua WANG, Harbin Institute of Technology
- Discrete-time LTI system:

$$\begin{cases} x_{k+1} = Ax_k + Bu_k + Dw_k \\ y_t = Cx_k + Ev_k \end{cases}$$

- **Unknown input**: additive bias d_k on state equation
- Pointwise observer: significant uncertainty due to bounded perturbations and measurement noise

Contribution

A zonotopic Kalman filter-based interval observer for joint estimation of state and unknown inputs for LTI systems subject to bounded perturbations and unknown inputs

Considered model

LTI system subject to bounded perturbations, bounded measurement noise and unknown input:

$$\begin{cases} x_{k+1} = Ax_k + Bu_k + D_d d_k + D_w w_k \\ y_k = Cx_k + D_v v_k \end{cases}$$
 (6)

- state $x_k \in \mathbb{R}^{n_x}$, input $u_k \in \mathbb{R}^{n_u}$, output $y_k \in \mathbb{R}^{n_y}$, perturbation $w_k \in \mathbb{R}^{n_w}$, measurement noise $v_k \in \mathbb{R}^{n_v}$, unknown input $d_k \in \mathbb{R}^{n_d}$
- $x_0 \in \widehat{\mathcal{X}}_0 = \langle \widehat{x}_0, \widehat{G}_0 \rangle$ zonotope with center $\widehat{x}_0 \in \mathbb{R}^{n_x}$ and generator matrix \widehat{G}_0
- $|w_k| \leq \bar{w}_k$, with $\bar{w}_k \geq \mathbf{0}$ so that $w_k \in \mathcal{W}_k = \langle \mathbf{0}, W_k \rangle$ zonotope with center $\mathbf{0}$ and generator matrix $W_k = \operatorname{diag}(\bar{w}_k)$
- $|v_k| \leq \overline{v}_k$, with $\overline{v}_k \geq \mathbf{0}$ so that $v_k \in \mathcal{V}_k = \langle \mathbf{0}, V_k \rangle$ zonotope with center $\mathbf{0}$ and generator matrix $V_k = \text{diag}(\overline{v}_k)$

Sensor fault detection

Zonotopic observer for unknown input estimation

Introduction

State augmentation

Prediction/correction algorithm Simulation results

Interval observer for unknown input estimation

Descriptor dynamics

- Several "classical" approaches for unknown input estimation:
 - \rightarrow definition of evolution model for d_k as $d_{k+1} = A_d d_k + B_d b_k$, with b_k a noise signal, and state augmentation
 - → separation of the model into two subsystems, one free of the unknown input for state estimation, the other used for unknown input estimation (Robinson et al. 2020)

Descriptor dynamics

- Several "classical" approaches for unknown input estimation:
 - \rightarrow definition of evolution model for d_k as $d_{k+1} = A_d d_k + B_d b_k$, with b_k a noise signal, and state augmentation
 - \rightarrow separation of the model into two subsystems, one free of the unknown input for state estimation, the other used for unknown input estimation (Robinson et al. 2020)
- Considered approach: addition of d_{k-1} to state vector and rewriting of the system into descriptor form (Li et al. 2020):

$$\begin{cases} Ez_{k+1} = Fz_k + Gu_k + Dw_k \\ y_k = Hz_k + D_v v_k \end{cases}$$

 \rightarrow the matrices:

$$E = \begin{bmatrix} I & -D_d \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \qquad F = \begin{bmatrix} A & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \qquad G = \begin{bmatrix} B \\ \mathbf{0} \end{bmatrix} \qquad D = \begin{bmatrix} D_w \\ \mathbf{0} \end{bmatrix} \qquad H = \begin{bmatrix} C & \mathbf{0} \end{bmatrix}$$

Rewriting as state-space dynamics

Assumption

$$\operatorname{rank}\begin{bmatrix} I & -D_d \\ C & \mathbf{0} \end{bmatrix} = n_{\mathsf{x}} + n_d = n_{\mathsf{z}}$$

