
Interval methods for solving
quantified nonlinear problems

for control engineering and
machine learning

Bartłomiej Jacek Kubica
Institute of Information Technology

Warsaw University of Life Sciences – SGGW
Poland

Interval Online Seminar on
Interval Methods in Control Engineering

19th of November 2021

Problem under solution

Find all , satisfying the condition , i.e.,
find the set .

x∈ℝn P (x)

where P (x) is a predicate formula with a free variable x,
i.e., free variables: .

It can contain bound variables, also (we shall call them
`parameters’).

x1 ,… , xn

{x∈ℝn
∣P (x)}

Example problems

{x∈X ∣ h(x) = 0}

{x∈X ∣ f (x) ∈ [y , y]}

{x∈X ∣(∀ t∈X) (f (x) ⩽ f (t))}

{x∈X ∣(∀ t∈X) (∀ i=1 ,… , N f i(x)⩽ f i(t))∨(∃ i f i (x)< f i(t))}

where:
X⊆ℝn , h :ℝn

ℝ
m , f , f 1 , f N :ℝn

ℝ

{x∈X∣(∀ i=1,… , n) (∀ x ' i∈x i⊆ℝ
k i) (f i(x ∖ i , x ' i)⩾ f i(x))}

Proposed algorithm
● V. Kreinovich, B. J. Kubica, From computing sets of optima,

Pareto sets and sets of Nash equilibria to general decision-
related set computations, Journal of Universal Computer
Science, Vol. 16, pp. 2657 – 2685 (2010).

● B. J. Kubica, A class of problems that can be solved using
interval algorithms, SCAN 2010, Computing, Vol. 94 (2-4),
pp. 271 – 280 (2012).

● B. J. Kubica, Interval Methods for Solving Nonlinear
Constraint Satisfaction, Optimization and Similar Problems,
monograph, ISBN 978-3-030-13795-3, Springer, 2019.

● B. J. Kubica, Interval methods for solving various kinds of
quantified nonlinear problems, in: Beyond Traditional
Probabilistic Data Processing Techniques: Interval, Fuzzy
etc. Methods and Their Applications, Springer, 2020.

Proposed algorithm
● We shall use the name generalized branch-and-

bound method or branch-and-bound type method.
● Several algorithms, described in the literature, are

its specific instances:
➢ Branch-and-bound method.
➢ Branch-and-prune method.
➢ `Nested’ b&b or b&p (for parameters).
➢ SIVIA – Set Inversion Via Interval Analysis (Jaulin,

1993).
➢ PPS – Partitioning Parameter Set (дроблене параметров;

Калмыҝов, 1982).

Problem
● It is easy to understand that interval methods can be

used to verify inequalities and their systems.
● Using proper theorems, we can also verify

equations and their systems (interval Newton,
Kantorovich, Miranda, Borsuk…).

● We can extend it to problems of the form:

● But how can it be used to solve quantified
problems, like global optimization:

{x∈X ∣(∀ t∈[t 0 , t f]) (f (x ,t)⩽ 0)}

{x∈X ∣(∀ t∈X) (f (x) ⩽ f (t))}?

Problem
● What are you talking about? Interval methods have

been used for GO since forever!

Problem
● What are you talking about? Interval methods have

been used for GO since forever!
● Actually, not quite.
● The problem we solve in these algorithms is not:
{x∈X ∣(∀ t∈X) (f (x) ⩽ f (t))}

Problem
● What are you talking about? Interval methods have

been used for GO since forever!
● Actually, not quite.
● The problem we solve in these algorithms is not:
{x∈X ∣(∀ t∈X) (f (x) ⩽ f (t))}

● No, really!
● It is, actually:
{x∈X ∣ (f (x) ⩽ yo)},

where y0 is a parameter, that we need to estimate
first: y0= f (x0) for some x0∈X and ¬(∃ x ' f (x ')< f (x0)−ϵ)

What is the relationship between
these two problems?

● is quantifier-free.
● is implied by

{x∈X ∣ (f (x) ⩽ yo)}

{x∈X ∣ (f (x) ⩽ yo)}

{x∈X ∣(∀ t∈X) (f (x) ⩽ f (t))}

● is weaker.{x∈X ∣ (f (x) ⩽ yo)}

● They are not equivalent!

What is the relationship between
these two problems?

● is quantifier-free.
● is implied by

{x∈X ∣ (f (x) ⩽ yo)}

{x∈X ∣ (f (x) ⩽ yo)}

{x∈X ∣(∀ t∈X) (f (x) ⩽ f (t))}

● is weaker.
● is a result of approximate

quantifier elimination.

{x∈X ∣ (f (x) ⩽ yo)}

● They are not equivalent!

{x∈X ∣ (f (x) ⩽ yo)}

What is the relationship between
these two problems?

