Interval Observer Design for Uncertain Discrete-Time Linear Switched Systems with Unknown Inputs

MAROUANI Ghassen

International Online Seminar on Interval Methods in Control Engineering
November 12, 2021

Outline

(1) Introduction

- Switched systems
- Interval Observers
(2) Problem Formulation
(3) Classical approach
- Step 1: Unknown input decoupling
- Step 2: Interval observer design for the unknown input-free subsystem
- Interval state estimation in the original coordinates
- Unknown input estimation
(4) New approach based on T-N-L method
(5) Numerical Example
(6) Conclusion

Introduction

A switched systems represent a class of hybrid systems:

- a finite number of continuous subsystems (modes).
- a logical rule operates switching between subsystems.

Physical systems with switching features can be regarded as switched systems:

- power and electronics systems
- automated highway systems
- flight control systems
- network control systems...

Introduction

A switched systems represent a class of hybrid systems:

- a finite number of continuous subsystems (modes).
- a logical rule operates switching between subsystems.

Physical systems with switching features can be regarded as switched systems:

- power and electronics systems
- automated highway systems
- flight control systems
- network control systems,...
- The problem of state vector estimation is very challenging and can be encountered in many applications.
- Several cases are encountred:
- Models without uncertainties.
- Models with uncertain parameters.
- Uncertain parameters and unknown inputs
- Possible Solutions
- Adaptive approaches
- Robust approaches
- Set-membership estimation / Interval observers.
- The problem of state vector estimation is very challenging and can be encountered in many applications.
- Several cases are encountred:
- Models without uncertainties.
- Models with uncertain parameters.
- Uncertain parameters and unknown inputs
- Possible Solutions
- Adaptive approaches
- Robust approaches
- Set-membership estimation / Interval observers.
- The problem of state vector estimation is very challenging and can be encountered in many applications.
- Several cases are encountred:
- Models without uncertainties.
- Models with uncertain parameters.
- Uncertain parameters and unknown inputs
- Possible Solutions
- Adaptive approaches
- Robust approaches
- Set-membership estimation / Interval observers.

Given a system described by:

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x, u) \tag{1}\\
y(t)=h(x)
\end{array}\right.
$$

Definition

The dynamical system

$$
\left\{\begin{array}{l}
\dot{z}(t)=\alpha(z, y, u) \tag{2}\\
{\left[\underline{x}^{T}, \bar{x}^{T}\right]^{T}}
\end{array}\right.
$$

is an interval observer for (2) if:

$$
\begin{equation*}
\underline{x}(0) \leq x(0) \leq \bar{x}(0) \Rightarrow-\infty<\underline{x}(t) \leq x(t) \leq \bar{x}(t)<+\infty ; \forall t \geq 0 . \tag{3}
\end{equation*}
$$

An interval observer:

- compute the set of admissible values.
- provide the lower and upper bounds of state vector.

Two conditions have to be verfied:

- Inclusion: $\underline{x}(t) \leq x(t) \leq \bar{x}(t), \forall t_{0} \geq 0$
- Stability of estimation errors: $\underline{e}=x-\underline{x}$ and $\bar{e}=\bar{x}-x$

Consider the following discrete-time linear switched system:

$$
\begin{cases}x(k+1) & =A_{\sigma_{k}} x(k)+B_{\sigma_{k}} u(k)+D_{\sigma_{k}} d(k)+\omega(k), \tag{4}\\ y_{m}(k) & =C_{\sigma_{k}} x(k)+v(k), \sigma_{k} \in \overline{1, N}, N \in \mathbb{N}\end{cases}
$$

Consider the following discrete-time linear switched system:

$$
\begin{cases}x(k+1) & =A_{\sigma_{k}} x(k)+B_{\sigma_{k}} u(k)+D_{\sigma_{k}} d(k)+\omega(k), \tag{4}\\ y_{m}(k) & =C_{\sigma_{k}} x(k)+v(k), \sigma_{k} \in \overline{1, N}, N \in \mathbb{N}\end{cases}
$$

- $x \in \mathbb{R}^{n}$: the state.
- $u \in \mathbb{R}^{m}$: the input.
- $y_{m} \in \mathbb{R}^{p}$: the output.
- $\omega \in \mathbb{R}^{n}$: the disturbances.
- $v \in \mathbb{R}^{p}$: the measurement noises.
- $d \in \mathbb{R}^{l}$: the unknown input.

Consider the following discrete-time linear switched system:

$$
\begin{cases}x(k+1) & =A_{\sigma_{k}} x(k)+B_{\sigma_{k}} u(k)+D_{\sigma_{k}} d(k)+\omega(k), \tag{4}\\ y_{m}(k) & =C_{\sigma_{k}} x(k)+v(k), \sigma_{k} \in \overline{1, N}, N \in \mathbb{N}\end{cases}
$$

- $x \in \mathbb{R}^{n}$: the state.
- $u \in \mathbb{R}^{m}$: the input.
- $y_{m} \in \mathbb{R}^{p}$: the output.
- $\omega \in \mathbb{R}^{n}$: the disturbances.
- $v \in \mathbb{R}^{p}$: the measurement noises.
- $d \in \mathbb{R}^{\prime}$: the unknown input.

The objective is to design an interval observer:
(1) A potential candidates to cope with such uncertainties.
(2) a joint estimation of the state and the unknown input.
(3) The given observer have to verify that:

$$
\begin{align*}
\underline{x}(k) & \leq x(k) \\
\underline{d}(k) & \leq d(k) \tag{5}
\end{align*}
$$

Two approaches are introduced:

- Classical approach based on decoupling the unknown input from the state vector:
- Two changes of coordinates are used
- Estimate the bounds of the state vector \times
- Computing two bounds for the unknown input vector d
- New approach based on T-N-L method allowing the estimation of the state vector and the unknown input simultaneously.
- new structure providing more design degrees of freedom
- relaxes the design conditions.