There exists T, N satisfying:

$$TE + NH = I \implies [T \quad N] = \begin{bmatrix} E \\ H \end{bmatrix}^{\dagger} + \underbrace{\Xi}_{\text{free matrix}} \left(I - \begin{bmatrix} E \\ H \end{bmatrix}^{\dagger} \right)$$

Dynamics for observer design:

$$\begin{cases} z_{k+1} = TFz_k + TGu_k + TDw_k + Ny_{k+1} - ND_v v_{k+1} \\ y_k = Hz_k + D_v v_k \end{cases}$$

Sensor fault detection

Zonotopic observer for unknown input estimation

Introduction

State augmentation

Prediction/correction algorithm

Simulation results

Interval observer for unknown input estimation

Prediction step

Theorem 3

If, at time
$$k$$
, $z_k \in \widehat{\mathcal{Z}}_k = \langle \widehat{z}_k, \widehat{Z}_k \rangle$, then $z_{k+1} \in \widetilde{\mathcal{Z}}_{k+1} = \langle \widetilde{z}_{k+1}, \widetilde{H}_{k+1} \rangle$ where
$$\widetilde{z}_{k+1} = TF\widehat{z}_k + TGu_k + Ny_{k+1}$$

$$\widetilde{Z}_{k+1} = \begin{bmatrix} TF \downarrow_q \widehat{Z}_k & TDW_k & -ND_vV_k \end{bmatrix}$$

- Obtained from results on usual operations on zonotopes
- $\downarrow_a \widehat{Z}_k$: order reduction operation (Combastel 2003)
 - \rightarrow sorting of the generators in $\widehat{Z}_k \in \mathbb{R}^{n_z \times r}$ by decreasing norm
 - \rightarrow if $r \leq q$, $\downarrow_a H = H$
 - \rightarrow otherwise, $\downarrow_q H = [H_> \ \text{diag}(|H_<|\mathbf{1})]$, with $H_>$ first q-n columns of H, $H_>$ last r-q+n columns of H

Measurement step

• At time k+1, $z_{k+1} \in \mathcal{Y}_{k+1}$

$$\mathcal{Y}_{k+1} = \bigcap_{i=1}^{n_y} \mathcal{Y}_{k+1}^i$$

with the strips^a \mathcal{Y}_{k+1}^{i}

$$\mathcal{Y}_{k+1}^{i} = \left\{ z \in \mathbb{R}^{n_z} \middle| \left| H^{i} z - y_{k+1}^{i} \right| \le (|D_v| \, \bar{v})^{i} \right\}$$

• If necessary, tightening (Bravo et al. 2006) of strip \mathcal{Y}_{k+1}^1 with respect to zonotope $\widetilde{\mathcal{Z}}_{k+1}$

^aexponent i denotes i-th component in case of vector, i-th row in case of matrix

Correction step

Assuming $\widetilde{Z}_{k+1} \in \mathbb{R}^{n_z \times r}$, denoting $\widetilde{Z}_{k+1}^0 = \widetilde{Z}_{k+1}$:

1. computation of r zonotopes $\mathcal{T}_{k+1}^j = \langle \mathcal{T}_{k+1}^j, \mathcal{T}_{k+1}^j \rangle$, $j \in \overline{1,r}$ (Chai et al. 2013), satisfying

$$\widetilde{\mathcal{Z}}_{k+1}^0 \cap \mathcal{Y}_{k+1}^1 \subseteq \mathcal{T}_{k+1}^j$$
, $\forall j \in \overline{1,r}$

2. select $\widetilde{\mathcal{Z}}_{k+1}^1 = \mathcal{T}_{k+1}^{j^*}$ with

$$j^* = \arg\min_{j \in \overline{0,r}} \operatorname{tr}\left(T_{k+1}^j T_{k+1}^j^{ op}
ight)$$

