Affine Iterations and Wrapping Effect: an Approach Based on the SVD

Nathalie Revol
University of Lyon - INRIA - LIP, ENS Lyon - France Nathalie.Revol@inria.fr

International Online Seminar on Interval Methods in Control Engineering 2021-12-17

Linear IIR filters

Linear Infinite Impulse Response filter

Let's consider a system with inputs u_{n} and states x_{n} at (discrete) time steps $n(n \in \mathbb{N})$.
Each state x_{n} depends linearly on the last inputs u_{n-l}, with $1 \leq I \leq L-1$ and also on the K previous states.

$$
x_{n}=\sum_{k=0}^{K-1} a_{k} * x_{n-k}+\sum_{l=1}^{L-1} c_{l} * u_{n-l}
$$

The problematic example: linear IIR filter

Linear Infinite Impulse Response filter
$u_{n} \in \boldsymbol{x}$ are the inputs of the system and x_{n} the states at time steps n.

$$
x_{n}=1.8 * x_{n-1}-0.9 * x_{n-2}+4.7 .10^{-2} *\left(u_{n-2}+u_{n-1}+u_{n}\right)
$$

Question: if the interval \boldsymbol{u} is given for the u_{n}, determine an interval x containing every state x_{n}, for any n.
Preferably a small $\boldsymbol{x} \ldots$
Here: $\boldsymbol{u}=[9.95,10.05]$.

The problematic example: divergence of the interval simulation

$x_{n}=1.8 * x_{n-1}-0.9 * x_{n-2}+4.7 .10^{-2} *\left(u_{n-2}+u_{n-1}+u_{n}\right)$
with $u=9.95+[0,0.1]$
gives larger and larger intervals.
Even if it is asymptotically stable (the moduli of the roots of the characteristic polynomial are <0.95)...
One can even prove the interval simulation diverges (well, it converges to $[-\infty,+\infty]$).

The troublesome property

$$
w(\boldsymbol{a} \pm \boldsymbol{b})=w(\boldsymbol{a})+w(\boldsymbol{b})
$$

$$
\begin{aligned}
x_{n}= & 1.8 * x_{n-1}-0.9 * x_{n-2} \\
& +4.7 .10^{-2} *\left(u_{n-2}+u_{n-1}+u_{n}\right)
\end{aligned}
$$

Let's consider the width of the intervals:

$$
\begin{aligned}
w\left(x_{n}\right)= & 1.8 * w\left(x_{n-1}\right)+0.9 * w\left(x_{n-2}\right) \\
& +4.7 .10^{-2} *\left(w\left(u_{n-2}\right)+w\left(u_{n-1}\right)+w\left(u_{n}\right)\right)
\end{aligned}
$$

The recurrence satisfied by the widths diverges (the moduli of the roots of the characteristic polynomial are $\simeq 0.4$ and $\simeq 2.2$).

Another formulation matrix powers

$x_{n}=1.8 * x_{n-1}-0.9 * x_{n-2}+4.7 .10^{-2} *\left(u_{n-2}+u_{n-1}+u_{n}\right)$
can also be written as

$$
\binom{x_{n-1}}{x_{n}}=\left(\begin{array}{cc}
0 & 1 \\
-0.9 & 1.8
\end{array}\right) \times\binom{ x_{n-2}}{x_{n-1}}+\binom{0}{0.047 * 3 * \boldsymbol{u}}
$$