Two approaches are introduced:

- Classical approach based on decoupling the unknown input from the state vector:
- Two changes of coordinates are used.
- Estimate the bounds of the state vector x.
- Computing two bounds for the unknown input vector d .
- New approach based on T-N-L method allowing the estimation of the state vector and the unknown input simultaneously.
- new structure providing more design degrees of freedom - relaxes the design conditions.

Two approaches are introduced:

- Classical approach based on decoupling the unknown input from the state vector:
- Two changes of coordinates are used.
- Estimate the bounds of the state vector x.
- Computing two bounds for the unknown input vector d .
- New approach based on T-N-L method allowing the estimation of the state vector and the unknown input simultaneously.
- new structure providing more design degrees of freedom.
- relaxes the design conditions.

Some assumptions are introduced
(1) The state vector $x \in \mathbb{R}^{n}$ is bounded, i.e. $x \in \mathcal{L}_{\infty}^{n}$.
(2) The switching signal $\sigma(k)$ is assumed to be known.
(3) The state disturbance and the noise measurement are assumed to be bounded such that

$$
\begin{align*}
& -\bar{\omega} \leq \omega(k) \leq \bar{\omega}, \quad \forall k \geq 0 \tag{6}\\
& -\bar{v} \leq v(k) \leq \bar{v}, \quad \forall k \geq 0 \tag{7}
\end{align*}
$$

with $\bar{\omega} \in \mathbb{R}^{n}$ and $\bar{v} \in \mathbb{R}^{p}$.
(9) The matrices $C_{\sigma_{k}}$ and $D_{\sigma_{k}}$ verify: $\operatorname{rank}\left(C_{\sigma_{k}} D_{\sigma_{k}}\right)=\operatorname{rank}\left(D_{\sigma_{k}}\right)=I, \forall \sigma_{k} \in \overline{1, N}, I \leq p$

The stability is based on the following Lemma:

Lemma 1

Consider the discrete-time switched system $x(k+1)=f_{\sigma(k)}(\xi(k), \eta(k)), \sigma(k) \in \overline{1, N}$. Suppose that there exists \mathcal{C}^{1} functions $V_{\sigma(k)}: \mathbb{R}^{n} \longrightarrow \mathbb{R}_{+}$, class \mathcal{K}_{∞} functions $\alpha_{1}, \alpha_{2}, \gamma$ and constants $0<\alpha<1, \mu \geq 1$ such that $\forall \xi \in \mathbb{R}^{n}, \eta \in \mathbb{R}^{\prime}$, we have

$$
\begin{gather*}
\alpha_{1}(\|\xi\|) \leq V_{\sigma(k)}(\xi) \leq \alpha_{2}(\|\xi\|), \tag{8}\\
V_{\sigma(k)}(\xi(k+1))-V_{\sigma(k)}(\xi(k)) \leq-\alpha V_{\sigma(k)}(\xi(k))+\varrho(\|\eta\|), \tag{9}
\end{gather*}
$$

and for each switching instant $k_{l}, I=0,12,3, \ldots$,

$$
\begin{equation*}
V_{\sigma\left(k_{l}\right)}(\xi(k)) \leq \mu V_{\sigma\left(k_{l}-1\right)}(\xi(k)) . \tag{10}
\end{equation*}
$$

Then the system $x(k+1)=f_{\sigma(k)}(\xi(k), \eta(k)), \sigma(k) \in \overline{1, N}$ is Input-to-State Stable (ISS) for any switching signal satisfying the average dwell time.

Given the change of coordinates $z=T_{\sigma_{k}} x$, the system (4) becomes

$$
\left\{\begin{array}{l}
z(k+1)=\tilde{A}_{\sigma_{k}} z(k)+\tilde{B}_{\sigma_{k}} u(k)+\tilde{D}_{\sigma_{k}} d(k)+\tilde{w}_{\sigma_{k}}(k), \tag{11}\\
y_{m}(k)=\tilde{C}_{\sigma_{k}} z(k)+v(k), \forall \sigma_{k} \in \overline{1, N}, N \in \mathbb{N},
\end{array}\right.
$$

where

$$
T_{\sigma_{k}}=\left[\begin{array}{c}
D_{\sigma_{k}}^{*} \tag{12}\\
\left(C_{\sigma_{k}} D_{\sigma_{k}}\right)^{\oplus} C_{\sigma_{k}}
\end{array}\right]
$$

$D_{\sigma_{k}}^{*} D_{\sigma_{k}}=0$ and $\left(C_{\sigma_{k}} D_{\sigma_{k}}\right)^{\oplus}$ is the left pseudo-inverse of $\left(C_{\sigma_{k}} D_{\sigma_{k}}\right)$.

$$
\begin{gathered}
\tilde{A}_{\sigma_{k}}=T_{\sigma_{k}} A_{\sigma_{k}} T_{\sigma_{k}}^{-1}=\left[\begin{array}{cc}
\tilde{A}_{1 \sigma_{k}} & \tilde{A}_{2 \sigma_{k}} \\
\tilde{A}_{3 \sigma_{k}} & \tilde{A}_{4 \sigma_{k}}
\end{array}\right], \tilde{C}_{\sigma_{k}}=C_{\sigma_{k}} T_{\sigma_{k}}^{-1}, \\
\tilde{B}_{\sigma_{k}}=T_{\sigma_{k}} B_{\sigma_{k}}=\left[\begin{array}{c}
\tilde{B}_{1 \sigma_{k}} \\
\tilde{B}_{2 \sigma_{k}}
\end{array}\right], \quad \tilde{D}_{\sigma_{k}}=T_{\sigma_{k}} D_{\sigma_{k}}=\left[\begin{array}{l}
0 \\
l_{1}
\end{array}\right],
\end{gathered}
$$

$$
\tilde{\omega}_{\sigma_{k}}(k)=T_{\sigma_{k}} \omega(k)=\left[\begin{array}{c}
\tilde{\omega}_{1 \sigma_{k}}(k), \\
\tilde{\omega}_{2 \sigma_{k}}
\end{array}\right], z(k)=\left[\begin{array}{c}
z_{1}(k) \\
z_{2}(k)
\end{array}\right], z_{1} \in \mathbb{R}^{n-1}, z_{2} \in \mathbb{R}^{\prime} .
$$