- 3. repeat steps 1 and 2 with $\widetilde{\mathcal{Z}}_{k+1}^{i-1}$, \mathcal{Y}_{k+1}^{i} for $i \in \overline{2, n_y}$ (if necessary, tightening of \mathcal{Y}_{k+1}^{i} with respect to $\widetilde{\mathcal{Z}}_{k+1}^{i-1}$)
- 4. corrected zonotope: $\widehat{\mathcal{Z}}_{k+1} = \widetilde{\mathcal{Z}}_{k+1}^{n_y}$

Sensor fault detection

Zonotopic observer for unknown input estimation

Introduction

State augmentation

Prediction/correction algorithm

Simulation results

Interval observer for unknown input estimation

Simulation parameters

LTI system

$$\begin{cases} x_{k+1} = \begin{bmatrix} 0.2 & 0.4 & 0.1 \\ 0 & 0.7 & 0.2 \\ 0 & 0 & 0.5 \end{bmatrix} x_k + \begin{bmatrix} 0.3 \\ 0.8 \\ 0.1 \end{bmatrix} u_k + \begin{bmatrix} 0.5 \\ 1 \\ 0.5 \end{bmatrix} d_k + \begin{bmatrix} 0.1 & 0 & 0 \\ 0 & 0.8 & 0 \\ 0 & 0 & 0.3 \end{bmatrix} w_k \\ y_k = \begin{bmatrix} 0.3 & 0.1 & 0 \\ 0 & 0.2 & 0.1 \end{bmatrix} x_k + \begin{bmatrix} 0.5 & 0 \\ 0 & 0.4 \end{bmatrix} v_k \end{cases}$$

- $x_0 \in \widehat{\mathcal{X}}_0 = \langle \mathbf{0}, \operatorname{diag}(0.1 \cdot \mathbf{1}) \rangle$, $w_k \in \mathcal{W} = \langle \mathbf{0}, \operatorname{diag}(0.06 \cdot \mathbf{1}) \rangle$, $v_k \in \mathcal{V} = \langle \mathbf{0}, \operatorname{diag}(0.06 \cdot \mathbf{1}) \rangle$
- $u_k = \sin(0.02\pi k), d_k = 0.3\sin(0.05k)$
- $\Xi = \mathbf{0}$ so that

$$T = \begin{bmatrix} 0.6645 & -0.2882 & -0.0882 & 0 \\ -0.5716 & 0.3905 & -0.2095 & 0 \\ -0.2787 & -0.3071 & 0.8929 & 0 \\ -0.5858 & -0.6047 & -0.2047 & 0 \end{bmatrix} \qquad N = \begin{bmatrix} 1.1185 & 0.8815 \\ 1.9052 & 2.0948 \\ 0.9289 & 1.0711 \\ 1.9526 & 2.0474 \end{bmatrix}$$

zonotope reduction order q = 20

Simulation results

upper and lower bounds:

$$\underline{z}_k = \widehat{z}_k - |\widehat{Z}_k| \mathbf{1}, \qquad \qquad \overline{z}_k = \widehat{z}_k + |\widehat{Z}_k| \mathbf{1}$$

- intervals containing each state component and unknown input
- on this example, better performance than Robinson et al. (2020) (reference [6] on figures), performance on par with Zhang et al. (2020) (reference [21] on figures)
- potential improvement of performance by tuning T, N with respect to criterion to be selected

Sensor fault detection

Zonotopic observer for unknown input estimation

Interval observer for unknown input estimation

Introduction

State augmentation

Proposed interval observer

Simulation results

Sensor fault detection

Zonotopic observer for unknown input estimation

Interval observer for unknown input estimation Introduction

State augmentation Proposed interval observer Simulation results

Context

- Work published in Chevet et al. (2021a)
- Discrete-time LPV system:

$$\begin{cases} x_{k+1} = A(\rho_k)x_k + B(\rho_k)u_k + D(\rho_k)w_k \\ y_t = C(\rho_k)x_k + E(\rho_k)v_k \end{cases}$$

- **Unknown input**: additive bias d_k on state equation
- Pointwise observer: significant uncertainty due to bounded perturbations, measurement noise and model uncertainties

