Affine Iterations and Wrapping Effect: an Approach Based on the SVD

Nathalie Revol University of Lyon - INRIA - LIP, ENS Lyon - France Nathalie.Revol@inria.fr

International Online Seminar on Interval Methods in Control Engineering 2021-12-17

Linear IIR filters

Linear Infinite Impulse Response filter

Let's consider a system with inputs u_n and states x_n at (discrete) time steps n ($n \in \mathbb{N}$).

Each state x_n depends linearly on the last inputs u_{n-1} , with $1 \le l \le L-1$ and also on the K previous states.

$$x_n = \sum_{k=0}^{K-1} a_k * x_{n-k} + \sum_{l=1}^{L-1} c_l * u_{n-l}$$

The problematic example: linear IIR filter

Linear Infinite Impulse Response filter

 $u_n \in x$ are the inputs of the system and x_n the states at time steps n.

$$x_n = 1.8 * x_{n-1} - 0.9 * x_{n-2} + 4.7.10^{-2} * (u_{n-2} + u_{n-1} + u_n)$$

Question: if the interval u is given for the u_n , determine an interval x containing every state x_n , for any n. Preferably a small x... Here: u = [9.95, 10.05].

The problematic example: divergence of the interval simulation

 $x_n = 1.8 * x_{n-1} - 0.9 * x_{n-2} + 4.7.10^{-2} * (u_{n-2} + u_{n-1} + u_n)$ with u = 9.95 + [0, 0.1]gives larger and larger intervals.

Even if it is asymptotically stable (the moduli of the roots of the characteristic polynomial are < 0.95)...

One can even prove the interval simulation diverges (well, it converges to $[-\infty, +\infty]$).

The troublesome property

$$w(a\pm b) = w(a) + w(b)$$

$$x_n = 1.8 * x_{n-1} - 0.9 * x_{n-2} +4.7.10^{-2} * (u_{n-2} + u_{n-1} + u_n)$$

Let's consider the width of the intervals:

$$w(x_n) = 1.8 * w(x_{n-1}) + 0.9 * w(x_{n-2}) + 4.7.10^{-2} * (w(u_{n-2}) + w(u_{n-1}) + w(u_n))$$

The recurrence satisfied by the widths diverges (the moduli of the roots of the characteristic polynomial are $\simeq 0.4$ and $\simeq 2.2$).

Another formulation matrix powers

 $x_n = 1.8 * x_{n-1} - 0.9 * x_{n-2} + 4.7.10^{-2} * (u_{n-2} + u_{n-1} + u_n)$ can also be written as

$$\begin{pmatrix} x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -0.9 & 1.8 \end{pmatrix} \times \begin{pmatrix} x_{n-2} \\ x_{n-1} \end{pmatrix} + \begin{pmatrix} 0 \\ 0.047 * 3 * u \end{pmatrix}$$

first solution

$$\rho(A) \simeq 0.94$$
 whereas $\rho(|A|) \simeq 2.2$
 $\rho(A^2) \simeq 0.90$ whereas $\rho(|A^2|) \simeq 3.5$
 $\rho(A^3) \simeq 0.85$ whereas $\rho(|A^3|) \simeq 4.4$
 $\rho(A^4) \simeq 0.81$ whereas $\rho(|A^4|) \simeq 4.8$
 $\rho(A^5) \simeq 0.77$ whereas $\rho(|A^6|) \simeq 4.7$
 $\rho(A^6) \simeq 0.73$ whereas $\rho(|A^6|) \simeq 4.2$
 $\rho(A^7) \simeq 0.69$ whereas $\rho(|A^6|) \simeq 3.4$
 $\rho(A^8) \simeq 0.66$ whereas $\rho(|A^8|) \simeq 2.3$
 $\rho(A^9) \simeq 0.62$ whereas $\rho(|A^{10}|) \simeq 1.3$
 $\rho(A^{10}) \simeq 0.59$ whereas $\rho(|A^{10}|) \simeq 0.78$
 $\rho(A^{19}) \simeq 0.63$ whereas $\rho(|A^{19}|) \simeq 0.37$
and $\forall k \ge 19$, $\rho(|A^k|) < 1$.

Δ

Interpretation

Computing every 10 (or 19) time steps with A^{10} (or A^{19}) as the matrix of the recurrence can be simulated using interval arithmetic! In other words, the time step should be 10 (or 19) times larger.