We get two subsystems:

$$
\left\{\begin{array}{l}
z_{1}(k+1)=\tilde{A}_{1 \sigma_{k}} z_{1}(k)+\tilde{A}_{2 \sigma_{k}} z_{2}(k)+\tilde{B}_{1 \sigma_{k}} u(k)+\tilde{\omega}_{1 \sigma_{k}}(k) \\
z_{2}(k+1)=\tilde{A}_{3 \sigma_{k}} z_{1}(k)+\tilde{A}_{4 k_{k}} z_{2}(k)+\tilde{B}_{2 \sigma_{k}} u(k)+d(k)+\tilde{\omega}_{2 \sigma_{k}}(k) \\
\tilde{y}_{1}(k)=\check{C}_{\sigma_{k}} z_{1}(k)+U_{1 \sigma_{k}} v(k) \\
\tilde{y}_{2}(k)=z_{2}(k)+U_{2 \sigma_{k}} v(k) \tag{13}
\end{array}\right.
$$

$$
\tilde{\omega}_{\sigma_{k}}(k)=T_{\sigma_{k}} \omega(k)=\left[\begin{array}{c}
\tilde{\omega}_{1 \sigma_{k}}(k), \\
\tilde{\omega}_{2 \sigma_{k}}
\end{array}\right], z(k)=\left[\begin{array}{c}
z_{1}(k) \\
z_{2}(k)
\end{array}\right], z_{1} \in \mathbb{R}^{n-1}, z_{2} \in \mathbb{R}^{\prime} .
$$

We get two subsystems:

$$
\left\{\begin{array}{l}
z_{1}(k+1)=\tilde{A}_{1 \sigma_{k}} z_{1}(k)+\tilde{A}_{2 \sigma_{k}} z_{2}(k)+\tilde{B}_{1 \sigma_{k}} u(k)+\tilde{\omega}_{1 \sigma_{k}}(k) \tag{13}\\
\tilde{y}_{1}(k)=\check{C}_{\sigma_{k}} z_{1}(k)+U_{1 \sigma_{k}} v(k)
\end{array},\right.
$$

\Rightarrow Unknown input-free subsystem

$$
\tilde{\omega}_{\sigma_{k}}(k)=T_{\sigma_{k}} \omega(k)=\left[\begin{array}{c}
\tilde{\omega}_{1 \sigma_{k}}(k), \\
\tilde{\omega}_{2 \sigma_{k}}
\end{array}\right], z(k)=\left[\begin{array}{c}
z_{1}(k) \\
z_{2}(k)
\end{array}\right], z_{1} \in \mathbb{R}^{n-1}, z_{2} \in \mathbb{R}^{\prime} .
$$

We get two subsystems:

$$
\left\{\begin{array}{l}
z_{2}(k+1)=\tilde{A}_{3 \sigma_{k}} z_{1}(k)+\tilde{A}_{4 \sigma_{k}} z_{2}(k)+\tilde{B}_{2 \sigma_{k}} u(k)+\mathbf{d}(\mathbf{k})+\tilde{\omega}_{2 \sigma_{k}}(k) \tag{13}\\
\tilde{y}_{2}(k)=z_{2}(k)+U_{2 \sigma_{k}} v(k)
\end{array}\right.
$$

\Rightarrow Unknown input-depending subsystem

$$
\tilde{y}(k)=U_{\sigma_{k}} y_{m}(k), \quad \tilde{y}=\left[\begin{array}{l}
\tilde{y}_{1} \tag{14}\\
\tilde{y}_{2}
\end{array}\right]
$$

$$
U_{\sigma_{k}}=\left[\begin{array}{c}
U_{1 \sigma_{k}} \\
U_{2 \sigma_{k}}
\end{array}\right]=\left[\begin{array}{c}
\left(C_{\sigma_{k}} D_{\sigma_{k}}\right)^{*} \\
\left(C_{\sigma_{k}} D_{\sigma_{k}}\right)^{\oplus}
\end{array}\right], \check{C}_{\sigma_{k}}=\left(C_{\sigma_{k}} D_{\sigma_{k}}\right)^{*} C_{\sigma_{k}}\left(D_{\sigma_{k}}^{*}\right)^{\oplus}
$$

The unknown free-susbsystem can be written:

$$
\left\{\begin{align*}
z_{1}(k+1) & =\tilde{A}_{1 \sigma_{k}} z_{1}(k)+\tilde{A}_{2 \sigma_{k}} \tilde{y}_{2}(k)+\tilde{B}_{1 \sigma_{k}} u(k)+\tilde{\omega}_{1 \sigma_{k}}(k) \\
& -\tilde{A}_{2 \sigma_{k}} U_{2 \sigma_{k}} v(k) \\
\tilde{y}_{1}(k) & =\tilde{C}_{\sigma_{k}} z_{1}(k)+U_{1 \sigma_{k}} v(k) . \tag{16}
\end{align*}\right.
$$

The unknown free-susbsystem can be written:

$$
\left\{\begin{align*}
z_{1}(k+1) & =\tilde{A}_{1 \sigma_{k}} z_{1}(k)+\tilde{A}_{2 \sigma_{k}} \tilde{y}_{2}(k)+\tilde{B}_{1 \sigma_{k}} u(k)+\tilde{\omega}_{1 \sigma_{k}}(k) \tag{16}\\
& -\tilde{A}_{2 \sigma_{k}} U_{2 \sigma_{k}} v(k) \\
\tilde{y}_{1}(k) & =\check{C}_{\sigma_{k}} z_{1}(k)+U_{1 \sigma_{k}} v(k) .
\end{align*}\right.
$$

To design an interval observer for (16), two properties have to be satisfied:

- Framer property which is the notion of providing intervals in which the state variables stay.
- Stability property which cares the length of estimated intervals
\Rightarrow The observer gains $L_{\sigma_{k}}$ need to be chosen such that:
(1) $\tilde{A}_{1 \sigma_{k}}-L_{\sigma_{k}} \check{C}_{\sigma_{k}}$ are nonnegative.
(2) The estimation errors are stable.

