Interval Observers for Fault Detection and Estimation

Thomas CHEVET'?  Thach Ngoc DiNe?>  Julien MARzAT'  Tarek Raissr®
IDTIS, ONERA, Université Paris-Saclay, 91123 Palaiseau, France

2Cedric, Conservatoire National des Arts et Métiers, Paris, France

International Online Seminar on Interval Methods in Control Engineering
8th of October, 2021

. réseau francilien
e ‘ n a m en sciences informatiques

¥ iledeFrance

ONERA

THE FRENCH AEROSPACE LAB



General context

» Linear time-invariant (LTI) and linear parameter-varying (LPV) models:

X1 = Alpic)xic + B(pic)uk + D(pic) wic Xe = A(pe)xe + B(pe)ue + D(pe)we
Yk = Clpi)xk + E(pic)vi ye = Clpe)xe + E(pe)ve
with:
— constant px/ps in the LTI case
— unknown but bounded (UBB) perturbation wi/w; and measurement noise v/ v;

= Fault: additive bias on the state/measurement equation, modification of A and/or B and/or
C, ..

= Unknown input:

— additive bias on the state equation
— can be used to represent a fault signal
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Sensor fault detection Introduction
Context

= Work published in Chevet et al. (2021b)
= Continuous-time LPV system:

x¢ = A(pt)xe + B(pt)ur + D(pt)ws
vt = C(pe)xt + E(pe)ve

— good approximation of nonlinear systems (Shamma 2012)
— support use of linear methods

= Sensor fault: additive bias on measured signal y;

= Pointwise observer: risk of false positive due to uncertainties (Lamouchi et al. 2018)

Contribution

A robust interval observer for sensor fault detection for LPV systems subject to bounded
perturbations

T. Chevet Interval Methods in Control Engineering 10-08-2021



Introduction
Considered model

LPV system subject to perturbations and additive sensor fault with constant output matrix:
x¢ = A(pt)xe + B(pe)ur + D(pr)wy (1)
ye=Cxe + fe

= state x, € R™, input u; € R™, output y; € R™, perturbation w; € R™, fault f, € R™,
parameter p; € R
= xg, w; unknown but bounded:
— Xo < X0 < Xo, with x4, X0 € R™, ||x,]] , [[Xol| < o0
— w, < we < Wy, with w,, W € R™, Vt >0, [|wl|, = sup {[|we]l[t >0}, [W], < oo
= p: unknown and unmeasurable:
— M(p:) = Mo+ AM(p:), YM € {A, B, D} L
— AM(p:) unknown but bounded, i.e. AM < AM(p:) < AM, VM € {A, B, D}
s x|l < 00, lull <00 = lyll, <0 if =0

T. Chevet Interval Methods in Control Engineering 10-08-2021



Sensor fault detection Introduction

Prerequisites on interval analysis

Positive decomposition of a matrix
Let M € R™™. Then M = M+t — M~ where M* = max{0, M} and M*, M~ > 0.

Lemma 1 (Efimov et al. 2012)
Let x,x,x € R™ such that x < x <X
(i) If M € R™" s a constant matrix, then MTx — M~x < Mx < Mtx — M~ x
(i) If M < M < M, with M, M, M € R™*", then:

T. Chevet Interval Methods in Control Engineering 10-08-2021
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Sensor fault detection

Proposed fault detection strategy

Pointwise strategy

f,

Xt Sensor 1 » ¥+ = Sensor 1: potentially affected by

additive sensor fault

= Sensor 2: fault free

» Residual signal: r; = Cx; — y;

Y
L» Pointwise | Xt | Residual | rt
observer generator
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Sensor fault detection Proposed fault detection strategy

Pointwise strategy

fe
Xt —% Sensor 1 » ¥+ = Sensor 1: potentially affected by

additive sensor fault

= Sensor 2: fault free

» Residual signal: r; = Cx; — y;
» Fault detection strategy:
Y

~ — if r =0 — sensor 1 is fault free

—| Pointwise | Xt | Residual | re — if r, £ 0 — sensor 1 is affected by
observer generator fault
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Sensor fault detection Proposed fault detection strategy

