Interval methods for solving quantified nonlinear problems for control engineering and machine learning
 Bartłomiej Jacek Kubica
 Institute of Information Technology
 Warsaw University of Life Sciences - SGGW Poland

Interval Online Seminar on
Interval Methods in Control Engineering
$19^{\text {th }}$ of November 2021

Problem under solution

Find all $x \in \mathbb{R}^{n}$, satisfying the condition $P(x)$, i.e., find the set $\left\{x \in \mathbb{R}^{n} \mid P(x)\right\}$.
where $P(x)$ is a predicate formula with a free variable x, i.e., free variables: x_{1}, \ldots, x_{n}.

It can contain bound variables, also (we shall call them 'parameters').

Example problems

$\{x \in X \mid h(x)=0\}$
$\{x \in X \mid f(x) \in[\underline{y}, \bar{y}]\}$
$\{x \in X \mid(\forall t \in X)(f(x) \leqslant f(t))\}$
$\left\{x \in X \mid(\forall t \in X) \quad\left(\forall i=1, \ldots, N \quad f_{i}(x) \leqslant f_{i}(t)\right) \vee\left(\exists i f_{i}(x)<f_{i}(t)\right)\right\}$
$\left\{x \in X \mid(\forall i=1, \ldots, n) \quad\left(\forall x^{\prime}{ }_{i} \in \boldsymbol{x}_{i} \subseteq \mathbb{R}^{k_{i}}\right)\left(f_{i}\left(x_{\backslash i}, x^{\prime}{ }_{i}\right) \geqslant f_{i}(x)\right)\right\}$
where:
$X \subseteq \mathbb{R}^{n}, \quad h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad f, f_{1}, \ldots f_{N}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Proposed algorithm

- V. Kreinovich, B. J. Kubica, From computing sets of optima, Pareto sets and sets of Nash equilibria to general decisionrelated set computations, Journal of Universal Computer Science, Vol. 16, pp. 2657 - 2685 (2010).
- B. J. Kubica, A class of problems that can be solved using interval algorithms, SCAN 2010, Computing, Vol. 94 (2-4), pp. 271 - 280 (2012).
- B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction, Optimization and Similar Problems, monograph, ISBN 978-3-030-13795-3, Springer, 2019.
- B. J. Kubica, Interval methods for solving various kinds of quantified nonlinear problems, in: Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications, Springer, 2020.

Proposed algorithm

- We shall use the name generalized branch-andbound method or branch-and-bound type method.
- Several algorithms, described in the literature, are its specific instances:
> Branch-and-bound method.
> Branch-and-prune method.
> 'Nested' b\&b or b\&p (for parameters).
- SIVIA - Set Inversion Via Interval Analysis (Jaulin, 1993).
> PPS - Partitioning Parameter Set (дроблене параметров; Калмыков, 1982).

Problem

- It is easy to understand that interval methods can be used to verify inequalities and their systems.
- Using proper theorems, we can also verify equations and their systems (interval Newton, Kantorovich, Miranda, Borsuk...).
- We can extend it to problems of the form: $\left\{x \in X \mid\left(\forall t \in\left[t_{0}, t_{f}\right]\right)(f(x, t) \leqslant 0)\right\}$
- But how can it be used to solve quantified problems, like global optimization:

$$
\{x \in X \mid(\forall t \in X)(f(x) \leqslant f(t))\} ?
$$

Problem

- What are you talking about? Interval methods have been used for GO since forever!

Problem

- What are you talking about? Interval methods have been used for GO since forever!
- Actually, not quite.
- The problem we solve in these algorithms is not:

$$
\{x \in X \mid(\forall t \in X)(f(x) \leqslant f(t))\}
$$

Problem

- What are you talking about? Interval methods have been used for GO since forever!
- Actually, not quite.
- The problem we solve in these algorithms is not: $\{x \in X \mid(\forall t \in X)(f(x) \leqslant f(t))\}$
- No, really!
- It is, actually: $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$,
where y_{0} is a parameter, that we need to estimate first: $y_{0}=f\left(x_{0}\right)$ for some $x_{0} \in X$ and $\neg\left(\exists x^{\prime} f\left(x^{\prime}\right)<f\left(x_{0}\right)-\epsilon\right)$

What is the relationship between these two problems?