The solution:

- A nonsingular transformation $\beta_{1}=P z_{1}$ such that the matrices $P\left(\tilde{A}_{1 \sigma_{k}}-L_{\sigma_{k}} \check{C}_{\sigma_{k}}\right) P^{-1}$ are nonnegative.
- The existence of a common transformation P for all $\sigma_{k} \in \overline{1, N}$ is not obvious, even impossible.
- The design, in the original coordinates of two conventional observers.

$$
\left\{\begin{align*}
\hat{z}_{1}^{+}(k+1) & =\left(\tilde{A}_{1 \sigma_{k}}-L_{\sigma_{k}} \check{C}_{\sigma_{k}}\right) \hat{z}_{1}^{+}(k)+\tilde{B}_{1 \sigma_{k}} u(k)+P_{\sigma_{k}}^{-1}\left|P_{\sigma_{k}}\right| \tilde{\tilde{\omega}}_{1 \sigma_{k}} \\
& +P_{\sigma_{k}}^{-1}\left[P_{\sigma_{k}}^{+}\left(\tilde{A}_{2 \sigma_{k}}^{+} \overline{\tilde{y}}_{2}-\tilde{A}_{2 \sigma_{k}}^{-} \tilde{y}_{2}\right)-P_{\sigma_{k}}^{-}\left(\tilde{A}_{2 \sigma_{k}}^{+} \tilde{y}_{2}-\tilde{A}_{2 \sigma_{k}}^{-} \overline{\tilde{y}}_{2}\right)\right] \\
& +P_{\sigma_{k}}^{-1}\left|P_{\sigma_{k}}\right|\left|\tilde{A}_{2 \sigma_{k}} U_{2 \sigma_{k}}\right| \bar{v}+L_{\sigma_{k}} \tilde{y}_{1}+P_{\sigma_{k}}^{-1}\left|P_{\sigma_{k}}\right|\left|L_{\sigma_{k}} U_{1 \sigma_{k}}\right| \bar{v}, \\
\hat{z}_{1}^{-}(k+1) & =\left(\tilde{A}_{1 \sigma_{k}}-L_{\sigma_{k}} \check{C}_{\sigma_{k}}\right) \hat{z}_{1}^{-}(k)+\tilde{B}_{1 \sigma_{k}} u(k)+P_{\sigma_{k}}^{-1}\left(-\left|P_{\sigma_{k}}\right|\right) \overline{\tilde{\omega}}_{1 \sigma_{k}} \\
& +P_{\sigma_{k}}^{-1}\left[P_{\sigma_{k}}^{+}\left(\tilde{A}_{2 \sigma_{k}}^{+} \tilde{y}_{2}-\tilde{A}_{2 \sigma_{k}}^{-} \overline{\tilde{y}}_{2}\right)-P_{\sigma_{k}}^{-}\left(\tilde{A}_{2 \sigma_{k}}^{+} \overline{\tilde{y}}_{2}-\tilde{A}_{2 \sigma_{k}}^{-} \tilde{y}_{2}\right)\right] \\
& -P_{\sigma_{k}}^{-1}\left|P_{\sigma_{k}}\right|\left|\tilde{A}_{2 \sigma_{k}} U_{2 \sigma_{k}}\right| \bar{v}+L_{\sigma_{k}} \tilde{y}_{1}-P_{\sigma_{k}}^{-1}\left|P_{\sigma_{k}}\right|\left|L_{\sigma_{k}} U_{1 \sigma_{k}}\right| \bar{v}, \tag{16}
\end{align*}\right.
$$

Step 2: Interval observer design for the unknown input-free subsystem

- Framer design

Theorem 1

Let Assumptions 1-4 be satisfied and $\underline{x}(0) \leq x(0) \leq \bar{x}(0)$. Given the nonsingular transformation matrices $P_{\sigma_{k}} \in \mathbb{R}^{(n-l) \times(n-l)}$ such that $P_{\sigma_{k}}\left(\tilde{A}_{1 \sigma_{k}}-L_{\sigma_{k}} \check{C}_{\sigma_{k}}\right) P_{\sigma_{k}}^{-1}$ are nonnegative and consider the suitably selected initial conditions

$$
\left\{\begin{array}{l}
\hat{z}_{1}^{+}(0)=P_{\sigma_{k}}^{-1}\left(P_{\sigma_{k}}^{+} \bar{z}_{1}(0)-P_{\sigma_{k}}^{-} \underline{z}_{1}(0)\right), \tag{17}\\
\hat{z}_{1}^{-}(0)=P_{\sigma_{k}}^{-1}\left(P_{\sigma_{k}}^{+} z_{1}(0)-P_{\sigma_{k}}^{-} \bar{z}_{1}(0)\right),
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
\bar{z}(0)=T_{\sigma_{0}}^{+} \bar{x}(0)-T_{\sigma_{0}}^{-} \underline{x}(0), \tag{18}\\
\underline{z}(0)=T_{\sigma_{0}}^{+} \underline{x}(0)-T_{\sigma_{0}}^{-} \bar{x}(0),
\end{array}\right.
$$

