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Problem under solution

Find all            , satisfying the condition          , i.e., 
find the set                         .

x∈ℝn P ( x)

where P (x) is a predicate formula with a free variable x, 
i.e., free variables:                .

It can contain bound variables, also (we shall call them 
`parameters’).

x1 ,… , xn

{x∈ℝn
∣P (x )}



Example problems

{x∈X ∣ h( x) = 0}

{x∈X ∣ f (x ) ∈ [ y , y ]}

{x∈X ∣(∀ t∈X ) ( f ( x) ⩽ f (t))}

{x∈X ∣(∀ t∈X ) (∀ i=1 ,… , N f i( x)⩽ f i( t))∨(∃ i f i (x )< f i( t))}

where:
X⊆ℝn , h :ℝn

ℝ
m , f , f 1 , f N :ℝn

ℝ

{x∈X∣(∀ i=1,… , n) (∀ x ' i∈x i⊆ℝ
k i) ( f i(x ∖ i , x ' i)⩾ f i(x ))}



Proposed algorithm
● V. Kreinovich, B. J. Kubica, From computing sets of optima, 

Pareto sets and sets of Nash equilibria to general decision-
related set computations, Journal of Universal Computer 
Science, Vol. 16, pp. 2657 – 2685 (2010).

● B. J. Kubica, A class of problems that can be solved using 
interval algorithms, SCAN 2010, Computing, Vol. 94 (2-4), 
pp. 271 – 280 (2012).

● B. J. Kubica, Interval Methods for Solving Nonlinear 
Constraint Satisfaction, Optimization and Similar Problems, 
monograph, ISBN 978-3-030-13795-3, Springer, 2019.

● B. J. Kubica, Interval methods for solving various kinds of 
quantified nonlinear problems, in: Beyond Traditional 
Probabilistic Data Processing Techniques: Interval, Fuzzy 
etc. Methods and Their Applications, Springer, 2020.



Proposed algorithm
● We shall use the name generalized branch-and-

bound method or branch-and-bound type method.
● Several algorithms, described in the literature, are 

its specific instances:
➢ Branch-and-bound method.
➢ Branch-and-prune method.
➢ `Nested’ b&b or b&p (for parameters).
➢ SIVIA – Set Inversion Via Interval Analysis (Jaulin, 

1993).
➢ PPS – Partitioning Parameter Set (дроблене параметров; 

Калмыҝов, 1982).



Problem
● It is easy to understand that interval methods can be 

used to verify inequalities and their systems.
● Using proper theorems, we can also verify 

equations and their systems (interval Newton, 
Kantorovich, Miranda, Borsuk…).

● We can extend it to problems of the form:

● But how can it be used to solve quantified 
problems, like global optimization:

{x∈X ∣(∀ t∈[ t 0 , t f ]) ( f (x ,t )⩽ 0)}

{x∈X ∣(∀ t∈X ) ( f ( x) ⩽ f (t))}?
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Problem
● What are you talking about? Interval methods have 

been used for GO since forever!
● Actually, not quite.
● The problem we solve in these algorithms is not:
{x∈X ∣(∀ t∈X ) ( f ( x) ⩽ f (t))}

● No, really!
● It is, actually:
{x∈X ∣ ( f (x ) ⩽ yo)},

where y0 is a parameter, that we need to estimate 
first: y0= f (x0)  for some x0∈X  and ¬(∃ x ' f (x ')< f (x0)−ϵ)
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these two problems?

●                                  is quantifier-free.
●                                  is implied by
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What is the relationship between 
these two problems?

●                                  is quantifier-free.
●                                  is implied by

{x∈X ∣ ( f (x ) ⩽ yo)}

{x∈X ∣ ( f (x ) ⩽ yo)}

{x∈X ∣(∀ t∈X ) ( f ( x) ⩽ f (t))}

●                                  is weaker.
●                                  is a result of approximate 

quantifier elimination.
● It is the Herbrand form of the original problem:

{x∈X ∣ ( f (x ) ⩽ yo)}

● They are not equivalent!

{x∈X ∣ ( f (x ) ⩽ yo)}

{x∈X ∣(∀ t∈X ) ( f ( x) ⩽ f (t))}



Herbrand form

● Conjunction (for                                   ) or 
dyzjunction (for                                  ).

● The Herbrand form of a formula is commonly used 
in logic, to prove that this formula is a tautology.
➢ A formuła is a tautology when its Herbrand form is a 

tautology.
● But it can also be used for the approximation of a 

formula:
(∀ t) R( x , t) ⇒ R (x , t1)∧R (x , t2)∧…∧R( x , tN ) ,
(∃ t) R( x , t) ⇐ R(x , t1)∨R(x , t 2)∨…∨R( x , tN ) .