- They are not equivalent!
- $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$ is quantifier-free.
- $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$ is implied by

$$
\{x \in X \mid(\forall t \in X)(f(x) \leqslant f(t))\}
$$

- $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$ is weaker.

What is the relationship between these two problems?

- They are not equivalent!
- $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$ is quantifier-free.
- $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$ is implied by

$$
\{x \in X \mid(\forall t \in X)(f(x) \leqslant f(t))\}
$$

- $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$ is weaker.
- $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$ is a result of approximate quantifier elimination.

What is the relationship between these two problems?

- They are not equivalent!
- $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$ is quantifier-free.
- $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$ is implied by

$$
\{x \in X \mid(\forall t \in X)(f(x) \leqslant f(t))\}
$$

- $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$ is weaker.
- $\left\{x \in X \mid\left(f(x) \leqslant y_{o}\right)\right\}$ is a result of approximate quantifier elimination.
- It is the Herbrand form of the original problem:

$$
\{x \in X \mid(\forall t \in X)(f(x) \leqslant f(t))\}
$$

Herbrand form

- Conjunction (for $P(x) \equiv(\forall t) R(x, t)$) or dyzjunction (for $P(x) \equiv(\exists t) R(x, t)$).
- The Herbrand form of a formula is commonly used in logic, to prove that this formula is a tautology.
> A formuła is a tautology when its Herbrand form is a tautology.
- But it can also be used for the approximation of a formula:

$$
\begin{aligned}
(\forall t) R(x, t) & \Rightarrow R\left(x, t_{1}\right) \wedge R\left(x, t_{2}\right) \wedge \ldots \wedge R\left(x, t_{N}\right), \\
(\exists t) R(x, t) & \Leftarrow R\left(x, t_{1}\right) \vee R\left(x, t_{2}\right) \vee \ldots \vee R\left(x, t_{N}\right) .
\end{aligned}
$$

Herbrand form

- Most of the aforementioned problems had a universal quantifier:

$$
P(x) \equiv(\forall t) R(x, t)
$$

- Later in the talk, we shall meet a problem with existential quantifier, as well:

$$
P(x) \equiv(\exists t) R(x, t)
$$

- Please mind, the relationships are different:

$$
\begin{aligned}
(\forall t) R(x, t) & \Rightarrow R\left(x, t_{1}\right) \wedge R\left(x, t_{2}\right) \wedge \ldots \wedge R\left(x, t_{N}\right), \\
(\exists t) R(x, t) & \Leftarrow R\left(x, t_{1}\right) \vee R\left(x, t_{2}\right) \vee \ldots \vee R\left(x, t_{N}\right) .
\end{aligned}
$$

Comments

- Obviously, we have an analogous situation for other aforementioned problems: when approximating Pareto sets of a multicriteria problem, or seeking game solutions, we also use Herbrand expansions.
> The Herbrand formula for these problems is more complex than for the simple, unicriterion global optimization.
> We have to determine values of a higher number of parameters (also called 'shared quantities' in my other publications).

Generic algorithm

Lpos $=\{ \} ;$ Lverif $=\{ \} ;$ Lcheck $=\{ \}$;
// Phase I
while (there are boxes to consider) do
pop (\boldsymbol{x});
process (\boldsymbol{x}); // using interval tools
if (\boldsymbol{x} was verified to contain a solution/a point satisfying some necessary conditions) then push (Lverif, \boldsymbol{x});
else if (\boldsymbol{x} is verified not to contain solutions) then
if (\boldsymbol{x} may be necessary in phase II) then push (Lcheck, \boldsymbol{x}); else discard \boldsymbol{x};
end if
if $(\boldsymbol{x}$ was discarded or stored) then pop (\boldsymbol{x}); else if $(\operatorname{diam}(\boldsymbol{x})<\boldsymbol{\varepsilon})$ then push (Lpos, $\boldsymbol{x})$; else
$\operatorname{bisect}(x, x 1, x 2) ; \quad$ push $(x 2) ; x=x 1$;
end if
end while
// Phase II - verification of $P(x)$ for stored solution candidates
for each (\boldsymbol{x} in Lverif Lpos) do
if $(\boldsymbol{x}$ does not contain a solution) then discard \boldsymbol{x};
end for each

What does the algorithm result in?