$\rho\left(A^{2}\right) \simeq 0.90$ whereas $\rho\left(\left|A^{2}\right|\right) \simeq 3.5$
$\rho\left(A^{3}\right) \simeq 0.85$ whereas $\rho\left(\left|A^{3}\right|\right) \simeq 4.4$
$\rho\left(A^{4}\right) \simeq 0.81$ whereas $\rho\left(\left|A^{4}\right|\right) \simeq 4.8$
$\rho\left(A^{5}\right) \simeq 0.77$ whereas $\rho\left(\left|A^{5}\right|\right) \simeq 4.7$
$\rho\left(A^{6}\right) \simeq 0.73$ whereas $\rho\left(\left|A^{6}\right|\right) \simeq 4.2$
$\rho\left(A^{7}\right) \simeq 0.69$ whereas $\rho\left(\left|A^{7}\right|\right) \simeq 3.4$
$\rho\left(A^{8}\right) \simeq 0.66$ whereas $\rho\left(\left|A^{8}\right|\right) \simeq 2.3$
$\rho\left(A^{9}\right) \simeq 0.62$ whereas $\rho\left(\left|A^{9}\right|\right) \simeq 1.3$
$\rho\left(A^{10}\right) \simeq 0.59$ whereas $\rho\left(\left|A^{10}\right|\right) \simeq 0.78$
$\rho\left(A^{19}\right) \simeq 0.63$ whereas $\rho\left(\left|A^{19}\right|\right) \simeq 0.37$
and $\forall k \geq 19, \rho\left(\left|A^{k}\right|\right)<1$.

Interpretation

Computing every 10 (or 19) time steps with A^{10} (or A^{19}) as the matrix of the recurrence can be simulated using interval arithmetic! In other words, the time step should be 10 (or 19) times larger.

Another formulation

matrix powers
$x_{n+1}=\sum_{k=0}^{K-1} a_{k} * x_{n-k}+\sum_{l=0}^{L-1} c_{l} * u_{n-l}$ can also be written as

$$
\begin{aligned}
\left(\begin{array}{l}
x_{n-K+2} \\
\vdots \\
x_{n+1}
\end{array}\right) & =\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & \cdots & 0 \\
0 & 0 & 1 & 0 & & 0 \\
\vdots & & \ddots & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & \ldots & 0 & 1 \\
a_{K-1} & a_{K-2} & \cdots & \ldots & a_{1} & a_{0}
\end{array}\right) \times\left(\begin{array}{l}
x_{n-K+1} \\
\vdots \\
x_{n}
\end{array}\right) \\
& +\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
c^{t} . \boldsymbol{u}
\end{array}\right)
\end{aligned}
$$

State of the art convergence of interval matrix powers

- Formalism: $\boldsymbol{x}_{n+1}=\boldsymbol{A} \cdot \boldsymbol{x}_{n}+\boldsymbol{b}$.
- Problem: convergence of A^{k} where A is the matrix defining the recurrence.
- Mayer and Warnke 2003, Guu and Pang 2004: divergence when $\rho(|A|)>1$, even when $\rho(A)<1$: stable filter.

Solution: general case

Theorem

There exists a index k_{0} such that, $\forall k \geq k_{0}, A^{k}$ satisfies $\rho\left(\left|A^{k}\right|\right)<1$, which ensures the convergence of the simulation using interval arithmetic.

Choice of k_{0} ?
Current method:
compute A^{k} and $\rho\left(\left|A^{k}\right|\right)$ until it is <1, then choose this k as the time step.
Problem:
there exists no formula to deduce k_{0} from the coefficients of A.

Agenda

Iterations and Wrapping Effect Brief history

Experimental results

Conclusion

Conclusion and future work References

The considered problem: $x_{n+1}=A x_{n}+b$

Let A be an $d \times d$ matrix, $x_{0} \in \mathbb{R}^{d}, b \in \mathbb{R}^{d}$.
Problem: compute the iterates

$$
x_{n+1}=A x_{n}+b, x_{0} \text { given }
$$

Variants:

- let x_{0} and b be known with uncertainties: $x_{0} \in x_{0}, b \in \boldsymbol{b}$, compute $x_{n+1}=A x_{n}+b$,
- account for roundoff errors,
- let A be known with uncertainties: $A \in A$.

Ubiquity of the Wrapping Effect (after Lohner, 2001)

Figure 1: Wrapping effect for the harmonic oscillator.