Step 2: Interval observer design for the unknown input-free subsystem

Theorem 1

Then, the bounds of the substate vector z_{1} given by

$$
\left\{\begin{array}{l}
\bar{z}_{1}(k)=\left(P_{\sigma_{k}}^{-1}\right)^{+} P_{\sigma_{k}} \hat{z}_{1}^{+}(k)-\left(P_{\sigma_{k}}^{-1}\right)-P_{\sigma_{k}} \hat{z}_{1}^{-}(k) \tag{19}\\
\underline{z}_{1}(k)=\left(P_{\sigma_{k}}^{-1}\right)^{+} P_{\sigma_{k}} \hat{z}_{1}^{-}(k)-\left(P_{\sigma_{k}}^{-1}\right)-P_{\sigma_{k}} \hat{z}_{1}^{+}(k)
\end{array}\right.
$$

satisfy

$$
\begin{equation*}
\underline{z}_{1}(k) \leq z_{1}(k) \leq \bar{z}_{1}(k), \forall k \geq 0 . \tag{20}
\end{equation*}
$$

Step 2: Interval observer design for the unknown input-free subsystem

- Stability conditions

Theorem 2

Assume that the conditions of Theorem 1 are satisfied. If there exist positive scalars $\alpha_{2}>\alpha_{1}>0, \gamma>0,0<\alpha<1$ and $0 \leq \beta \leq 1$, matrices $W_{\sigma_{l}}, S_{\sigma_{l}}$ and diagonal positive definite matrices $M_{\sigma_{k}}$ such that for $\sigma_{k, l} \in \overline{1, N}$ with $\sigma_{k} \neq \sigma_{l}$,

$$
\begin{gather*}
{\left[\begin{array}{ccc}
-(1-\alpha) M_{\sigma_{k}} & 0 & \tilde{A}_{1 \sigma_{k}}^{T} M_{\sigma_{k}}-\check{C}_{\sigma_{k}}^{T} S_{\sigma_{k}} \\
0 & M_{\sigma_{k}} \\
M_{\sigma_{k}} \tilde{A}_{1 \sigma_{k}}-S_{\sigma_{k}} \check{C}_{\sigma_{k}} & -\gamma^{2} I_{\sigma_{k}} & -M_{\sigma_{k}}
\end{array}\right] \preceq 0} \tag{21}\\
\alpha_{1} I_{n} \leq M_{\sigma_{k}} \leq \alpha_{2} I_{n} \tag{22}
\end{gather*}
$$

Step 2: Interval observer design for the unknown input-free subsystem

Theorem 2

$$
\left[\begin{array}{ll}
W_{\sigma_{l}} & M_{\sigma_{k}} \tag{23}\\
M_{\sigma_{k}} & M_{\sigma_{k}}
\end{array}\right] \succeq 0
$$

then, the lower and upper observer errors are ISS and the framer (17)-(19) is an interval observer. In addition, the gains $L_{\sigma_{k}}$, given by $L_{\sigma_{k}}=M_{\sigma_{k}}^{-1} S_{\sigma_{k}}$

Based on the estimation of the state in the coordinates z_{1}, the bounds \underline{x} and \bar{x} are deduced in the following theorem.

Theorem 3

Let the assumptions of Theorem 1 and Theorem 2 hold, then

$$
\begin{equation*}
\underline{x}(k) \leq x(k) \leq \bar{x}(k), \forall k \geq 0 \tag{24}
\end{equation*}
$$

Theorem 3

where:

$$
\begin{align*}
& \left(\bar{x}_{1}=T_{1 \sigma_{k}}^{+} \bar{z}_{1}-T_{1 \sigma_{k}}^{-} \underline{z}_{1}+T_{2 \sigma_{k}}^{+} \overline{\tilde{y}}_{2}-T_{2 \sigma_{k}}^{-} \underline{\underline{y}}_{2}\right. \\
& +\left(-T_{2 \sigma_{k}} U_{2 \sigma_{k}}\right)^{+} \bar{v}+\left(-T_{2 \sigma_{k}} U_{2 \sigma_{k}}\right)^{-} \bar{v} \\
& \underline{x}_{1}=T_{1 \sigma_{k}}^{+} \underline{z}_{1}-T_{1 \sigma_{k}}^{1} \bar{z}_{1}+T_{2 \sigma_{k}}^{+} \underline{\underline{y}}_{2}-T_{2 \sigma_{k}}^{-} \overline{\tilde{y}}_{2} \\
& -\left(-T_{2 \sigma_{k}} U_{2 \sigma_{k}}\right)^{+} \bar{v}-\left(-T_{2 \sigma_{k}} U_{2 \sigma_{k}}\right)^{-\bar{v}} \\
& \bar{x}_{2}=T_{3 \sigma_{k}}^{+} \bar{z}_{1}-T_{3 \sigma_{k}}^{1} \underline{z}_{1}+T_{4 \sigma_{k}}^{+} \overline{\tilde{y}}_{2}-T_{4 \sigma_{k}}^{-} \underline{\underline{y}}_{2} \tag{25}\\
& +\left(-T_{4 \sigma_{k}} U_{2 \sigma_{k}}\right)^{+} \bar{v}+\left(-T_{4 \sigma_{k}} U_{2 \sigma_{k}}\right)^{-} \bar{v} \\
& \underline{x}_{2}=T_{3 \sigma_{k}}^{+} \underline{z}_{1}-T_{3 \sigma_{k}}^{1} \bar{z}_{1}+T_{4 \sigma_{k}}^{+} \tilde{\underline{y}}_{2}-T_{4 \sigma_{k}}^{-} \overline{\tilde{y}}_{2} \\
& -\left(-T_{4 \sigma_{k}} U_{2 \sigma_{k}}\right)^{+} \bar{v}-\left(-T_{4 \sigma_{k}} U_{2 \sigma_{k}}\right)^{-\bar{v}} \\
& \underline{x}(k)=\left[\begin{array}{l}
\underline{x}_{1} \\
\underline{x}_{2}
\end{array}\right], \bar{x}(k)=\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right] .
\end{align*}
$$