- Two lists:
- Lverif - the list of boxes verified (certified) to contain a solution,
- Lpos - the list of boxes possibly containing a solution.
- What conditions have to be verified so that the solution was `verified'?
- There can be more than two lists, in general:
- Some conditions are verified, some are not.
- We classify points of the domain into more than two classes.

Algorithm's other details

- In what order do we process boxes? Does the order matter?
- How do we store boxes?
- What tools do we use to process a box?
- What information is needed to process a box in phase I?
- What information is needed to verify a box in phase II?
- In particular, what boxes do we store in Lcheck - if any?

Algorithm's other details

- All depends on the problem under consideration.
- Does the presence of solution in one area have influence on its presence elsewhere?
- For equations systems - not really.
>For optimization problems - it does (the optimum occurs to be local only, if we have found a better point elsewhere).
» For seeking Pareto sets - also.
- ...
- Obviously, rejection/reduction tests rely on the problem under consideration, also.

Tools to process a single box

- Order of function approximation:
$\stackrel{0}{ } 0^{\text {th }}$ order tools - comparing function values.
$>1^{\text {st }}$ order tools - use of gradients.
$>2^{\text {nd }}$ order tools - use of Hesse matrices.
» Higher order tools?
- Operations:
- Simply, comparing function values.
- Several versions of the interval Newton operator (componentwise, GS) - on various levels.
- Various constraint satisfaction methods (consistency enforcing, SIVIA, etc.).
- Tests based on algebraic topology.

How to make the branch-and-boundtype method efficient?

How to make the branch-and-boundtype method efficient?

- There is a great deal of interval tools.
- All of them give guaranteed (verified) results.
- None of them are intelligent per se!

How to make the branch-and-boundtype method efficient?

- There is a great deal of interval tools.
- All of them give guaranteed (verified) results.
- None of them are intelligent per se!
- It is crucial to develop an adequate heuristic to:
» choose the interval tools adequate for a specific box,
${ }^{2}$ arrange them,
» parameterize them.

How to make the branch-and-boundtype method efficient?

- The author devoted several papers to design heuristics for two problems:
* Nonlinear equations systems - especially seeking all solutions of underdetermined systems.
> Seeking Pareto sets of a multicrietia problem.
- Many tools \& versions; several papers.
- The topic is often misunderstood...

Issues in designing heuristics

- Seemingly similar problems might require quite different heuristics.
- The Euclid space of higher dimension has a significantly different geometry than \mathbb{R} or \mathbb{R}^{2}.
- The interior is small - most results are located near boundaries
> Even inside a box with small diameter, the distances can be relatively large and the function can change significantly.
- Bisection hardly reduces distances in the box.

Bisection

- Often, it is assumed that bisection should minimize the diameter of the objective function on resulting boxes.

Bisection

- Often, it is assumed that bisection should minimize the diameter of the objective function on resulting boxes.
- An example of such heuristic is MaxSmear (Shary, 1992; Ratz, 1992; Ratz \& Csendes, 1995).
- Works very well for optimization problems.
- Works reasonably well for well-determined equations systems.
- Fails miserably for underdetermined systems.

Bisection

- Often, it is assumed that bisection should minimize the diameter of the objective function on resulting boxes.
- An example of such heuristic is MaxSmear (Shary, 1992; Ratz, 1992; Ratz \& Csendes, 1995).
- Works very well for optimization problems.
- Works reasonably well for well-determined equations systems.
- Fails miserably for underdetermined systems.
- In my opinion, the objective of bisection should be defined in a different way: give boxes that are easy to process by the used interval tools.

Bisection

- For equations solving, the main tool is some kind of the interval Newton operator.
- So, for a single equation in two variables, it might seem reasonable to choose the minimal smear.
- But the convergence...
- A proper policy should take into account several criteria.
- For several, advanced tools, such a policy cannot be too simple...