Pointwise strategy

fe
Xt —% Sensor 1 » ¥+ = Sensor 1: potentially affected by

additive sensor fault

= Sensor 2: fault free

» Residual signal: r; = Cx; — y;
» Fault detection strategy:

Y — if r =0 — sensor 1 is fault free

—| Pointwise | Xt | Residual | re — if r, £ 0 — sensor 1 is affected by
observer generator fault

Limitation of pointwise approach

In the presence of perturbations (w;) and system uncertainties (AM, M € {A, B, D}), r; # 0 even
if sensor 1 is fault free = risk of false positive

T. Chevet Interval Methods in Control Engineering 10-08-2021 9/52



Sensor fault detection Proposed fault detection strategy
Interval strategy

fe = Sensor 1: potentially affected by

Xt Sensor 1 > Vi additive sensor fault

= Sensor 2: fault free

= Residual bounds: 7; = Cx; — y; and

Y
r
— Interval Residual [+
observer —— generator —

7

A\

A\
A\
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Sensor fault detection Proposed fault detection strategy

Interval strategy

fe = Sensor 1: potentially affected by
Xt Sensor 1 > Vi additive sensor fault

= Sensor 2: fault free

= Residual bounds: 7; = Cx; — y; and

= Fault detection strategy:

X, Y ry — if 0 € [r,, T¢], sensor 1 is fault free or
| Interval > Residual | affected by undetectable
> observer ———*| generator — low-magnitude fault
Xt e — if 0 & [r,, 7:] sensor 1 is affected by
fault
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Sensor fault detection Proposed fault detection strategy

Interval strategy

fe = Sensor 1: potentially affected by
Xt Sensor 1 > Vi additive sensor fault

= Sensor 2: fault free

= Residual bounds: 7; = Cx; — y; and

= Fault detection strategy:

Y

X, _ ry — if 0 € [r,, T¢], sensor 1 is fault free or
| Interval > Residual | affected by undetectable
> observer ———*| generator — low-magnitude fault
Xt e — if 0 & [r,, 7:] sensor 1 is affected by
fault

Main requirement of the proposed interval observer

Attenuate effect of perturbations and system uncertainties on [r,, 7] to detect low-magnitude
faults

T. Chevet Interval Methods in Control Engineering 10-08-2021 10/52
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Sensor fault detection Proposed interval observer
State framer

Differential-algebraic system inspired by Li et al. (2019):

£, =(TAo— LO)x, + TBout + Lyt + ¢, + X, + w,
Xt :§t+N}’t (2)
€, = (TAo — LO)X, + TBou + Ly + 6, + X, + @

Xt :gt"‘NYt

where:
= L, L observer gains
» T, N additional degrees of freedom (Wang et al. 2018):

f i
/ — AN
T+NC=1 = T N|= = (/-
" ooy M H i~ ( H H )
Mitra 1972) free matrix
" Qt,at,gt,yt,gt,wt obtained with Lemma 1, satisfying:
?t < TAA(pt)Xt < at X < TAB(Pt)Ut < X: w, < TD(pt)Wt < Wi

T. Chevet Interval Methods in Control Engineering 10-08-2021 12/52



Sensor fault detection Proposed interval observer
Residual framer

Residual signal:
re = Cxt — yt

Residual framer:
ry = C+)_<t —C Xt —y:

Ty = C+>_<t - C_Kt — Yt
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Sensor fault detection Proposed interval observer
Residual framer

Residual signal:
re = Cxt — yt

Residual framer:
ry = C+)_<t —C Xt —y:

Ty = C+>_<t - C_Kt — Yt

For the considered model, if TAg — LC and TAy — LC are Metzler matrices?, then, in the fault-free
case:

KtSXtSYt,VtEO

2A matrix M € R"*" is Metzler if its off-diagonal elements are nonnegative (Chebotarev et al. 2015).