Contribution

A robust interval observer for joint estimation of state and unknown inputs for LPV systems subject to bounded perturbations and unknown inputs

Considered model

LPV system subject to bounded perturbations, bounded measurement noise and unknown input:

$$\begin{cases} x_{k+1} = A(\rho_k)x_k + B(\rho_k)u_k + D_d d_k + D_w(\rho_k)w_k \\ y_k = Cx_k + D_v v_k \end{cases}$$
 (7)

- state $x_k \in \mathbb{R}^{n_x}$, input $u_k \in \mathbb{R}^{n_u}$, output $y_k \in \mathbb{R}^{n_y}$, perturbation $w_k \in \mathbb{R}^{n_w}$, measurement noise $v_k \in \mathbb{R}^{n_v}$, unknown input $d_k \in \mathbb{R}^{n_f}$, parameter $\rho_k \in \mathbb{R}^{n_\rho}$
- x_0 , w_k unknown but bounded:

$$\begin{array}{l} \rightarrow \ \underline{x}_0 \leq x_0 \leq \overline{x}_0, \ \text{with} \ \underline{x}_0, \overline{x}_0 \in \mathbb{R}^{n_x}, \ \|\underline{x}_0\|, \|\overline{x}_0\| < \infty \\ \rightarrow \ \underline{w}_k \leq w_k \leq \overline{w}_k, \ \text{with} \ \underline{w}_k, \overline{w}_k \in \mathbb{R}^{n_w}, \ \forall k \geq 0, \ \|\underline{w}\|_{\infty} = \sup \left\{\|w_k\||k \geq 0\right\}, \|\overline{w}\|_{\infty} < \infty \\ \rightarrow \ \underline{v}_k \leq v_k \leq \overline{v}_k, \ \text{with} \ \underline{v}_k, \overline{v}_k \in \mathbb{R}^{n_v}, \ \forall k \geq 0, \ \|\underline{v}\|_{\infty} = \sup \left\{\|v_k\||k \geq 0\right\}, \|\overline{v}\|_{\infty} < \infty \end{array}$$

• ρ_k unknown and unmeasurable:

$$\rightarrow M(\rho_k) = M_0 + \Delta M(\rho_k), \ \forall M \in \{A, B, D_w\}$$

$$\rightarrow \Delta M(\rho_k) \text{ unknown but bounded, i.e. } \Delta M < \Delta M(\rho_k) < \overline{\Delta M}, \ \forall M \in \{A, B, D_w\}$$

• $||x||_{\infty} < \infty$, $||u||_{\infty} < \infty$

Sensor fault detection

Zonotopic observer for unknown input estimation

Interval observer for unknown input estimation

Introduction

State augmentation

Proposed interval observer

Descriptor dynamics

Same approach as LTI case:

• addition of d_{k-1} to state vector and rewriting of the system into descriptor form (Li et al. 2020)

$$\begin{cases} Ez_{k+1} = F(\rho_k)z_k + G(\rho_k)u_k + D(\rho_k)w_k \\ y_k = Hz_k + D_v v_k \end{cases}$$

$$ightarrow \; oldsymbol{z}_k^ op = egin{bmatrix} \mathsf{x}_k^ op & d_{k-1}^ op \end{bmatrix}$$
 , $d_{-1} = oldsymbol{0}$

 \rightarrow the matrices

$$E = \begin{bmatrix} I & -D_d \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad F(\rho_k) = \begin{bmatrix} A(\rho_k) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad G(\rho_k) = \begin{bmatrix} B(\rho_k) \\ \mathbf{0} \end{bmatrix}$$
$$D(\rho_k) = \begin{bmatrix} D_w(\rho_k) \\ \mathbf{0} \end{bmatrix} \quad H = \begin{bmatrix} C & \mathbf{0} \end{bmatrix}$$

• M_0 , $\Delta M(\rho_k)$, $\forall M \in \{F, G, D\}$ obtained from $A(\rho_k)$, $B(\rho_k)$, $D_w(\rho_k)$