P ( x) ≡ (∀ t) R (x ,t )
P ( x) ≡ (∃ t ) R(x , t)



Herbrand form

● Most of the aforementioned problems had a 
universal quantifier:

● Later in the talk, we shall meet a problem with 
existential quantifier, as well:

(∀ t) R( x , t) ⇒ R (x , t1)∧R (x , t2)∧…∧R( x , tN ) ,
(∃ t) R( x , t) ⇐ R(x , t1)∨R(x , t 2)∨…∨R( x , tN ).

P ( x) ≡ (∀ t) R (x ,t )

P ( x) ≡ (∃ t ) R(x , t)

● Please mind, the relationships are different:



Comments

● Obviously, we have an analogous situation for 
other aforementioned problems: when 
approximating Pareto sets of a multicriteria 
problem, or seeking game solutions, we also use 
Herbrand expansions.
➢ The Herbrand formuła for these problems is more 

complex than for the simple, unicriterion global 
optimization.

➢ We have to determine values of a higher number of 
parameters (also called `shared quantities’ in my other 
publications).



Generic algorithm
Lpos = {}; Lverif = {}; Lcheck = {};
// Phase I
while (there are boxes to consider) do

pop (x);
process (x); // using interval tools 
if (x was verified to contain a solution/a point satisfying some necessary    

  conditions) then push (Lverif, x);
else if (x is verified not to contain solutions) then

if (x may be necessary in phase II) then push (Lcheck, x);
else discard x;

end if
if (x was discarded or stored) then pop (x);
else if (diam (x) < ε) then push (Lpos, x);
else

bisect (x, x1, x2);   push (x2);   x = x1;
end if

end while
// Phase II – verification of P(x) for stored solution candidates
for each (x in Lverif     Lpos) do

if (x does not contain a solution) then discard x;
end for each



What does the algorithm result in?
● Two lists:
➢ Lverif – the list of boxes verified (certified) to contain 

a solution,
➢ Lpos – the list of boxes possibly containing a solution.

● What conditions have to be verified so that the 
solution was `verified’?

● There can be more than two lists, in general:
➢ Some conditions are verified, some are not.
➢ We classify points of the domain into more than two 

classes.



Algorithm's other details
● In what order do we process boxes? Does the order 

matter?
● How do we store boxes?
● What tools do we use to process a box?
● What information is needed to process a box in 

phase I?
● What information is needed to verify a box in 

phase II?
● In particular, what boxes do we store in Lcheck – if 

any?



● All depends on the problem under consideration.
● Does the presence of solution in one area have 

influence on its presence elsewhere?
➢ For equations systems – not really.
➢ For optimization problems – it does (the optimum occurs 

to be local only, if we have found a better point 
elsewhere).

➢ For seeking Pareto sets – also.
➢ …

● Obviously, rejection/reduction tests rely on the 
problem under consideration, also.

Algorithm's other details



Tools to process a single box
● Order of function approximation:
➢ 0th order tools – comparing function values.
➢ 1st order tools – use of gradients.
➢ 2nd order tools – use of Hesse matrices.
➢ Higher order tools?

● Operations:
➢ Simply, comparing function values.
➢ Several versions of the interval Newton operator 

(componentwise, GS) – on various levels.
➢ Various constraint satisfaction methods (consistency 

enforcing, SIVIA, etc.).
➢ Tests based on algebraic topology.
➢ …



How to make the branch-and-bound-
type method efficient?
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How to make the branch-and-bound-
type method efficient?

● There is a great deal of interval tools.
● All of them give guaranteed (verified) results.
● None of them are intelligent per se!
● It is crucial to develop an adequate heuristic to:
➢ choose the interval tools adequate for a specific box,
➢ arrange them,
➢ parameterize them.



● The author devoted several papers to design 
heuristics for two problems:
➢ Nonlinear equations systems – especially seeking all 

solutions of underdetermined systems.
➢ Seeking Pareto sets of a multicrietia problem.

● Many tools & versions; several papers.
● The topic is often misunderstood…

How to make the branch-and-bound-
type method efficient?



Issues in designing heuristics
● Seemingly similar problems might require quite 

different heuristics.
●  The Euclid space of higher dimension has a 

significantly different geometry than     or     .

➢ The interior is small – most results are located near 
boundaries

➢ Even inside a box with small diameter, the distances can 
be relatively large and the function can change 
significantly.

