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Motivation

Robust control!
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Motivation

Guiding a launch vehicle =
Optimal Control Problem (OCP)

OCP formulation

min
u(⋅) ∫

tf

0
`(y(t),u(t), ξ)dt

s.t.

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ẏ(t) = f (y(t),u(t), ξ),
y(0) = y0,
y(tf ) ∈ Yf ,
tf is free.

Model not exact!
Depends on
● parameters ξ,
● initial state y0.
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Motivation

Hypothesis:
bounded uncertainties on
parameters and initial state.
ξ ∈ [ξ] and y0 ∈ [y0]

Dynamics with uncertainties

{
ẏ ∈ [f ](y ,u, [ξ])
y(0) ∈ [y0]

Goal: enclose optimal
trajectories, assess risks

Problem: control = infinite
dimensional unknown

time t

y0

st
at

e
y

Orange: Possible trajectories of a falling
ball with uncertainties
Grey: unsafe set
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Outline

1 Caracterization of Optimal trajectories

2 Enclosing trajectories
Validated methods
Using spatio temporal zonotopes

3 Enclosing intial co-state and switch times
Backward propagation of constraints
Inflate & Contract
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Characterization of optimal trajectories

Pontryagin’s Maximum Principle (PMP)
If (y(⋅),u(⋅)) = solution of the OCP, then ∃p(⋅) s.t.

ṗ(t) = −∂H
∂y

(y(t),p(t),u(t))

∀t ∈ [0, tf ],u(t) ∈ argmin
v∈U

H(y(t),p(t), v),
C(tf , y(tf ),p(tf )) = 0,

with H(y ,p,u) = `(y ,u) + p ⋅ f (y ,u).

Ô⇒ solution of OCP = trajectory of system ẋ(t) = g(x(t), ξ) with:

x =
⎛
⎜
⎝

t
y
p

⎞
⎟
⎠
,g =

⎛
⎜
⎜
⎜
⎝

1
f (y , argmin H, ξ)

−
∂H
∂y

(y ,p, argmin H, ξ)

⎞
⎟
⎟
⎟
⎠

argmin H → hybrid dynamics
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A simple example

Double Integrator in minimal time

min
u(t)∈[−1,1]∫

tf

0
1dt,

{
ṙ = v ,
v̇ = ξu,

r(0) = 1, r(tf ) = −1,
v(0) = v(tf ) = 0.

PMP Ô⇒ ∃pr(.),pv(.) s.t.

H(y ,p,u) = 1 + pr v + pvξu,

{
ṗr = 0,
ṗv = −pr ,

u(t) = argmin H = {
−1 if pv > 0,
1 if pv < 0.

Θ1 Θ2

pv

u

r

t

t

t

1

−1

1

−1
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Characterization of optimal trajectories

Analysis of hybrid system → find/postulate trajectory structure
→ switched system with constraints.

Optimal trajectories are caracterized by:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ẋ(t) = gn(x(t), ξ), ∀t ∈ [Θn−1,Θn]

x(0) = (
y0
p0

) ,

with constraints
Cn(x(Θn)) = 0,∀n ∈ 1..N,

Variables :
● initial co-state p0 ∈ Rn,
● transition times 0 < Θ1 < ... < ΘN = tf .

How do we enclose the solutions?
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Validated methods

Principle:
1 enclose results in sets : [π] = [3.14,3.15]
2 replace function f with inclusion function [f ] s.t.

[f ] ([a]) ⊇ {f (a)∣∀a ∈ [a]} .

Notation: [f ] = any inclusion function. It may input and output zonotopes.

Sets:

Cheap but not precise Precise but expensive Middle ground
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What is a constrained zonotope?

Zonotope:

X = [X, X̂] = {X ⋅ ε + X̂ ∶ ε ∈ [−1,1]dε}

Constrained zonotope:

XA
= [X, X̂,A, Â] = {X ⋅ ε + X̂ ∶ ε ∈ [−1,1]dε ,A ⋅ ε + Â = 0}

0 X̂

X ⋅ ε + X̂

noise symbol box [−1,1]dε Coordinate space
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Why use constrained zonotopes?

Let a zonotope X ⊂ Rd , let c ∶ Rd → R. We have :

X = {x ∈ X ∶ c(x) = 0} ⊂ XA,

with A = [c](X).

Proof: principle of symbolic zonotope

Ô⇒ ∀x ∈ X,∃ε ∈ [−1,1]dε s.t. {
x = X ⋅ ε + X̂,

c(x) = A ⋅ ε + Â.

Ô⇒ ∀x ∈ X ,∃ε ∈ [−1,1]dε s.t. {
X̂ +X ⋅ ε = x ,
Â +A ⋅ ε = 0.