Rewriting as state-space dynamics

Assumption

$$\operatorname{rank}\begin{bmatrix} I & -D_d \\ C & \mathbf{0} \end{bmatrix} = n_{\mathsf{x}} + n_d = n_{\mathsf{z}}$$

There exists T, N satisfying:

$$TE + NH = I \implies (Rao \text{ and } Mitra 1972)$$
 $\begin{bmatrix} T & N \end{bmatrix} = \begin{bmatrix} E \\ H \end{bmatrix}^{\dagger} + \underbrace{\Xi}_{\text{free matrix}} \left(I - \begin{bmatrix} E \\ H \end{bmatrix} \begin{bmatrix} E \\ H \end{bmatrix}^{\dagger} \right)$

Dynamics for observer design:

$$\begin{cases} z_{k+1} = TF(\rho_k)z_k + TG(\rho_k)u_k + TD(\rho_k)w_k + Ny_{k+1} - ND_v v_{k+1} \\ y_k = Hz_k + D_v v_k \end{cases}$$

Sensor fault detection

Zonotopic observer for unknown input estimation

Interval observer for unknown input estimation

Introduction

State augmentation

Proposed interval observer

Simulation results

State framer

$$\begin{cases}
\underline{z}_{k+1} = (TF_0 - \underline{L}H)\underline{z}_k + TG_0u_k + Ny_{k+1} + \underline{L}y_k + \underline{\phi}_k + \underline{\chi}_k + \underline{\psi}_k + \underline{\omega}_k \\
\overline{z}_{k+1} = (TF_0 - \overline{L}H)\overline{z}_k + TG_0u_k + Ny_{k+1} + \overline{L}y_k + \overline{\phi}_k + \overline{\chi}_k + \overline{\psi}_k + \overline{\omega}_k
\end{cases} \tag{8}$$

- \underline{L} , \overline{L} observer gains
- $\phi_k, \overline{\phi}_k, \underline{\chi}_k, \overline{\chi}_k, \underline{\psi}_k, \overline{\psi}_k, \underline{\omega}_k, \overline{\omega}_k$ obtained with Lemma 1, satisfying

$$\underline{\phi}_{k} \leq T\Delta A(\rho_{k})x_{k} \leq \overline{\phi}_{k} \qquad \underline{\chi}_{k} \leq T\Delta B(\rho_{k})u_{k} \leq \overline{\chi}_{k}
\underline{\omega}_{k} \leq TD(\rho_{k})w_{k} \leq \overline{\omega}_{k} \qquad \underline{\psi}_{k} \leq TD_{v}v_{k} \leq \overline{\psi}_{k}$$

Theorem 4

For the considered model, if $TF_0 - \underline{L}H$ and $TF_0 - \overline{L}H$ are positive matrices^a, then

$$\underline{z}_k \leq z_k \leq \overline{z}_k, \ \forall k \geq 0$$

^aA matrix $M \in \mathbb{R}^{n \times n}$ is positive if all its elements are nonnegative.

Interval observer

Same approach and notations as in the continuous-time case

Theorem 5

For the proposed model and given $\alpha > 0$, if there exists $\gamma > 0$, $P \in \mathbb{R}^{2n_z \times 2n_z}$, with $P \succ 0$ diagonal, and $Y \in \mathbb{R}^{2n_z \times 2n_y}$ such that:

$$S \geq \mathbf{0} \tag{Cooperativity}$$

$$\begin{bmatrix} (\alpha - 1)P + \gamma Q & \mathbf{0} & \mathbf{0} & S^\top \\ \mathbf{0} & -\gamma I_{2n_z} & \mathbf{0} & P^\top \\ \mathbf{0} & \mathbf{0} & -\gamma I_{2n_z} & P^\top \\ S & P & P & -P \end{bmatrix} \leq 0 \tag{Stability}$$

$$P \succeq \alpha I_{2n_z} \tag{Performance}$$

then (8) is a robust interval observer for (7) with performance $\|E_k\|^2 \leq \frac{(1-\alpha)^k}{\alpha} V_0 + \frac{\gamma}{\alpha^2} (\|\varepsilon\|_{\infty}^2 + \beta)$