Ubiquity of the Wrapping Effect (after Lohner, 2001)

Where does the Wrapping Effect appear?

- matrix-vector iterations: $x_{n+1}=A_{n} x_{n}+b_{n}, x_{0} \in \mathbb{R}^{n}$;
- discrete dynamical systems: $x_{n+1}=f\left(x_{n}\right), x_{0}$ given and f sufficiently smooth;
- continuous dynamical systems (ODEs): $x^{\prime}(t)=g(t, x(t))$, $x(0)=x_{0}$, which is studied through a numerical one step method (or more) of the kind $x_{n+1}=x_{n}+h \Phi\left(x_{n}, t_{n}\right)+z_{n+1}$;
- difference equations: $a_{0} z_{n}+a_{1} z_{n+1}+\ldots+a_{m} z_{n+m}=b_{n}$ with $z_{0}, \ldots z_{m}$ given;
- linear systems with (banded) triangular matrix;
- automatic differentiation.

The matrix-vector iteration is archetypal of the wrapping effect in all of these cases.

Agenda

Iterations and Wrapping Effect Brief history

Two preconditionings
QR
SVD
Lohner' QR
Experimental results
Conclusion
Conclusion and future work
References

Coordinate transformations

Well-known problem with the power method: x_{n} becomes aligned with the eigenvector corresponding to the largest eigenvalue (in module).

Principle: replace

$$
x_{n+1}=A x_{n}+b
$$

by

$$
\begin{aligned}
x_{n+1} & =B y_{n+1} \\
y_{n+1} & =B^{-1} A B y_{n}+B^{-1} \boldsymbol{b}
\end{aligned}
$$

Choice of B ?
Discussion: better choose an orthogonal transformation.

```
QR
SVD
Lohner' QR
```


$Q R$-preconditioning

Principle: Factor A as $A=Q R$ with Q orthogonal :
$Q^{-1}=Q^{T}$, and R upper triangular.
In

$$
x_{n+1}=A x_{n}+b
$$

replace x_{n} by
$\left\{\begin{array}{ll}x_{n} & =Q y_{n} \\ y_{n+1} & =R Q y_{n}+Q^{T} \boldsymbol{b}\end{array} \Leftrightarrow y_{n}=Q^{T} x_{n}\right.$ and thus $y_{n}=Q^{T} x_{n}$

$Q R$-preconditioning

Iteration:

$$
\begin{cases}y_{n} & =Q^{T} x_{n} \\ y_{n+1} & =R Q y_{n}+Q^{T} b\end{cases}
$$

Theoretical results:

$$
\begin{aligned}
w\left(y_{n}\right) \leq & \operatorname{cond}\left(Q^{T} P\right)^{n} \rho(A)^{n} w\left(y_{0}\right) \\
& +\frac{\operatorname{cond}\left(Q^{T} P\right)^{n-1} \rho(A)^{n-1}-1}{\operatorname{cond}\left(Q^{T} P\right) \rho(A)-1} w(\boldsymbol{b}) \\
& +\left|Q^{T}\right| w(b)
\end{aligned}
$$

where A diagonalizable: $A=P \wedge P^{-1}$.

```
SVD
Lohner' QR
```


SVD-preconditioning

(idea also present in Beaumont, 2000)

Idea: choose B which is orthogonal and iterate with $B A$.
Principle: Factor A as $A=U D V^{\top}$ with U and V orthogonal, and D diagonal.