Ô⇒ ∀x ∈ X , x ∈ XA.

Non symbolic zonotope → use zonotope [(
X
A ) ,(

X̂
Â )]1.

1see [Scott et al., 2016]
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How to display constrained zonotopes?

d

Bound XA

solve LP:

max
ε∈[−1,1]dε

dT
⋅ (X ⋅ ε + X̂)

s.t. A ⋅ ε + Â = 0

→ bounding plane

Pros of constrained zonotopes:
● straightforward representation of {x ∈ X ∶ c(x) = 0},
● easily embedded in zonotope based algorithms.

Cons:
● must solve LPs to get an explicit representation.
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Validated simulation

Let an uncontrolled system:

{
ẋ ∈ [g](x , [ξ])
x(0) ∈ [x0]

Validated simulation =
enclosure in a sequence of
Picard boxes (dashed) and
zonotopes (blue).

DynIbex = C++ library with
validated Runge Kutta methods
and zonotopes.

0 h 2h 3h 4h 5h 6h 7h 8h
time t

0
st

at
e
y

How to enclose the event in a single zonotope?
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Building spatio temporal zonotopes with validated Taylor

[ỹ]= Picard box that encloses all
trajectories over time range [0,h]

Subsequent derivatives of f over
[ỹ] are enclosed

A validated Taylor interpolation
yields a zonotope enclosing
trajectories over time range [0,h]

Spatio temporal zonotopes =
state + time coordinates

time t0 h

st
at
e

y

[ỹ]
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Constrained spatio temporal zonotopes

Let a variable transition time
Θ ∈ [Θ,Θ].

1 take h = Θ −Θ,
2 enclose trajectories over

[Θ,Θ] in a zonotope,
3 add C(x(Θ)) = 0 as
constraints,

4 propagate constraints
backward with guaranteed
linearization.

Problem : how do we know
bounds Θ and Θ?

Θ  Θ

Dashed: spatio temporal zonotopes
Plain: zonotopes + optimality condition

17/24 - Robust Optimal Control



Outline

1 Caracterization of Optimal trajectories

2 Enclosing trajectories
Validated methods
Using spatio temporal zonotopes

3 Enclosing intial co-state and switch times
Backward propagation of constraints
Inflate & Contract

18/24 - Robust Optimal Control



Backward propagation of constraints

Define flow Φ0,τ(p0,Θ) = integrating system:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ẋ(t) = gn(x(t), ξ), ∀t ∈ [Θn−1,Θn]

x(0) = (
y0
p0

) ,

until time τ .

Optimality condition = constraint functions:

Cn(Φ0,Θn(p0,Θ)) = 0,∀n ∈ 1..N,

Goal: apply validated Taylor at order 0:

∀x ∈ X, f (x) ∈ f (X̂) + [∇f ](X) ⋅ (X − X̂),

with f = Cn ○Φ0,τ .
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Backward propagation of constraints

∇Φ0,τ = R0,τ solution of:

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = g(x(t))
Ṙ0,t(x0) =

∂g
∂x

(x(t)) ⋅ R0,t(x0)

x(0) = x0
R0,0(x0) = In.

Validated simulation → [∇Φ0,τ ]
→ [Cn ○Φ0,τ ]

→ XA with X enclosure of p0 or Θ,A = [Cn ○Φ0,τ ](X)

Constraint are propagated backward to time 0.
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Enclosing variables with an inflate & contract method

Problem : need an enclosure of the variables.

initial co-state p0

tr
an

si
ti

on
ti

m
e

Θ

Inflate & contract method:

Start with a box enclosing
numerical solutions, inflate it
until it contains all solutions.

Contract the box with fixed
point iterations.

→ enclosure of all variables

→ self started method
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Back to aerospace problems

Consider a simple take-off
problem:

Goddard’s problem

min
u(⋅) ∫

tf

0
∣u∣dt

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ(t) = v ,
v̇(t) = − G

r2 +
Cu
m ,

ṁ(t) = −b∣u∣,
y(0) = y0
r(tf ) = rf ,
v(tf ),m(tf ), tf
are free.

0 .Θ1 .Θ2

time t

r0

rf

h
ei

gh
t
r

Orange: trajectories for various values of the
parameters. They are enclosed as intended.
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Conclusion

Our method:
1 OCP → uncontrolled switched system,
2 enclose system at transition time with spatio temporal zonotopes,
3 add optimality conditions as constraints, propagate them backward,
4 inflate & contract method.

We find an enclosure of optimal trajectories.

Future works:
● more complex aerospace problems,
● decrease the over approximation.
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Thank you for your attention
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