Another formulation

matrix powers $x_{n+1} = \sum_{k=0}^{K-1} a_k * x_{n-k} + \sum_{l=0}^{L-1} c_l * u_{n-l} \text{ can also be written as}$

$$\begin{pmatrix} x_{n-K+2} \\ \vdots \\ x_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & \dots & \dots & 0 \\ 0 & 0 & 1 & 0 & & 0 \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & \dots & 0 & 1 \\ a_{K-1} & a_{K-2} & \dots & \dots & a_1 & a_0 \end{pmatrix} \times \begin{pmatrix} x_{n-K+1} \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ c^t.u \end{pmatrix}$$

State of the art convergence of interval matrix powers

- Formalism: $x_{n+1} = A \cdot x_n + b$.
- Problem: convergence of A^k where A is the matrix defining the recurrence.
- Mayer and Warnke 2003, Guu and Pang 2004: divergence when $\rho(|A|) > 1$, even when $\rho(A) < 1$: stable filter.

Solution: general case

Theorem

```
There exists a index k_0 such that, \forall k \ge k_0, A^k satisfies \rho(|A^k|) < 1, which ensures the convergence of the simulation using interval arithmetic.
```

Choice of k_0 ?

Current method:

```
compute A^k and \rho(|A^k|) until it is < 1, then choose this k as the time step.
```

Problem:

there exists no formula to deduce k_0 from the coefficients of A.

Agenda

Iterations and Wrapping Effect Brief history

- Two preconditionings
 - QR SVD
- Experimental results
- Conclusion Conclusion and future work References

Iterations and Wrapping Effect

Two preconditionings Experimental results Conclusion

Brief history

The considered problem: $x_{n+1} = Ax_n + b$

Let A be an $d \times d$ matrix, $x_0 \in \mathbb{R}^d$, $b \in \mathbb{R}^d$. Problem: compute the iterates

$$x_{n+1} = Ax_n + b, x_0$$
 given

Variants:

- ▶ let x_0 and b be known with uncertainties: $x_0 \in x_0$, $b \in b$, compute $x_{n+1} = Ax_n + b$,
- account for roundoff errors,
- let A be known with uncertainties: $A \in A$.

Iterations and Wrapping Effect

Two preconditionings Experimental results Conclusion

Brief history

Ubiquity of the Wrapping Effect (after Lohner, 2001)

Figure 1: Wrapping effect for the harmonic oscillator.

Two preconditionings Experimental results Conclusion

Ubiquity of the Wrapping Effect (after Lohner, 2001)

Where does the Wrapping Effect appear?

- matrix-vector iterations: $x_{n+1} = A_n x_n + b_n$, $x_0 \in I\mathbb{R}^n$;
- discrete dynamical systems: x_{n+1} = f(x_n), x₀ given and f sufficiently smooth;
- continuous dynamical systems (ODEs): x'(t) = g(t, x(t)), x(0) = x₀, which is studied through a numerical one step method (or more) of the kind x_{n+1} = x_n + hΦ(x_n, t_n) + z_{n+1};
- difference equations: $a_0z_n + a_1z_{n+1} + \ldots + a_mz_{n+m} = b_n$ with $z_0, \ldots z_m$ given;
- linear systems with (banded) triangular matrix;
- automatic differentiation.

The matrix-vector iteration is archetypal of the wrapping effect in all of these cases.

Iterations and Wrapping Effect

Two preconditionings Experimental results Conclusion

Brief history

Agenda

Iterations and Wrapping Effect Brief history

- Two preconditionings QR SVD Lohner' QR
- Experimental results
- Conclusion Conclusion and future work References

Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

Coordinate transformations

Well-known problem with the power method: x_n becomes aligned with the eigenvector corresponding to the largest eigenvalue (in module).

Principle: replace

$$\boldsymbol{x}_{n+1} = A\boldsymbol{x}_n + \boldsymbol{b}$$

by

$$\begin{array}{rcl} \boldsymbol{x}_{n+1} &=& \boldsymbol{B}\boldsymbol{y}_{n+1} \\ \boldsymbol{y}_{n+1} &=& \boldsymbol{B}^{-1}\boldsymbol{A}\boldsymbol{B}\boldsymbol{y}_n + \boldsymbol{B}^{-1}\boldsymbol{b} \end{array}$$

Choice of B?

Discussion: better choose an orthogonal transformation.

Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

QR-preconditioning

Principle: Factor A as A = QR with Q orthogonal : $Q^{-1} = Q^T$, and R upper triangular.