● is quantifier-free.
● is implied by

{x∈X ∣ (f (x) ⩽ yo)}

{x∈X ∣ (f (x) ⩽ yo)}

{x∈X ∣(∀ t∈X) (f (x) ⩽ f (t))}

● is weaker.
● is a result of approximate

quantifier elimination.
● It is the Herbrand form of the original problem:

{x∈X ∣ (f (x) ⩽ yo)}

● They are not equivalent!

{x∈X ∣ (f (x) ⩽ yo)}

{x∈X ∣(∀ t∈X) (f (x) ⩽ f (t))}

Herbrand form

● Conjunction (for) or
dyzjunction (for).

● The Herbrand form of a formula is commonly used
in logic, to prove that this formula is a tautology.
➢ A formuła is a tautology when its Herbrand form is a

tautology.
● But it can also be used for the approximation of a

formula:
(∀ t) R(x , t) ⇒ R (x , t1)∧R (x , t2)∧…∧R(x , tN) ,
(∃ t) R(x , t) ⇐ R(x , t1)∨R(x , t 2)∨…∨R(x , tN) .

P (x) ≡ (∀ t) R (x ,t)
P (x) ≡ (∃ t) R(x , t)

Herbrand form

● Most of the aforementioned problems had a
universal quantifier:

● Later in the talk, we shall meet a problem with
existential quantifier, as well:

(∀ t) R(x , t) ⇒ R (x , t1)∧R (x , t2)∧…∧R(x , tN) ,
(∃ t) R(x , t) ⇐ R(x , t1)∨R(x , t 2)∨…∨R(x , tN).

P (x) ≡ (∀ t) R (x ,t)

P (x) ≡ (∃ t) R(x , t)

● Please mind, the relationships are different:

Comments

● Obviously, we have an analogous situation for
other aforementioned problems: when
approximating Pareto sets of a multicriteria
problem, or seeking game solutions, we also use
Herbrand expansions.
➢ The Herbrand formuła for these problems is more

complex than for the simple, unicriterion global
optimization.

➢ We have to determine values of a higher number of
parameters (also called `shared quantities’ in my other
publications).

Generic algorithm
Lpos = {}; Lverif = {}; Lcheck = {};
// Phase I
while (there are boxes to consider) do

pop (x);
process (x); // using interval tools
if (x was verified to contain a solution/a point satisfying some necessary

 conditions) then push (Lverif, x);
else if (x is verified not to contain solutions) then

if (x may be necessary in phase II) then push (Lcheck, x);
else discard x;

end if
if (x was discarded or stored) then pop (x);
else if (diam (x) < ε) then push (Lpos, x);
else

bisect (x, x1, x2); push (x2); x = x1;
end if

end while
// Phase II – verification of P(x) for stored solution candidates
for each (x in Lverif Lpos) do

if (x does not contain a solution) then discard x;
end for each

What does the algorithm result in?
● Two lists:
➢ Lverif – the list of boxes verified (certified) to contain

a solution,
➢ Lpos – the list of boxes possibly containing a solution.

● What conditions have to be verified so that the
solution was `verified’?

● There can be more than two lists, in general:
➢ Some conditions are verified, some are not.
➢ We classify points of the domain into more than two

classes.

Algorithm's other details
● In what order do we process boxes? Does the order

matter?
● How do we store boxes?
● What tools do we use to process a box?
● What information is needed to process a box in

phase I?
● What information is needed to verify a box in

phase II?
● In particular, what boxes do we store in Lcheck – if

any?

● All depends on the problem under consideration.
● Does the presence of solution in one area have

influence on its presence elsewhere?
➢ For equations systems – not really.
➢ For optimization problems – it does (the optimum occurs

to be local only, if we have found a better point
elsewhere).

➢ For seeking Pareto sets – also.
➢ …

● Obviously, rejection/reduction tests rely on the
problem under consideration, also.

Algorithm's other details

Tools to process a single box
● Order of function approximation:
➢ 0th order tools – comparing function values.
➢ 1st order tools – use of gradients.
➢ 2nd order tools – use of Hesse matrices.
➢ Higher order tools?

● Operations:
➢ Simply, comparing function values.
➢ Several versions of the interval Newton operator

(componentwise, GS) – on various levels.
➢ Various constraint satisfaction methods (consistency

enforcing, SIVIA, etc.).
➢ Tests based on algebraic topology.
➢ …

How to make the branch-and-bound-
type method efficient?

How to make the branch-and-bound-
type method efficient?

● There is a great deal of interval tools.
● All of them give guaranteed (verified) results.
● None of them are intelligent per se!

How to make the branch-and-bound-
type method efficient?

● There is a great deal of interval tools.
● All of them give guaranteed (verified) results.
● None of them are intelligent per se!
● It is crucial to develop an adequate heuristic to:
➢ choose the interval tools adequate for a specific box,
➢ arrange them,
➢ parameterize them.

● The author devoted several papers to design
heuristics for two problems:
➢ Nonlinear equations systems – especially seeking all

solutions of underdetermined systems.
➢ Seeking Pareto sets of a multicrietia problem.

● Many tools & versions; several papers.
● The topic is often misunderstood…

How to make the branch-and-bound-
type method efficient?