$$
\begin{equation*}
z_{2}(k+1)=U_{2 \sigma_{k}} y_{m}(k+1)-U_{2 \sigma_{k}} v(k+1) \tag{26}
\end{equation*}
$$

$$
\begin{align*}
& \quad z_{2}(k+1)=U_{2 \sigma_{k}} y_{m}(k+1)-U_{2 \sigma_{k}} v(k+1) \tag{26}\\
& d(k)=z_{2}(k+1)-\tilde{A}_{3 \sigma_{k}} z_{1}(k)-\tilde{A}_{4 \sigma_{k}} z_{2}(k)-\tilde{B}_{2 \sigma_{k}} u(k)-\tilde{\omega}_{2 \sigma_{k}}(k) \\
& =U_{2 \sigma_{k}}\left[y_{m}(k+1)-v(k+1)\right]-\tilde{A}_{3 \sigma_{k}} z_{1}(k)-A_{4 \sigma_{k}} U_{2 \sigma_{k}} y_{m} \\
& + \tag{27}
\end{align*}
$$

The upper and lower bounds of d :

$$
\left\{\begin{align*}
\bar{d}(k) & =\left[U_{2 \sigma_{k}}^{+} \bar{\chi}(k+1)-U_{2 \sigma_{k}}^{-} \underline{\chi}(k+1)\right]-\tilde{B}_{2 \sigma_{k}} u(k) \tag{28}\\
& +\left[\left(-\tilde{A}_{3 \sigma_{k}}\right)^{+} \bar{z}_{1}(k)-\left(-\tilde{A}_{3 \sigma_{k}}\right)^{-} \underline{z}_{1}(k)\right]+\tilde{\omega}_{2 \sigma_{k}} \\
& +\left[\left(-A_{4 \sigma_{k}} U_{2 \sigma_{k}}\right)^{+} \bar{y}_{m}(k)-\left(-A_{4 \sigma_{k}} U_{2 \sigma_{k}}\right)^{-} \underline{y}_{m}(k)\right]+\left|A_{4 \sigma_{k}} U_{2 \sigma_{k}}\right| \bar{v}, \\
\underline{d}(k) & =\left[U_{2 \sigma_{\tilde{\sigma}} \chi}^{+}(k+1)-U_{2 \sigma_{k}}^{-} \bar{\chi}(k+1)\right]-\tilde{B}_{2 \sigma_{k}} u(k) \\
& \left.+\left[\left(-\tilde{A}_{3 \sigma_{k}}\right)\right)_{1}(k)-\left(-\tilde{A}_{3 \sigma_{k}}\right)^{-} \bar{z}_{1}(k)\right]-\overline{\tilde{\omega}}_{2 \sigma_{k}} \\
& +\left[\left(-A_{4 \sigma_{k}} U_{2 \sigma_{k}}\right)^{+} \underline{y}_{m}(k)-\left(-A_{4 \sigma_{k}} U_{2 \sigma_{k}}\right)^{-\bar{y}_{m}}(k)\right]-\left|A_{4 \sigma_{k}} U_{2 \sigma_{k}}\right| \bar{v},
\end{align*}\right.
$$

with $\chi(k)=y_{m}(k)-v(k)$. Where $\bar{\chi}(k)$ and $\underline{\chi}(k)$ are respectively upper and lower bound of $\chi(k)$

$$
\left\{\begin{array}{l}
\bar{\chi}(k)=y_{m}(k)+\bar{v} \tag{29}\\
\underline{\chi}(k)=y_{m}(k)-\bar{v}
\end{array} .\right.
$$

By augmenting unknown input $d(k)$ as a part of the state vector $\tilde{x}(k+1)$, the structural conditions for decoupling unknown input often used in litterature are relaxed.

By augmenting unknown input $d(k)$ as a part of the state vector $\tilde{x}(k+1)$, the structural conditions for decoupling unknown input often used in litterature are relaxed.

$$
\begin{cases}E_{\sigma_{k}} \tilde{x}(k+1) & =\tilde{A}_{\sigma_{k}} \tilde{x}(k)+\tilde{B}_{\sigma_{k}} u(k)+\tilde{I} \omega(k), \tag{30}\\ y(k) & =\tilde{C}_{\sigma_{k}} \tilde{x}(k)+v(k),\end{cases}
$$

By augmenting unknown input $d(k)$ as a part of the state vector $\tilde{x}(k+1)$, the structural conditions for decoupling unknown input often used in litterature are relaxed.

$$
\begin{align*}
& \begin{cases}E_{\sigma_{k}} \tilde{x}(k+1) & =\tilde{A}_{\sigma_{k}} \tilde{x}(k)+\tilde{B}_{\sigma_{k}} u(k)+\tilde{I} \omega(k), \\
y(k) & =\tilde{C}_{\sigma_{k}} \tilde{x}(k)+v(k),\end{cases} \tag{30}\\
& \tilde{x}(k+1)=\left[\begin{array}{c}
x(k+1) \\
d(k)
\end{array}\right], \tilde{x}(0)=\left[\begin{array}{c}
x(0) \\
0
\end{array}\right], \\
& E_{\sigma_{k}}=\left[\begin{array}{cc}
I & -D_{\sigma_{k}} \\
0 & 0
\end{array}\right], \tilde{I}=\left[\begin{array}{l}
I \\
0
\end{array}\right] \\
& \tilde{A}_{\sigma_{k}}=\left[\begin{array}{cc}
A_{\sigma_{k}} & 0 \\
0 & 0
\end{array}\right], \tilde{B}_{\sigma_{k}}=\left[\begin{array}{c}
B_{\sigma_{k}} \\
0
\end{array}\right], \tilde{C}_{\sigma_{k}}=\left[\begin{array}{ll}
C_{\sigma_{k}} & 0
\end{array}\right] .
\end{align*}
$$