In

$$x_{n+1} = Ax_n + b$$

replace x_n by

$$\begin{cases} x_n = Qy_n \Leftrightarrow y_n = Q^T x_n \text{ and thus } y_n = Q^T x_n \\ y_{n+1} = RQy_n + Q^T b \end{cases}$$

Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

QR-preconditioning

Iteration:

$$\begin{cases} \mathbf{y}_n = \mathbf{Q}^T \mathbf{x}_n \\ \mathbf{y}_{n+1} = \mathbf{R} \mathbf{Q} \mathbf{y}_n + \mathbf{Q}^T \mathbf{b} \end{cases}$$

Theoretical results:

$$w(\mathbf{y}_n) \leq \operatorname{cond}(Q^T P)^n \rho(A)^n w(\mathbf{y}_0) \\ + \frac{\operatorname{cond}(Q^T P)^{n-1} \rho(A)^{n-1} - 1}{\operatorname{cond}(Q^T P) \rho(A) - 1} w(\mathbf{b}) \\ + |Q^T| w(\mathbf{b})$$

where A diagonalizable: $A = P\Lambda P^{-1}$.

Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

SVD-preconditioning

(idea also present in Beaumont, 2000)

Idea: choose B which is orthogonal and iterate with BA.

Principle: Factor A as $A = UDV^T$ with U and V orthogonal, and D diagonal.

In

$$x_{n+1} = Ax_n + b$$

replace x_n by

$$\begin{cases} x_n = Uy_n & \Leftrightarrow y_n = U^T x_n \text{ and thus } y_n = U^T x_n \\ y_{n+1} = U^T A U y_n + U^T b \end{cases}$$

Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

QR <mark>SVD</mark> Lohner' QR

Similarly, SVD-preconditioning

Principle: U and V play similar roles, choose V: Factor A as $A = UDV^T$ with U and V orthogonal, and D diagonal. In

$$x_{n+1} = Ax_n + b$$

replace x_n by

$$\begin{cases} x_n = Vy_n & \Leftrightarrow y_n = V^T x_n \text{ and thus } y_n = V^T x_n \\ y_{n+1} = V^T A V y_n + V^T b \end{cases}$$

Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

QR <mark>SVD</mark> Lohner' QR

SVD-preconditioning

Iteration:

$$\begin{cases} x_n = Uy_n \\ y_{n+1} = DVU^Ty_n + U^Tb \end{cases} \Leftrightarrow y_n = U^Tx_n \text{ and thus } y_n = U^Tx_n$$

Theoretical results:

$$w(\mathbf{y}_n) \leq (\operatorname{cond}(P)d\rho(A)))^n Ew(\mathbf{y}_0) \\ + \frac{(\operatorname{cond}(P)d\rho(A))^{n-1}-1}{\operatorname{cond}(P)d\rho(A)-1} \|w(\mathbf{b})\|e \\ + \|w(\mathbf{b})\|e$$

where $A \ d \times d$ diagonalizable: $A = P \Lambda P^{-1}$, *E* the matrix of 1s and *e* the vector of 1s.

> Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

Classical approach: Lohner's QR-preconditioning

(after Lohner, and Nedialkov&Jackson, 2001)

Principle: at each step, perform a *QR* factorization.

In

$$x_{n+1} = Ax_n + b$$

replace x_n by

 $\begin{cases} x_n = Q_n y_n \qquad \Leftrightarrow y_n = Q_n^T x_n \\ \text{with the factorization} \qquad B_n = Q_n R_n \\ B_{n+1} = R_n Q_n \\ y_{n+1} = B_{n+1} y_n + Q_n^T b \end{cases}$

with $Q_0 R_0 = A$.

Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

Classical approach: Lohner's QR-preconditioning

(after Lohner, and Nedialkov&Jackson, 2001)

Iteration:

 $\begin{cases} \text{ with the factorization } B_n &= Q_n R_n \\ B_{n+1} &= R_n Q_n \\ y_{n+1} &= B_{n+1} y_n + Q_n^T b \end{cases}$

Theoretical results:

$$w(\boldsymbol{y}_n) \leq \operatorname{cond}(Q^T P)\rho(A)^n w(\boldsymbol{y}_0) \\ + \frac{\operatorname{cond}(Q^T P)\rho(A)^{n-1}-1}{\operatorname{cond}(Q^T P)\rho(A)-1} w(\boldsymbol{b}) \\ + |Q^T|w(\boldsymbol{b})$$

where A diagonalizable: $A = P \Lambda P^{-1}$.

Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

Agenda

Iterations and Wrapping Effect Brief history

Two preconditionings QR SVD Lohner' QR

Experimental results

Conclusion Conclusion and future work References

Experimental setup

Software: Octave with the interval package. (Not shown here: similar results with Matlab and Rump's Intlab, even with affine arithmetic.)

Matrices:

- matrix with a prescribed condition number e^k: A=gallery("randsvd",d,exp(kappa));
- unscaling: A is replaced by D.A.D⁻¹ where D is diagonal, with elements varying from 10 to 10^s (s is the scaling factor);
- usually such unscaling degrades the previously prescribed condition number.