➢ Bisection hardly reduces distances in the box.

ℝ ℝ2



● Often, it is assumed that bisection should minimize 
the diameter of the objective function on resulting 
boxes.
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➢ Works very well for optimization problems.
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● Often, it is assumed that bisection should minimize 
the diameter of the objective function on resulting 
boxes.

● An example of such heuristic is MaxSmear (Shary, 
1992; Ratz, 1992; Ratz & Csendes, 1995).
➢ Works very well for optimization problems.
➢ Works reasonably well for well-determined equations 

systems.
➢ Fails miserably for underdetermined systems.

● In my opinion, the objective of bisection should be 
defined in a different way: give boxes that are easy 
to process by the used interval tools.

Bisection



● For equations solving, the main tool is some kind 
of the interval Newton operator.

● So, for a single equation in two variables, it might 
seem reasonable to choose the minimal smear.

● But the convergence…

● A proper policy should take into account several 
criteria.

● For several, advanced tools, such a policy cannot 
be too simple…

Bisection



● For example, the heuristic of Kubica, 2012:
find index j_max and diameter w_max of the longest component;
find index j_min and diameter w_min of the shortest component;
find index j_max_nonred and diameter w_max_nonred of the        
  longest component not reduced by the latest use of the 
Newton;
if ((Newton operator reduced no component) or (w_max > 1.5 *    
   w_max_nonred)) then return j_max;
else if (w_max_nonred > 8 * w_min) then return j_max_nonred;
find index j and diameter w of the component with the smallest     
   maximal absolute value in all rows of the Jacobi matrix;
if (w > 0.1) then return j;
else return j_max_noned;

Bisection



● For Pareto sets seeking, the proper heuristic is quite 
different:

find the index i of the criterion with maximal distance 
from the set in the criteria space;
find the index j and diameter w of the component with      
 maximal smear with respect to criterion i;
find the index j_max and diameter w_max of the               
 component with maximal diameter;
if (w_max < 8 * w) then return j;
else return j_max;

● Reasons: different interval tools, used in the 
algorithm.

Bisection



Problems encountered in ML
● The problem of training a classification/regression 

tools is often formulated as an optimization 
problem: min

p
‖f ( xk)− yk‖

min
p (∑k=1

m

(f ( xk)− yk)
2)

min
p (−∑k=1

m

f ( xk) log( yk)+(1−f (x k)) log (1− yk))

(LSQ)

(KL div)

f ( xk)⊆ yk , k=1 ,… ,m

● Alternatively, a CSP can be used:



Problems encountered in ML
● Yet another possibility: find points satisfying as 

many constraints of the CSP, as possible.
➢ Adequate in the presence of outliers.

● Another problem: find all points satisfying a fuzzy 
predicate.
➢ More lists are needed there: for several alfa-cuts of the 

fuzzy solution set.
➢ Other than that, the geberalized branch-and-bound 

algorithm can be adopted with minor changes only.



Problems encountered in ML
● A problem with existential quantifier: find points of 

a dynamical system, where it has periods (of an 
arbitrary length).
➢ In particular, we can consider it for a recurrent neural 

network (Hopfield, LSTM, Boltzmann machine…).
➢ Considering a dynamical system of the form:  xk+1 = f( xk ), 

we can formulate the problem, for instance, as follows:

➢ We consider here cycles of length at most n.
➢ How about longer ones?
➢ A proper data structure: graph showing possible 

transitions of values.

{x∈X ∣(∃ x1,… , xn∈X )∧(x1= f (x ))∧( x2= f ( x1))∧⋯∧( x= f (xn))}



Comments and summary
● Interval methods provide us with a toolset for solving 

a large variety of problems, difficult to formulate or 
handle using other methods.

● The author is not sure about the general requirements 
for the formal system, for which we can use interval 
methods, but it is a large class of systems (the notion 
of a H-continuous function might be related).

● We can adopt the generalized branch-and-bound 
algorithm for very sophisticated and versatile 
problems.
➢ This process can hardly be automated, as we need proper 

heuristics that can be designed by a humen only (only?).



Comments and summary
● This has some impact on our understanding of what 

computers can solve, and what human are needed to 
solve.

● This is fascinating, and it (probably) has some 
philosophical consequences.

● Nevertheless, whenever possible to reduce the 
problem to either optimization or CSP, it had better 
be done – for efficiency reasons.

● Oh, and it is worth noting that branch-and-bound type 
algorithms parallelize well and can utilize current 
hardware architectures efficiently.
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