In

$$
x_{n+1}=A x_{n}+b
$$

replace x_{n} by
$\left\{\begin{array}{ll}x_{n} & =U y_{n} \\ y_{n+1} & =U^{T} A U y_{n}+U^{T} \boldsymbol{b}\end{array} \Leftrightarrow y_{n}=U^{T} x_{n}\right.$ and thus $y_{n}=U^{T} x_{n}$

Similarly, SVD-preconditioning

Principle: U and V play similar roles, choose V :
Factor A as $A=U D V^{T}$ with U and V orthogonal, and D diagonal.
In

$$
x_{n+1}=A x_{n}+b
$$

replace x_{n} by
$\left\{\begin{array}{ll}x_{n} & =V y_{n} \\ y_{n+1} & =V^{T} A V y_{n}+V^{\top} \boldsymbol{b}\end{array} \Leftrightarrow y_{n}=V^{\top} x_{n}\right.$ and thus $y_{n}=V^{\top} x_{n}$

SVD-preconditioning

Iteration:
$\left\{\begin{array}{ll}x_{n} & =U y_{n} \\ y_{n+1} & =D V U^{T} y_{n}+U^{\top} \boldsymbol{b}\end{array} \Leftrightarrow y_{n}=U^{\top} x_{n}\right.$ and thus $y_{n}=U^{\top} x_{n}$
Theoretical results:

$$
\begin{aligned}
w\left(y_{n}\right) \leq & (\operatorname{cond}(P) d \rho(A)))^{n} E w\left(y_{0}\right) \\
& +\frac{(\operatorname{cond}(P) d \rho(\boldsymbol{A}))^{n-1}-1}{\operatorname{cond}(P) d \rho(A)-1}\|w(\boldsymbol{b})\| e \\
& +\|w(\boldsymbol{b})\| e
\end{aligned}
$$

where $A d \times d$ diagonalizable: $A=P \wedge P^{-1}$,
E the matrix of 1 s and e the vector of 1 s .

Classical approach: Lohner's $Q R$-preconditioning

 (after Lohner, and Nedialkov\&Jackson, 2001)Principle: at each step, perform a $Q R$ factorization.
In

$$
x_{n+1}=A x_{n}+b
$$

replace x_{n} by
$\left\{\begin{array}{ll} & x_{n}=Q_{n} y_{n} \\ \text { with the factorization } & B_{n}=Q_{n} R_{n} \\ B_{n+1}=R_{n} Q_{n} \\ y_{n+1}=B_{n+1} y_{n}+Q_{n}^{T} \boldsymbol{b}\end{array} \Leftrightarrow y_{n}=Q_{n}^{T} x_{n}\right.$
with $Q_{0} R_{0}=A$.

Classical approach: Lohner's $Q R$-preconditioning

 (after Lohner, and Nedialkov\&Jackson, 2001)Iteration:

$$
\begin{cases}\text { with the factorization } & B_{n}=Q_{n} R_{n} \\ & B_{n+1}=R_{n} Q_{n} \\ & y_{n+1}=B_{n+1} y_{n}+Q_{n}^{T} b\end{cases}
$$

Theoretical results:

$$
\begin{aligned}
w\left(y_{n}\right) \leq & \operatorname{cond}\left(Q^{T} P\right) \rho(A)^{n} w\left(y_{0}\right) \\
& +\frac{\operatorname{cond}\left(Q^{T} P\right) \rho(A)^{n-1}-1}{\operatorname{cond}\left(Q^{T} P\right) \rho(A)-1} w(b) \\
& +\left|Q^{T}\right| w(b)
\end{aligned}
$$

where A diagonalizable: $A=P \wedge P^{-1}$.

Agenda

Iterations and Wrapping Effect Brief history
 Two preconditionings QR
 SVD
 Lohner' QR

Experimental results
Conclusion
Conclusion and future work References

Experimental setup

Software: Octave with the interval package.
(Not shown here: similar results with Matlab and Rump's Intlab, even with affine arithmetic.)

Matrices:

- matrix with a prescribed condition number e^{κ} :

A=gallery("randsvd", d, exp(kappa));

- unscaling: A is replaced by D.A. D^{-1} where D is diagonal, with elements varying from 10 to 10^{s} (s is the scaling factor);
- usually such unscaling degrades the previously prescribed condition number.