The goal: The interval observer of the augmented state $\tilde{x}(k+1)$:

- $\overline{\tilde{x}}(k)$
such that

The following framer candidate is considered

$\Delta=\left|T_{\sigma_{k}} \tilde{I}\right| \bar{\omega}+\left|L_{\sigma_{k}} \bar{v}+\left|N_{\sigma_{k}}\right| \bar{v}\right.$

The goal: The interval observer of the augmented state $\tilde{x}(k+1)$:

- $\underline{\tilde{x}}(k)$
- $\overline{\tilde{x}}(k)$

The following framer candidate is considered

$\Delta=\left|T_{\sigma_{k}} \tilde{\mid}\right| \bar{\omega}+\left|L_{\sigma_{k}}\right| \bar{v}+\left|N_{\sigma_{k}}\right| \bar{v}$

The goal: The interval observer of the augmented state $\tilde{x}(k+1)$:

- $\underline{\tilde{x}}(k)$
- $\overline{\tilde{x}}(k)$
such that

$$
\begin{equation*}
\underline{\tilde{x}}(k) \leq \tilde{x}(k) \leq \overline{\tilde{x}}(k), \forall k \in \mathbb{Z}_{+}, \tag{31}
\end{equation*}
$$

The following framer candidate is considered

$\Delta=\left|T_{\sigma_{k}} \tilde{I} \bar{\omega}+\left|L_{\sigma_{k}}\right| \bar{v}+\left|N_{\sigma_{k}}\right| \bar{v}\right.$

The goal: The interval observer of the augmented state $\tilde{x}(k+1)$:

- $\underline{\tilde{x}}(k)$
- $\overline{\tilde{x}}(k)$
such that

$$
\begin{equation*}
\underline{\underline{\tilde{x}}}(k) \leq \tilde{x}(k) \leq \overline{\tilde{x}}(k), \forall k \in \mathbb{Z}_{+}, \tag{31}
\end{equation*}
$$

The following framer candidate is considered

$$
\left\{\right.
$$

\qquad

- $L_{\sigma_{k}}$: the observer gain associated to the σ_{k}-subsystem.
- The matrices $T_{\sigma_{k}}, N_{\sigma_{k}}$ are computed:

$$
\begin{equation*}
T_{\sigma_{k}} E_{\sigma_{k}}+N_{\sigma_{k}} \tilde{C}_{\sigma_{k+1}}=I \tag{34}
\end{equation*}
$$

- $L_{\sigma_{k}}$: the observer gain associated to the σ_{k}-subsystem.
- The matrices $T_{\sigma_{k}}, N_{\sigma_{k}}$ are computed:

$$
\begin{equation*}
T_{\sigma_{k}} E_{\sigma_{k}}+N_{\sigma_{k}} \tilde{C}_{\sigma_{k+1}}=I \tag{34}
\end{equation*}
$$

The nonnegativity conditions: Framer design:

Theorem 4

Let Assumptions 1-4 hold, the lower bound $\underline{\tilde{\tilde{x}}}(k)$ and upper bound $\overline{\tilde{x}}(k)$ for the state $\tilde{x}(k)$ given by (32) satisfy (31), if (34) hold and $\left(T_{\sigma_{k}} \tilde{\sigma}_{\sigma_{k}}-L_{\sigma_{k}} \tilde{C}_{\sigma_{k}}\right) \geq 0, \forall \sigma_{k} \in \overline{1, N}$ provided that
$\tilde{\underline{x}}_{0}:=\left[\begin{array}{l}\underline{x}(0) \\ \underline{d}(0)\end{array}\right] \leq \tilde{x}(0) \leq \overline{\tilde{x}}_{0}:=\left[\begin{array}{l}\bar{x}(0) \\ \bar{d}(0)\end{array}\right]$.

Proof.

- $\bar{e}(k)=\bar{x}(k)-\tilde{x}(k)$
- $\underline{e}(k)=\tilde{x}(k)-\underline{\tilde{x}}(k)$

The dynamic of the upper error follows

$$
\begin{align*}
\bar{e}(k+1) & =\left(T_{\sigma_{k}} \tilde{A}_{\sigma_{k}}-L_{\sigma_{k}} \tilde{C}_{\sigma_{k}}\right) \bar{e}(k)+\Delta \tag{35}\\
& -T_{\sigma_{k}} \tilde{I} \omega(k)+L_{\sigma_{k}} v(k)+N_{\sigma_{k}} v(k+1) . \\
\Delta- & T_{\sigma_{k}} \tilde{I} \omega(k)+L_{\sigma_{k}} v(k)+N_{\sigma_{k}} v(k+1) \geq 0 \tag{36}
\end{align*}
$$

From the fact that $\bar{e}(0)=\bar{x}(0)-\tilde{x}(0) \geq 0$, it follows that, for all $k \in \mathbb{Z}_{+}, \bar{e}(k) \geq 0$ and for the same reasons $\underline{e}(k) \geq 0$.

Interval observer design using H_{∞} performance

Let us define the estimation error as follows

$$
\begin{equation*}
e(k)=\bar{e}(k)-\underline{e}(k) \tag{37}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
e(k+1)=\left(T_{\sigma_{k}} \tilde{A}_{\sigma_{k}}-L_{\sigma_{k}} \tilde{C}_{\sigma_{k}}\right) e(k)+\Phi_{\sigma_{k}} \delta(k) \tag{38}
\end{equation*}
$$

with

$$
\delta(k)=\left[\begin{array}{c}
-T_{\sigma_{k}} \tilde{I} \omega(k) \tag{39}\\
v(k) \\
v(k+1)
\end{array}\right]
$$

and

$$
\begin{equation*}
\Phi_{\sigma_{k}}=2\left[I L_{\sigma_{k}} N_{\sigma_{k}}\right] \tag{40}
\end{equation*}
$$