T. Chevet Interval Methods in Control Engineering 10-08-2021 13/52



Sensor fault detection Proposed interval observer
Residual framer

Residual signal:
re = Cxt — yt

Residual framer:
ry = C+)_<t —C Xt —y:

Ty = C+>_<t - C_Kt — Yt

For the considered model, if TAg — LC and TAy — LC are Metzler matrices?, then, in the fault-free
case:

KtSXtSYt,VtEO

2A matrix M € R"*" is Metzler if its off-diagonal elements are nonnegative (Chebotarev et al. 2015).

With Theorem 1 and Lemma 1:

T. Chevet Interval Methods in Control Engineering 10-08-2021



Rropased interval jobserver
Stability

Interval observer (Dinh et al. 2020)

The state framer (2) is an interval observer if € = X; — x; and e, = x, — x; are bounded (ideally
input-to-state stable)

Based on input-to-state stability (ISS) condition (Sontag and Wang 1995)
Ve < —aVi+y ||€t||2

= V, = E, PE, Lyapunov function
— P e R¥™>2 p v ( diagonal
— E' =[¢] &]
= v>0,a>0
= perturbation
_x, - TAB(p:)uy +w, — TD(pe)wy

g = |& —
‘ Xt — TAB(pt)us +@e — TD(pe)we

T. Chevet Interval Methods in Control Engineering 10-08-2021 14/52



Stability
Lyapunov function’s time derivative
V. = E.PE, + E' PE,

=E (ST +S+aP)E + /] PE, +E/ P, + E Pe,
+ ] PE, — aE, PE, +4®] &, — 4®] &, + el ey — ye/l ey

E1'[S+ST+aP PT PT ] [E
= |o, P —h, 0 | —aVi+ 7 llee]? + 1P, &,
€t P 0 —Yhap, &t

where
n S=PLRTA) - YT, withT=hLC, Y= diag(L,Z)

o o = [(6, ~ TAA(Ix)T (3~ TAA(p)x)T

T. Chevet Interval Methods in Control Engineering 10-08-2021



Stability
Lyapunov function’s time derivative
V. = E.PE, + E' PE,

=E (ST +S+aP)E + /] PE, +E/ P, + E Pe,
+ ] PE, — aE, PE, +4®] &, — 4®] &, + el ey — ye/l ey

E1'[S+ST+aP PT PT ] [E
= |o, P —h, 0 | —aVi+ 7 llee]? + 1P, &,
€t P 0 —Yhap, &t

where
n S=PLRTA) - YT, withT=hLC, Y= diag(L,Z)

o o = [(6, ~ TAA(Ix)T (3~ TAA(p)x)T

Problem: presence of ®;, nonlinear function of state )

T. Chevet Interval Methods in Control Engineering 10-08-2021 15/52



Rropased interval jobserver
Stability

= Bound provided by Zheng et al. (2016):

where:
— [ positive constant
— Q=6-diag(2,1;), with I, = |[(TAA) || + [[(TAA) || Ts = [[(TAAY || + || (TAA)"||
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Rropased interval jobserver
Stability

= Bound provided by Zheng et al. (2016):

where:
— [ positive constant
— Q=6-diag(2,1;), with I, = |[(TAA) || + [[(TAA) || Ts = [[(TAAY || + || (TAA)"||
= Majoration of Lyapunov function's time derivative:

o [E]T[S+ST+aP+4@ PT PT ] [E .
Ve < | & P —7hn, 0 S| —aVi+A(lled]” +8)  (3)
Et P 0 —’ylgnx Et
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Rropased interval jobserver
Stability

= Bound provided by Zheng et al. (2016):

where:
— [ positive constant
— Q=6-diag(2,1;), with I, = |[(TAA) || + [[(TAA) || Ts = [[(TAAY || + || (TAA)"||
= Majoration of Lyapunov function's time derivative:

o [E]T[S+ST+aP+4@ PT PT ] [E .
Ve < | & P —7hn, 0 S| —aVi+A(lled]” +8)  (3)
Et P 0 —’YIQnX Et

In terms of linear matrix inequalities
E; bounded if A <0

T. Chevet Interval Methods in Control Engineering 10-08-2021 16/52




Sensor fault detection Proposed interval observer
Performance

= By integration, condition (3) equivalent to:

Ve < Voe™ +(|le]l%, + B) (4)