Bisection

- For example, the heuristic of Kubica, 2012:

 find index j_max and diameter w_max of the longest component; find index j_min and diameter w_min of the shortest component; find index j_max_nonred and diameter w_max_nonred of the longest component not reduced by the latest use of the Newton;if ((Newton operator reduced no component) or ($w _$max >1.5 * w_max_nonred)) then return j_max; else if (w_max_nonred > 8 * w_min) then return j_max_nonred; find index j and diameter w of the component with the smallest maximal absolute value in all rows of the Jacobi matrix; if ($w>0.1$) then return j; else return j_max_noned;

Bisection

- For Pareto sets seeking, the proper heuristic is quite different:
find the index i of the criterion with maximal distance from the set in the criteria space; find the index j and diameter w of the component with maximal smear with respect to criterion i; find the index j_max and diameter w_max of the component with maximal diameter; if (w _max <8 * w) then return j; else return j_max;
- Reasons: different interval tools, used in the algorithm.

Problems encountered in ML

- The problem of training a classification/regression tools is often formulated as an optimization problem: $\min \left\|f\left(x_{k}\right)-y_{k}\right\|$

$$
\begin{aligned}
& \min _{p}\left(\sum_{k=1}^{m}\left(\mathrm{f}\left(\boldsymbol{x}_{\boldsymbol{k}}\right)-\boldsymbol{y}_{\boldsymbol{k}}\right)^{2}\right) \\
& \min _{p}\left(-\sum_{k=1}^{m} \mathrm{f}\left(\boldsymbol{x}_{\boldsymbol{k}}\right) \log \left(\boldsymbol{y}_{\boldsymbol{k}}\right)+\left(1-\mathrm{f}\left(\boldsymbol{x}_{k}\right)\right) \log \left(1-\boldsymbol{y}_{k}\right) \quad\right. \text { (KL div) }
\end{aligned}
$$

- Alternatively, a CSP can be used:

$$
\mathrm{f}\left(\boldsymbol{x}_{k}\right) \subseteq y_{k}, \quad k=1, \ldots, m
$$

Problems encountered in ML

- Yet another possibility: find points satisfying as many constraints of the CSP, as possible.
> Adequate in the presence of outliers.
- Another problem: find all points satisfying a fuzzy predicate.
> More lists are needed there: for several alfa-cuts of the fuzzy solution set.
> Other than that, the geberalized branch-and-bound algorithm can be adopted with minor changes only.

Problems encountered in ML

- A problem with existential quantifier: find points of a dynamical system, where it has periods (of an arbitrary length).
» In particular, we can consider it for a recurrent neural network (Hopfield, LSTM, Boltzmann machine...).
${ }^{2}$ Considering a dynamical system of the form: $x_{k+1}=f\left(x_{k}\right)$, we can formulate the problem, for instance, as follows:
$\left\{x \in X \mid\left(\exists x_{1}, \ldots, x_{n} \in X\right) \wedge\left(x_{1}=f(x)\right) \wedge\left(x_{2}=f\left(x_{1}\right)\right) \wedge \cdots \wedge\left(x=f\left(x_{n}\right)\right)\right\}$
- We consider here cycles of length at most n.
» How about longer ones?
> A proper data structure: graph showing possible transitions of values.

Comments and summary

- Interval methods provide us with a toolset for solving a large variety of problems, difficult to formulate or handle using other methods.
- The author is not sure about the general requirements for the formal system, for which we can use interval methods, but it is a large class of systems (the notion of a H -continuous function might be related).
- We can adopt the generalized branch-and-bound algorithm for very sophisticated and versatile problems.
- This process can hardly be automated, as we need proper heuristics that can be designed by a humen only (only?).

Comments and summary

- This has some impact on our understanding of what computers can solve, and what human are needed to solve.
- This is fascinating, and it (probably) has some philosophical consequences.
- Nevertheless, whenever possible to reduce the problem to either optimization or CSP, it had better be done - for efficiency reasons.
- Oh, and it is worth noting that branch-and-bound type algorithms parallelize well and can utilize current hardware architectures efficiently.