Well-conditioned and well-scaled matrix

 A $100 \times 100,100$ iterates, kappa $=2, s=2$
$\rho(A) \simeq 0.554, \rho(|A|) \simeq 3.955, \operatorname{cond}(A) \simeq 370, \operatorname{cond}(P) \simeq 350$.
In black: "bare" iterations, in green: k-power with $k=4$, in cyan:
QR, in blue: Lohner's QR, in red and magenta: SVD.

III-conditioned and well-scaled matrix A $100 \times 100,100$ iterates, kappa $=10, s=2$

$\rho(A) \simeq 0.208, \rho(|A|) \simeq 1.808, \operatorname{cond}(A) \simeq 610^{5}, \operatorname{cond}(P) \simeq 10^{3}$.
In black: "bare" iterations, in green: k -power with $k=2$, in cyan:
QR, in blue: Lohner's $Q R$, in red and magenta: SVD.

III-conditioned and well-scaled matrix A $100 \times 100,50$ iterates, $k a p p a=10, s=2$

$\rho(A) \simeq 0.208, \rho(|A|) \simeq 1.808, \operatorname{cond}(A) \simeq 610^{5}, \operatorname{cond}(P) \simeq 10^{3}$.
In black: "bare" iterations, in green: k-power with $k=2$, in cyan:
QR, in blue: Lohner's QR, in red and magenta: SVD.

Well-conditioned and ill-scaled matrix

 A $100 \times 100,100$ iterates, kappa $=2, s=10$
$\rho(A) \simeq 0.527, \rho(|A|) \simeq 3.968, \operatorname{cond}(A) \simeq 610^{17}, \operatorname{cond}(P) \simeq 10^{10}$.
In black: "bare" iterations, in green: k-power with $k=3$, in cyan:
QR, in blue: Lohner's QR, in red and magenta: SVD.

III-conditioned and ill-scaled matrix A $100 \times 100,100$ iterates, $k a p p a=10, s=10$

$\rho(A) \simeq 0.223, \rho(|A|) \simeq 1.828, \operatorname{cond}(A) \simeq 210^{21}, \operatorname{cond}(P) \simeq 10^{11}$.
In black: "bare" iterations, in green: k-power with $k=2$, in cyan:
QR, in blue: Lohner's QR, in red and magenta: SVD.

Comparison of the different methods large number of iterations $(n=100)$

	well-scaled	ill-scaled
	$\mathrm{LQR} \gg$ brut $>$	brut $>\mathrm{LQR}>$
well-conditioned	$\mathrm{SVD} \gg \mathrm{QR}$	$\mathrm{SVD}>\mathrm{QR}$
	$\mathrm{LQR}>\mathrm{SVD} \gg \mathrm{LQR}>$ brut $>$	
ill-conditioned	$\mathrm{QR} \gg$ brut	SVD $>\mathrm{QR}$

brut $=$ no preconditioning - LQR $=$ Lohner's QR - SVD $=$ one of the SVD preconditioning - QR $=\mathrm{QR}$ preconditioning

Comparison of the different methods small number of iterations $(10 \geq n \geq 20)$

	well-scaled	ill-scaled
	brut $>$ SVD $>$	brut $>$ SVD $>$
well-conditioned	$\mathrm{LQR}>\mathrm{QR}$	$\mathrm{LQR}>\mathrm{QR}$
	$\mathrm{LQR} \simeq$ SVD $>$	brut $>\mathrm{SVD} \simeq$
ill-conditioned	$\mathrm{QR}>$ brut	$\mathrm{LQR}>\mathrm{QR}$

brut $=$ no preconditioning - LQR $=$ Lohner's QR - SVD $=$ one of the SVD preconditioning - QR $=\mathrm{QR}$ preconditioning

Comparison of the different methods

- when the naïve method works best: use it, it is the cheapest one (well-conditioned matrices);
- when the matrix is ill-conditioned and well-scaled: Lohner's QR and SVD give the best results, however
- each iteration of Lohner's QR requires $\mathcal{O}\left(d^{3}\right)$ operations $\Rightarrow \mathcal{O}\left(n . d^{3}\right)$ operations in total,
- SVD requires one SVD factorization: $\mathcal{O}\left(d^{3}\right)$ operations, then each iteration needs $\mathcal{O}\left(d^{2}\right)$ operations only, thus $\Rightarrow \mathcal{O}\left(d^{3}+n \cdot d^{2}\right)$ operations in total;
- when the matrix is ill-conditioned and ill-scaled: Lohner's QR is the method of choice.