) _ ct -C
~ —
R: C

= Residual framer dynamics:
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Sensor fault detection Proposed interval observer
Performance

= By integration, condition (3) equivalent to:

Ve < Voe™ +(|le]l%, + B) (4)

) _ ct -C
~ —
R: C

= Residual framer dynamics:

IR < g (Ve (= (el + 8)) (5)

with o > 0, then, from (4), ||Re|* < puVoe ot + ,u2(||s||io +0)
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Sensor fault detection Proposed interval observer
Performance

= By integration, condition (3) equivalent to:

Ve < Voe™ +(|le]l%, + B) (4)

) _ ct -C
~ —
R: C

= Residual framer dynamics:

IR < g (Ve (= (el + 8)) (5)

with o > 0, then, from (4), ||Re|* < puVoe ot + ,u2(||s||io +0)

In terms of linear matrix inequalities

P 0 cr
(5)is trueif |0 p—v 0 [ =0
C 0 ,LLIQ,,Y
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Proposed interval observer
Interval observer

For the proposed model and given a > 0, 7 > 0, if there exists v > 0, x> 0, P € R®> X2 with P > 0
diagonal, and Y € R?>™**2% sych that:

S+nP>0 (Cooperativity)
S+ST+aP+4Q PT PT
P —7hn, 0 =<0 (Stability)
P 0 —’y/z,,x
P 0 '
0 u—v 0 (>0 (Performance)
C 0 /l,lzny

then (2) is a robust interval observer for (1) with performance ||R:||” < puVoe™** + p(|le|>, + B)

= First inequality ensures TAg — LC, TAg — LC Metzler (Chebotarev et al. 2015)
= Gain matrices L, L obtained as diag(L,L) = P71Y

T. Chevet Interval Methods in Control Engineering 10-08-2021 18/52
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Sensor fault detection Simulation results

Simulation parameters
» Dampened mass-spring system (Scherer 2012):

Xt = 0 1 Xt + 0 us + w,
t — 2+pt _1 t 1 t t
yYr = [1 0] Xt + i
- X = [pt pt], with p; horizontal position of the mass, Xo = —x, = 0.1- 1>

— pr = sin(0.3t), ur = sgn(sin(t)), wy =0.1 [cos(2t) sin(3t)], We=-w,=01-1;
= AB(p:) =0, AD(p:) =0, Dy = b, AD(p;) = 0 and:

Cee[h ] meme[] ac]

v [, =1y =1 with:
06 0 0.4
=[5 v 3]

» a=01n=10sothat p=v=0.3384and L=L=[10 -2

T. Chevet Interval Methods in Control Engineering 10-08-2021



Sensor fault detection Simulation results

Simulation results

= Sensor fault signal:

0.1 % 0.1 if2<t<4

M/ﬁ f=4005-(t—-7) if7<t<9
0 [ —

E 0 otherwise
S —01f = Fault detected between t = 2s and t = 4 s since

— Proposed residual bounds 0 [r,, 74
0 2 4 6 8 110 = Fault appe'aring at t :_75 not detected before
; t =7.3s since 0 € [r,, ] between t = 7s and
(s) t=73s
= No false positive between t = 0s and t = 25,
t=4sand t=7sand for t > 9s

T. Chevet Interval Methods in Control Engineering 10-08-2021 21/52
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Zonotopic observer for unknown input estimation Introduction
Context

= Work published in Chevet et al. (2022) in collaboration with Zhenhua WANG, Harbin
Institute of Technology

= Discrete-time LTI system:

X1 = Axx + Bug + Dwy
ve = Cx + Evg

= Unknown input: additive bias di on state equation

= Pointwise observer: significant uncertainty due to bounded perturbations and measurement
noise

Contribution

A zonotopic Kalman filter-based interval observer for joint estimation of state and unknown inputs
for LTI systems subject to bounded perturbations and unknown inputs

T. Chevet Interval Methods in Control Engineering 10-08-2021 24/52



Zonotopic observer for unknown input estimation Introduction
Considered model

LTI system subject to bounded perturbations, bounded measurement noise and unknown input:

Xk+1 = Axk + Buy + Dydy + Dy, wy (6)
Yk = Cx + Dy vy

= state xx € R™, input ux € R™, output yx € R, perturbation wy, € R™, measurement noise
vk € R™, unknown input d, € R™

" Xxp € Xy = (X, Go) zonotope with center Xy € R™ and generator matrix Gy

n | wi| < Wy, with w, > 0 so that we € Wi = (0, W) zonotope with center 0 and generator
matrix W = diag(wy)

w |vi| < W, with ¥ > 0 so that v, € Vx = (0, Vi) zonotope with center 0 and generator
matrix Vj = diag(vk)

T. Chevet Interval Methods in Control Engineering 10-08-2021 25/52
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Zonotopic observer for unknown input estimation State augmentation
Descriptor dynamics

= Several “classical” approaches for unknown input estimation:
— definition of evolution model for dix as dik+1 = Aadk + Babk, with by a noise signal, and state
augmentation
— separation of the model into two subsystems, one free of the unknown input for state
estimation, the other used for unknown input estimation (Robinson et al. 2020)
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Zonotopic observer for unknown input estimation State augmentation
Descriptor dynamics

= Several “classical” approaches for unknown input estimation:
— definition of evolution model for dix as dik+1 = Aadk + Babk, with by a noise signal, and state
augmentation
— separation of the model into two subsystems, one free of the unknown input for state
estimation, the other used for unknown input estimation (Robinson et al. 2020)

= Considered approach: addition of dix_; to state vector and rewriting of the system into
descriptor form (Li et al. 2020):
Ezk+1 = Fz, + Guy + Dwy
Yk = Hzi + D, vy

-zl =[x d ], d1=0

— 2o € 20 = (Z\(;r = [S(\OT 0] ,20 = diag(ao,0)>
— the matrices:

k8] By el ) e

T. Chevet Interval Methods in Control Engineering 10-08-2021 27/52



State augmentation
Rewriting as state-space dynamics

There exists T, N satisfying:

T T

E — E||E

= — T N| = = _

=t o, MM =[] 2 (' i M)
Mitra 1972) free matrix

Dynamics for observer design:

Zkr1 = TFzx + TGug + TDwy + Nyg1 — ND, vt
Yk = Hzi + Dy v

T. Chevet Interval Methods in Control Engineering 10-08-2021 28/52
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Zonotopic observer for unknown input estimation Prediction/correction algorithm

Prediction step

If, at time k, z, € é\k = <Ek7 2/(), then Zk4+1 € §k+1 = <Ek+1, ﬁk+1> where

Zki1 = TFZx + TGug + Nygyq
Zos = |TF 1g Z TDWe —ND,Vi]

= Obtained from results on usual operations on zonotopes
= g Zy: order reduction operation (Combastel 2003)

— sorting of the generators in 2( € R™*" by decreasing norm
— ifr<qg lgH=H

— otherwise, J4 H = [H> diag(|H<| 1)], with H first g — n columns of H, Hs last r —q+n
columns of H

T. Chevet

Interval Methods in Control Engineering 10-08-2021
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Zonotopic observer for unknown input estimation Prediction/correction algorithm
1
Measurement step Yk tightened !

» Attime k+1, zxy1 € Viaa

ny
Viy1 = ﬂ Vi1

i=1

with the strips? y/i+1

y;;+1 = {Z € R"™

|H'z = yi| < (1D,17)' _
Zkt1
= |f necessary, tightening (Bravo et al. 2006) of

strip y;ﬂ with respect to zonotope Zj1

Zexponent i denotes i-th component in case of vector, i-th row in case of matrix

T. Chevet Interval Methods in Control Engineering 10-08-2021 31/52



Zonotopic observer for unknown input estimation Prediction/correction algorithm
Correction step

Assuming 2k+1 € R"™*" denoting ZN,?H = ZkJr]_:

1. computation of r zonotopes 77<j+1 = <7'/l<'+17 Tl{+1>' j € 1,r (Chai et al. 2013), satisfying
22+1 NYi C 77(j+1, vjielr