Interval observer design using H_{∞} performance

Theorem 5

Assume that all assumptions of Theorem 4 hold. For given scalars $\gamma>0$ and $0<\alpha<1$, if there exist positive scalars $\alpha_{2}>\alpha_{1}>0$, a diagonal matrix $P_{\sigma_{k}} \in \mathbb{R}^{n \times n}$ such that $P_{\sigma_{k}} \succ 0, W_{\sigma_{k}} \in \mathbb{R}^{n \times n}$, $G_{\sigma_{k}} \in \mathbb{R}^{n \times p}$ and $H_{\sigma_{k}} \in \mathbb{R}^{n \times(n+p)}$ such that

$$
\begin{gather*}
P_{\sigma_{k}} \Theta_{\sigma_{k}}^{\dagger} \lambda_{1} \tilde{A}_{\sigma_{k}}+H_{\sigma_{k}} \psi_{\sigma_{k}} \lambda_{1} \tilde{A}_{\sigma_{k}}-G_{\sigma_{k}} \tilde{C}_{\sigma_{k}} \geq 0, \forall \sigma_{k} \in \overline{1, N} \tag{41}\\
\alpha_{1} I \leq P_{\sigma_{k}} \leq \alpha_{2} I, \forall \sigma_{k} \in \overline{1, N} \tag{42}\\
{\left[\begin{array}{cc}
W_{\sigma_{l}} & P_{\sigma_{k}} \\
P_{\sigma_{k}} & P_{\sigma_{k}}
\end{array}\right] \succeq 0} \tag{43}
\end{gather*}
$$

Interval observer design using H_{∞} performance

Theorem 5

$$
\left[\begin{array}{ccccc}
-(1-\alpha) P_{\sigma_{k}} & \star & \star & \star & \star \tag{44}\\
0 & -\gamma^{2} I & \star & \star & \star \\
0 & 0 & -\gamma^{2} I & \star & \star \\
0 & 0 & 0 & -\gamma^{2} I & \star \\
\kappa_{1 \sigma_{k}} & 2 P_{\sigma_{k}} & 2 G_{\sigma_{k}} & 2 \kappa_{2 \sigma_{k}} & -P_{\sigma_{k}}
\end{array}\right] \preccurlyeq 0
$$

with

$$
\begin{gathered}
W_{\sigma_{l}}=\mu P_{\sigma_{l}}, G_{\sigma_{k}}=P_{\sigma_{k}} L_{\sigma_{k}}, H_{\sigma_{k}}=P_{\sigma_{k}} S_{\sigma_{k}}, \forall \sigma_{k}, \sigma_{I} \in \overline{1, N} \\
\kappa_{1 \sigma_{k}}=P_{\sigma_{k}} \Theta_{\sigma_{k}}^{\dagger} \lambda_{1} \tilde{A}_{\sigma_{k}}+H_{\sigma_{k}} \psi_{\sigma_{k}} \lambda_{1} \tilde{A}_{\sigma_{k}}-G_{\sigma_{k}} \tilde{C}_{\sigma_{k}} \\
\kappa_{2 \sigma_{k}}=P_{\sigma_{k}} \Theta_{\sigma_{k}}^{\dagger} \lambda_{2}+H_{\sigma_{k}} \psi_{\sigma_{k}} \lambda_{2}, \forall \sigma_{k} \in \overline{1, N}
\end{gathered}
$$

Interval observer design using H_{∞} performance

Theorem 5

Then, (32) is an interval observer for (4). Moreover, the optimal observer gain matrix

$$
\begin{equation*}
L_{\sigma_{k}}=P_{\sigma_{k}}^{-1} G_{\sigma_{k}}, \forall \sigma_{k} \in \overline{1, N} \tag{45}
\end{equation*}
$$

Given the system (4) with 3 modes $(N=3)$ where

$$
\begin{gathered}
A_{1}=\left[\begin{array}{ccc}
0.55 & 0.5 & 0.7 \\
0 & 0.8 & 0.5 \\
0 & 0 & 0.4
\end{array}\right], B_{1}=\left[\begin{array}{c}
0 \\
0.5 \\
0.7
\end{array}\right], C_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], D_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \\
A_{2}=\left[\begin{array}{ccc}
-0.44 & -0.4 & -0.56 \\
0 & -0.64 & -0.4 \\
0 & 0 & -0.32
\end{array}\right], B_{2}=\left[\begin{array}{c}
0.4 \\
0.6 \\
0
\end{array}\right], C_{2}=\left[\begin{array}{ccc}
1.01 & 0 & 1 \\
1 & 1 & 1
\end{array}\right] \\
D_{2}=\left[\begin{array}{c}
1 \\
0 \\
4.73
\end{array}\right]
\end{gathered}
$$

$A_{3}=\left[\begin{array}{ccc}0.1 & 1 & 1 \\ 0 & .2 & -0.5 \\ 0 & 0 & 0.2\end{array}\right], \quad B_{3}=\left[\begin{array}{c}0.1 \\ 0.0 \\ 0.1\end{array}\right], \quad C_{3}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right], \quad D_{3}=\left[\begin{array}{c}1 \\ 0.5 \\ 1\end{array}\right]$
We have as the following conditions $|w(k)| \leq \bar{w}$ with $\bar{w}=\left[\begin{array}{lll}0.06 & 0.06 & 0.06\end{array}\right]$, and $|v(k)| \leq \bar{v}$ with $\bar{v}=\left[\begin{array}{ll}0.06 & 0.06\end{array}\right]$. The unknown input is given as $d(k)=0.5 \sin (0.5 k)$.

For the the state vector, we get:

For the unknown input, we have:

Figure 2: The unknown input

- Two methods to design interval observer for switched systems in presence of unknown input are presented.
- Sufficient conditions for the stability of the interval observer are derived in terms of LMIs.
- The effectiveness of the proposed approachs are shown on a numerical example.

The End