• Gain matrices L, \overline{L} obtained as diag $(L, \overline{L}) = P^{-1}Y$

Sensor fault detection

Zonotopic observer for unknown input estimation

Interval observer for unknown input estimation

Introduction

State augmentation

Proposed interval observer

Simulation results

Simulation parameters

• Matrices $D_{w0} = I_3$, $E = I_2$,

$$A_0 = 0.1 \begin{bmatrix} -6 & 5 & 4 \\ 7 & 5 & 2 \\ 1 & 5 & 3 \end{bmatrix}$$
 $B_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $D_d = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $C = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$

• $\Delta B(\rho_k) = \mathbf{0}$, $\Delta D_w(\rho_k) = \mathbf{0}$ and

$$\Delta A(\rho_k) = 0.02 \cdot \begin{bmatrix} 0.1 \sin(\omega_1 k) & \sin(\omega_2 k) & \cos(\omega_1 k) \\ \cos(\omega_2 k) & \sin(2\omega_1 k) & 0.1 \cos(2\omega_1 k) \\ \sin(\omega_1 k/2) & 0.1 \cos(\omega_2 k/2) & \sin(\omega_1 k) \cos(\omega_2 k) \end{bmatrix}$$

- $-2 \cdot \mathbf{1}_3 \le x_0 \le 5 \cdot \mathbf{1}_3$, $-0.1 \cdot \mathbf{1}_3 \le w_k \le 0.1 \cdot \mathbf{1}$, $-0.1 \cdot \mathbf{1}_2 \le v_k \le 0.1 \cdot \mathbf{1}_2$
- $u_k = -\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} y_k, d_k = 0.5 \cos(0.2k)$
- $\Xi = \mathbf{0}$ so that

$$T = \begin{bmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 0 \end{bmatrix} \qquad N = \begin{bmatrix} 0 & 0.5 \\ 1 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Simulation results

- intervals containing each state component and unknown input
- potential improvement of performance by tuning T,N with respect to criterion to be selected

Sensor fault detection

Zonotopic observer for unknown input estimation

Interval observer for unknown input estimation

General conclusion

- Interval observer-based sensor fault detection and unknown input estimation strategies for linear parameter-varying systems
 - ightarrow linear matrix inequality-based design allowing for inclusion of additional constraints
- Zonotopic Kalman filter-based unknown input estimation strategy for linear time-invariant systems
- Future work
 - \rightarrow optimal tuning of weighting matrices T,N
 - → adapt fault detection strategy to detection of actuator/input sensor faults
 - → adapt zonotopic Kalman filter to linear parameter-varying systems

References I

- Bravo, José Manuel, Teodoro Alamo, and Eduardo F. Camacho (2006). "Bounded Error Identification of Systems with Time-Varying Parameters." In: IEEE Transactions on Automatic Control 51.7, pp. 1144–1150 (cit. on p. 43).
 - Chai, Wei, Xianfang Sun, and Junfei Qiao (2013). "Set membership state estimation with improved zonotopic description of feasible solution set." In: International Journal of Robust and Nonlinear Control 23.14, pp. 1642–1654 (cit. on p. 44).
- Chebotarev, Stanislas, Denis Efimov, Tarek Raïssi, and Ali Zolghadri (2015). "Interval observers for continuous-time LPV systems with L₁/L₂ performance." In: Automatica 58, pp. 82–89 (cit. on pp. 17–19, 29).
- Chevet, Thomas, Thach Ngoc Dinh, Julien Marzat, and Tarek Raissi (2021a). "Interval estimation for discrete-time linear parameter-varying system with unknown inputs." In: Proceedings of the 60th IEEE Conference on Decision and Control (cit. on p. 50).
- Chevet, Thomas, Thach Ngoc Dinh, Julien Marzat, and Tarek Raïssi (2021b). "Robust Sensor Fault Detection for Linear Parameter-Varying Systems using Interval Observer." In:

 Proceedings of the 31st European Safety and Reliability Conference, pp. 1486–1493 (cit. on p. 5).
- Chevet, Thomas, Thach Ngoc Dinh, Julien Marzat, Zhenhua Wang, and Tarek Raïssi (2022). "Zonotopic Kalman Filter-Based Interval Estimation for Discrete-Time Linear Systems with Unknown Inputs." In: IEEE Control Systems Letters 6, pp. 806–811 (cit. on p. 35).
- Combastel, Christophe (2003). "A state bounding observer based on zonotopes." In: Proceedings of the European Control Conference, pp. 2589–2594 (cit. on p. 42).
- Dinh, Thach Ngoc, Ghassen Marouani, Tarek Raïssi, Zhenhua Wang, and Hassani Messaoud (2020). "Optimal interval observers for discrete-time linear switched systems." In:

 International Journal of Control 93.11, pp. 2613–2621 (cit. on p. 20).
- Efimov, Denis, Leonid Fridman, Tarek Raïssi, Ali Zolghadri, and Ramatou Seydou (2012). "Interval estimation for LPV systems applying high order sliding mode techniques." In: Automatica 48.9, pp. 2365–2371 (cit. on p. 7).
- Lamouchi, Rihab, Tarek Raissi, Messaoud Amairi, and Mohamed Aoun (2018). "Interval observer framework for fault-tolerant control of linear parameter-varying systems." In:

 International Journal of Control 91.3, pp. 524–533 (cit. on p. 5).
- Li, Jitao, Tarek Raïssi, Zhenhua Wang, Xinsheng Wang, and Yi Shen (2020). "Interval estimation of state and unknown input for linear discrete-time systems." In: Journal of the Franklin Institute 357.11. pp. 9045–9062 (cit. on pp. 38. 39. 53).
- Li, Jitao, Zhenhua Wang, Wenhan Zhang, Tarek Raïssi, and Yi Shen (2019). "Interval observer design for continuous-time linear parameter-varying systems." In: Systems & Control Letters 134, p. 104541 (cit. on p. 16).
- Rao, Calyampudi Radhakrishna and Sujit Kumar Mitra (1972). "Generalized inverse of a matrix and its applications." In: Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1, pp. 601–620 (cit. on pp. 16, 40, 54).

References II

- Robinson, Elinirina Iréna, Julien Marzat, and Tarek Raissi (2020). "Prognosis of uncertain linear time-invariant discrete systems using unknown input interval observer." In:

 International Journal of Control 93 (11), pp. 2690–2706 (cit. on pp. 38, 39, 47).
- Scherer, Carsten W. (2012). "A tutorial on the control of linear parameter-varying systems." In: Proceedings of the American Control Conference (cit. on p. 31).
- Shamma, Jeff S. (2012). "An overview of LPV systems." In: Control of Linear Parameter Varying Systems with Applications. Ed. by Javad Mohammadpour and Carsten W. Scherer. Springer, pp. 3–26 (cit. on p. 5).
- Sontag, Eduardo Daniel and Yuan Wang (1995). "On characterizations of the input-to-state stability property." In: Systems & Control Letters 24, pp. 351-359 (cit. on p. 20).
- Wang, Zhenhua, Cheng-Chew Lim, and Yi Shen (2018). "Interval observer design for uncertain discrete-time linear systems." In: Systems & Control Letters 116, pp. 41–46 (cit. on p. 16).
- Zhang, Wenhan, Zhenhua Wang, Tarek Raïssi, Ye Wang, and Yi Shen (2020). "A state augmentation approach to interval fault estimation for descriptor systems." In: European Journal of Control 51, pp. 19–29 (cit. on p. 47).
- Zheng, Gang, Denis Efimov, and Wilfrid Perruquetti (2016). "Design of interval observer for a class of uncertain unobservable nonlinear systems." In: Automatica 63, pp. 167–174 (cit. on pp. 23–25).