2. select Z},; = T/,, with

-
Jj* = arg min tr (Tk+1 TkJr1 )
J€0r

3. repeat steps 1 and 2 with Zkﬂ, Vi1 for i € 2,n, (if necessary, tightening of Y, with
respect to Zk+1)

= =n
4. corrected zonotope: Zyi1 = Zka

T. Chevet Interval Methods in Control Engineering 10-08-2021 32/52
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Zonotopic observer for unknown input estimation Simulation results

Simulation parameters

s LTI system
02 04 0.1 0.3 0.5 01 0
xee1= |0 07 02 xc+ 08| uk+ |1 |de+ |0 08
0 0 05 0.1 0.5 0 0
_fo3 01 0] o5 0],
k=10 02 01/ T |0 04"

0.3

= xp € Xp = (0,diag(0.1- 1)), w, € W = (0,diag(0.06 - 1)), v € V = (0, diag(0.06 - 1))

= u, =sin(0.027k), dk = 0.3sin(0.05k)

= = =0 so that
0.6645 —0.2882 —0.0882 0 1.1185
T_ —0.5716 0.3905 —0.2095 0 N 1.9052
| —-0.2787 —0.3071 0.8929 O ~10.9289
—0.5858 —0.6047 —0.2047 0 1.9526

= zonotope reduction order g = 20

T. Chevet Interval Methods in Control Engineering

0.8815
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1.0711
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notopic observer for unknown input estimation

Simulation results

T1

T2

— State x;
--- Bounds from [6]

- Proposed bounds
-~ Bounds from [21]

50

100

150 200

— State x5

50

100

150 200

— State =3

100
k (sample)

150 200

Simulation results

\/\’f\/ Aol . \r-v\,m,\/\vwn,

—1 — Unknown mpul s Proposed bounds
9 --- Bounds from [6] --- Bounds from [21]
0 50 100 150
k (sample)
= upper and lower bounds:
z, =2k — | Zk1, Zk = 2k + | Zk|1

= intervals containing each state component and unknown input

= on this example, better performance than Robinson et al. (2020)
(reference [6] on figures), performance on par with Zhang et al.
(2020) (reference [21] on figures)

= potential improvement of performance by tuning T, N with respect
to criterion to be selected

Interval Methods in Control Engineeri 10-08-2021 35/52
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Interval observer for unknown input estimation Introduction
Context

= Work published in Chevet et al. (2021a)
= Discrete-time LPV system:

Xkr1 = Alpk)xk + B(px)uk + D(pi)wi
vt = Clpi)xk + E(pr) vk

= Unknown input: additive bias dx on state equation

= Pointwise observer: significant uncertainty due to bounded perturbations, measurement
noise and model uncertainties

Contribution

A robust interval observer for joint estimation of state and unknown inputs for LPV systems
subject to bounded perturbations and unknown inputs

T. Chevet Interval Methods in Control Engineering 10-08-2021



Interval observer for unknown input estimation Introduction
Considered model

LPV system subject to bounded perturbations, bounded measurement noise and unknown input:

;
Yk = Cxi + Dy vy @

{Xk+1 = A(pr)xk + B(pk)uk + Dgdi + Dy (pi) wic

= state xx € R™, input u, € R™, output y, € R", perturbation wy € R", measurement noise

vk € R™, unknown input dx € R"", parameter p, € R™
= Xy, W, unknown but bounded:

— Xo < X0 < Xo, with x,X0 € R™, ||x,]], [[Xol| < o0

= w, < wx < Wy, with w,,w, € R™, Yk >0, ||w|| = sup{|lwk|||k >0}, |W|, < oo

— v, < v <V, with v, v € R™, Yk >0, ||v||, = sup {||wl]||k >0}, V]|, < o0
= py unknown and unmeasurable:

— M(pk) = My + AM(pk), VM e {A, B, DW}

— AM(pk) unknown but bounded, i.e. AM < AM(px) < AM, VM € {A, B, Dy}

" xlloe <00, flullyg <00

T. Chevet Interval Methods in Control Engineering 10-08-2021



Interval observer for unknown input estimation State augmentation
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Descriptor dynamics
Same approach as LTI case:

= addition of dix_; to state vector and rewriting of the system into descriptor form (Li et al.
2020)