Agenda

Iterations and Wrapping Effect Brief history

Two preconditionings QR SVD Lohner' QR

Experimental results
Conclusion
Conclusion and future work References

Conclusion

Problem: matrix-vector iteration compute $x_{n+1}=A x_{n}+b$ with uncertainty on x_{n} and b.

Difficulty: wrapping effect.

Considered solutions:

- determine k such that A^{k} gives no difficulty with interval arithmetic: $\rho\left(\left|A^{k}\right|\right)<1$;
- orthogonal coordinate transformation: using QR or SVD.

Experimental results:

- divergence except for the "k-power" method,
- when the matrix is well-conditioned: do not use anything sophisticated;
- when the matrix is ill-conditioned and well-scaled: Lohner's QR and SVD give the best results, SVD is cheaper;
- when the matrix is ill-conditioned and ill-scaled: Lohner's QR

Future work

- compare more thoroughly with affine arithmetic;
- investigate more properties of SVD decomposition, to get a nice theoretical bounds (as the one for Lohner's QR);
- expand the set of test matrices, use real-life ones:
- taken from the integration of ODEs: $A=I+h B$ with h small,
- taken from real-life control theory: A companion, take benefit from the zeros
- experiment with interval matrix A
- experiment with the numerical quality of the SVD, with certified SVD (van der Hoeven\&Yakoubsohn, 2018)

References 1 /3

Software: Octave and interval package from Oliver Heimlich. Also used, but more anecdotically (for the time being): Intlab, the Matlab package by Siegfried Rump.

Bibliography:

- H-R. Arndt \& G. Mayer: On the semi-convergence of interval matrices, Linear Algebra and its Applications, vol. 393, pp. 15-35, 2004.
- O. Beaumont: Solving Interval Linear Systems with Oblique Boxes, preprint Irisa no 1315, 2000.
- N.J. Higham: QR factorization with complete pivoting and accurate computation of the SVD, Linear Algebra and its Applications, vol. 309, pp. 153-174, 2000.
- M. Hladik, D. Daney \& E. Tsigaridas: Bounds on Real Eigenvalues and Singular Values of Interval Matrices, SIAM J. Matrix Analysis and Applications, vol. 31, no. 4, pp. 2116-2129,

References 2/3

Bibliography:

- I. Lewkowicz: Bounds for the Singular Values of a Matrix with Nonnegative Eigenvalues, Linear Algebra and its Applications, vol. 112, pp. 29-37, 1989.
- R. Lohner: On the Ubiquity of the Wrapping Effect in the Computation of Error Bounds, Perspectives on Enclosures Methods, Kulisch, Lohner, Facius eds, Springer, pp. 201-217, 2001.
- G. Mayer \& I. Warnke: On the fixed points of the interval function $[f]([x])=[A][x]+[b]$, Linear Algebra and its Applications, vol. 363, pp 201-216, 2003.

References 3/3

Bibliography:

- N. Nedialkov \& K. Jackson: A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations, Perspectives on Enclosures Methods, Kulisch, Lohner, Facius eds, Springer, pp. 219-264, 2001.
- A. Neumaier: Solving III-Conditioned and Singular Linear Systems: a Tutorial on Regularization, SIAM Review, vol. 40, no. 3, pp. 636-666, 1998.
- J. van der Hoeven \& J-C. Yakoubsohn: Certified Singular Value Decomposition, preprint 2018, https://hal.archives-ouvertes.fr/hal-01941987.