Issues in designing heuristics
● Seemingly similar problems might require quite

different heuristics.
● The Euclid space of higher dimension has a

significantly different geometry than or .

➢ The interior is small – most results are located near
boundaries

➢ Even inside a box with small diameter, the distances can
be relatively large and the function can change
significantly.

➢ Bisection hardly reduces distances in the box.

ℝ ℝ2

● Often, it is assumed that bisection should minimize
the diameter of the objective function on resulting
boxes.

Bisection

● Often, it is assumed that bisection should minimize
the diameter of the objective function on resulting
boxes.

● An example of such heuristic is MaxSmear (Shary,
1992; Ratz, 1992; Ratz & Csendes, 1995).
➢ Works very well for optimization problems.
➢ Works reasonably well for well-determined equations

systems.
➢ Fails miserably for underdetermined systems.

Bisection

● Often, it is assumed that bisection should minimize
the diameter of the objective function on resulting
boxes.

● An example of such heuristic is MaxSmear (Shary,
1992; Ratz, 1992; Ratz & Csendes, 1995).
➢ Works very well for optimization problems.
➢ Works reasonably well for well-determined equations

systems.
➢ Fails miserably for underdetermined systems.

● In my opinion, the objective of bisection should be
defined in a different way: give boxes that are easy
to process by the used interval tools.

Bisection

● For equations solving, the main tool is some kind
of the interval Newton operator.

● So, for a single equation in two variables, it might
seem reasonable to choose the minimal smear.

● But the convergence…

● A proper policy should take into account several
criteria.

● For several, advanced tools, such a policy cannot
be too simple…

Bisection

● For example, the heuristic of Kubica, 2012:
find index j_max and diameter w_max of the longest component;
find index j_min and diameter w_min of the shortest component;
find index j_max_nonred and diameter w_max_nonred of the
 longest component not reduced by the latest use of the
Newton;
if ((Newton operator reduced no component) or (w_max > 1.5 *
 w_max_nonred)) then return j_max;
else if (w_max_nonred > 8 * w_min) then return j_max_nonred;
find index j and diameter w of the component with the smallest
 maximal absolute value in all rows of the Jacobi matrix;
if (w > 0.1) then return j;
else return j_max_noned;

Bisection

● For Pareto sets seeking, the proper heuristic is quite
different:

find the index i of the criterion with maximal distance
from the set in the criteria space;
find the index j and diameter w of the component with
 maximal smear with respect to criterion i;
find the index j_max and diameter w_max of the
 component with maximal diameter;
if (w_max < 8 * w) then return j;
else return j_max;

● Reasons: different interval tools, used in the
algorithm.

Bisection

Problems encountered in ML
● The problem of training a classification/regression

tools is often formulated as an optimization
problem: min

p
‖f (xk)− yk‖

min
p (∑k=1

m

(f (xk)− yk)
2)

min
p (−∑k=1

m

f (xk) log(yk)+(1−f (x k)) log (1− yk))

(LSQ)

(KL div)

f (xk)⊆ yk , k=1 ,… ,m

● Alternatively, a CSP can be used:

Problems encountered in ML
● Yet another possibility: find points satisfying as

many constraints of the CSP, as possible.
➢ Adequate in the presence of outliers.

● Another problem: find all points satisfying a fuzzy
predicate.
➢ More lists are needed there: for several alfa-cuts of the

fuzzy solution set.
➢ Other than that, the geberalized branch-and-bound

algorithm can be adopted with minor changes only.

Problems encountered in ML
● A problem with existential quantifier: find points of

a dynamical system, where it has periods (of an
arbitrary length).
➢ In particular, we can consider it for a recurrent neural

network (Hopfield, LSTM, Boltzmann machine…).
➢ Considering a dynamical system of the form: xk+1 = f(xk),

we can formulate the problem, for instance, as follows:

➢ We consider here cycles of length at most n.
➢ How about longer ones?
➢ A proper data structure: graph showing possible

transitions of values.

{x∈X ∣(∃ x1,… , xn∈X)∧(x1= f (x))∧(x2= f (x1))∧⋯∧(x= f (xn))}

Comments and summary
● Interval methods provide us with a toolset for solving

a large variety of problems, difficult to formulate or
handle using other methods.

● The author is not sure about the general requirements
for the formal system, for which we can use interval
methods, but it is a large class of systems (the notion
of a H-continuous function might be related).

● We can adopt the generalized branch-and-bound
algorithm for very sophisticated and versatile
problems.
➢ This process can hardly be automated, as we need proper

heuristics that can be designed by a humen only (only?).

Comments and summary
● This has some impact on our understanding of what

computers can solve, and what human are needed to
solve.

● This is fascinating, and it (probably) has some
philosophical consequences.

● Nevertheless, whenever possible to reduce the
problem to either optimization or CSP, it had better
be done – for efficiency reasons.

● Oh, and it is worth noting that branch-and-bound type
algorithms parallelize well and can utilize current
hardware architectures efficiently.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