Ezip1 = F(pk)zx + G(pk)uk + D(px)wk
Yk = sz + vak

-zl = [ka d,j_l], d1=0

— the matrices
= LI) _é)d] F(pk) = [A(gk) g] G(px) = {B(gk)}

D(px) = [Dwg’k)} H=[C 0]

= My, AM(pk), VM e {F, G, D} obtained from A(pk), B(pk), Dw(pk)
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State augmentation
Rewriting as state-space dynamics

There exists T, N satisfying:

T T

E — E||E

= — T N| = = _

=t o, MM =[] 2 (' i M)
Mitra 1972) free matrix

Dynamics for observer design:

Zk41 = TF(pk)Zk + TG(pk)Uk -+ TD(pk)Wk -+ Nyk+1 — NDVVk+1
Yk = Hzi + Dy v
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Interval observer for unknown input estimation Proposed interval observer
State framer

Zy1 = (TFo — LH)zy + TGouy + Nyrr1 + Lyk + ¢, + x, + ¥, + @i ®)
Zit1 = (TFo — LH)Zk + TGouk + Nykt1 + Lyk + ¢y + Xy + ¥ + Dk

n L, Z_observer gains
] Qk,gbk,xk,yk,gk,wk,gk,wk obtained with Lemma 1, satisfying

¢, < TAA(pk )Xk < ¢y X, = TAB(pr)ux < X
w, < TD(pr)wk < Wi ¥, < TDyv < Uy

Theorem 4

For the considered model, if TFy — LH and TFy — LH are positive matrices?, then

2, <z <Zk, Yk >0

2A matrix M € R" " is positive if all its elements are nonnegative.
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Interval observer for unknown input estimation Proposed interval observer

Interval observer

Same approach and notations as in the continuous-time case

For the proposed model and given o > 0, if there exists v > 0, P € R?"*2"% with P > 0 diagonal, and
Y € R?™=*2" such that:

5>0 (Cooperativity)

(a—1P+~Q 0 0 ST
g _70'2"1 _Wobnz Ii: <0 (Stability)

) P P —P
P = abn, (Performance)

then (8) is a robust interval observer for (7) with performance ||E||*> < % Vo + 3’}2(”5”; + B)

= Gain matrices L, L obtained as diag(L,L) = P7'Y
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Interval observer for unknown input estimation Simulation results

Simulation parameters

» Matrices Do =I5, E = b,

-6 5 4 0 0 01 1
Ay =017 5 2 By= |0 Dy = |1 C:{1 0 0]
1 5 3 1 0
= AB(pk) =0, AD,,(pr) =0 and
0.1sin(wsk) sin(wzk) cos(wi k)
AA(pk) =0.02- | cos(wak) sin(2w1 k) 0.1 cos(2w1 k)

sin(w1k/2) 0.1cos(wak/2) sin(wik) cos(wak)

. —2~13§X0§5-13,—0.1-13§Wk§0.1'1,—0.1~12§Vk§0.1-12
= uy=—1[0 1 0]y dk=0.5cos(0.2k)

= = =0 so that
05 0 0 0 0 05
0 0 -1 0 1 0
r= 0 0 1 0 N = 0 O
0 -1 -1 0 1 0
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Simulation results

Interval observer for unknown input estimation

Simulation results
— Unknown input d

— Proposed bounds

— First state
— Proposed bounds 2

0 0a

[1

— Second sute 0 100 26(] 300 400

/| TSNS — Proposed bounds
k (sample)

= intervals containing each state component and unknown input

ke = potential improvement of performance by tuning T,N with respect

to criterion to be selected

1z
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Conclusion

General conclusion

= Interval observer-based sensor fault detection and unknown input estimation strategies for
linear parameter-varying systems
— linear matrix inequality-based design allowing for inclusion of additional constraints
= Zonotopic Kalman filter-based unknown input estimation strategy for linear time-invariant
systems
= Future work

— optimal tuning of weighting matrices T,N
— adapt fault detection strategy to detection of actuator/input sensor faults
— adapt zonotopic Kalman filter to linear parameter-varying systems
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