Well-conditioned and well-scaled matrix A 100 \times 100, 100 iterates, *kappa* = 2, *s* = 2

 $\rho(A) \simeq 0.554, \ \rho(|A|) \simeq 3.955, \ cond(A) \simeq 370, \ cond(P) \simeq 350.$ In black: "bare" iterations, in green: k-power with k = 4, in cyan: QR, in blue: Lohner's QR, in red and magenta: SVD.

Ill-conditioned and well-scaled matrix A 100 \times 100, 100 iterates, kappa = 10, s = 2

 $\rho(A) \simeq 0.208, \ \rho(|A|) \simeq 1.808, \ \operatorname{cond}(A) \simeq 6 \ 10^5, \ \operatorname{cond}(P) \simeq 10^3.$ In black: "bare" iterations, in green: k-power with k = 2, in cyan: QR, in blue: Lohner's QR, in red and magenta: SVD.

Ill-conditioned and well-scaled matrix A 100 \times 100, 50 iterates, kappa = 10, s = 2

 $\rho(A) \simeq 0.208, \ \rho(|A|) \simeq 1.808, \ \text{cond}(A) \simeq 6 \ 10^5, \ \text{cond}(P) \simeq 10^3.$ In black: "bare" iterations, in green: k-power with k = 2, in cyan: QR, in blue: Lohner's QR, in red and magenta: SVD.

Well-conditioned and ill-scaled matrix A 100 \times 100, 100 iterates, kappa = 2, s = 10

 $\rho(A) \simeq 0.527, \ \rho(|A|) \simeq 3.968, \ \operatorname{cond}(A) \simeq 6 \ 10^{17}, \ \operatorname{cond}(P) \simeq 10^{10}.$ In black: "bare" iterations, in green: k-power with k = 3, in cyan: QR, in blue: Lohner's QR, in red and magenta: SVD.

Ill-conditioned and ill-scaled matrix A 100 \times 100, 100 iterates, kappa = 10, s = 10

 $\rho(A) \simeq 0.223, \ \rho(|A|) \simeq 1.828, \ \operatorname{cond}(A) \simeq 2 \ 10^{21}, \ \operatorname{cond}(P) \simeq 10^{11}.$ In black: "bare" iterations, in green: k-power with k = 2, in cyan: QR, in blue: Lohner's QR, in red and magenta: SVD.

Comparison of the different methods large number of iterations (n = 100)

	well-scaled	ill-scaled
	$LQR \gg brut >$	brut $>$ LQR $>$
well-conditioned	$SVD\ggQR$	SVD > QR
	$LQR > SVD \gg$	LQR > brut >
ill-conditioned	$QR\ggbrut$	SVD > QR

brut = no preconditioning - LQR = Lohner's QR - SVD = one of the SVD preconditioning - QR = QR preconditioning

> Iterations and Wrapping Effect Two preconditionings Conclusion

	well-scaled	ill-scaled
	brut $>$ SVD $>$	brut > SVD >
well-conditioned	LQR > QR	LQR > QR
	$LQR \simeq SVD >$	brut $>$ SVD \simeq
ill-conditioned	QR > brut	LQR > QR

brut = no preconditioning - LQR = Lohner's QR - SVD = one of the SVD preconditioning - QR = QR preconditioning

Comparison of the different methods

- when the naïve method works best: use it, it is the cheapest one (well-conditioned matrices);
- when the matrix is ill-conditioned and well-scaled: Lohner's QR and SVD give the best results, however
 - each iteration of Lohner's QR requires $\mathcal{O}(d^3)$ operations $\Rightarrow \mathcal{O}(n.d^3)$ operations in total,
 - SVD requires one SVD factorization: O(d³) operations, then each iteration needs O(d²) operations only, thus ⇒ O(d³ + n.d²) operations in total;
- when the matrix is ill-conditioned and ill-scaled: Lohner's QR is the method of choice.

Agenda

Iterations and Wrapping Effect Brief history

Two preconditionings

SVD

Lohner' QR

Experimental results

Conclusion Conclusion and future work References

> Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

Conclusion and future work References

Conclusion

Problem: matrix-vector iteration compute $x_{n+1} = Ax_n + b$ with uncertainty on x_n and b.

Difficulty: wrapping effect.

Considered solutions:

- ▶ determine k such that A^k gives no difficulty with interval arithmetic: ρ(|A^k|) < 1;</p>
- orthogonal coordinate transformation: using QR or SVD.

Experimental results:

- divergence except for the "k-power" method,
- when the matrix is well-conditioned: do not use anything sophisticated;
- when the matrix is ill-conditioned and well-scaled: Lohner's QR and SVD give the best results, SVD is cheaper;
- when the matrix is ill-conditioned and ill-scaled: Lohner's QR

Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

Conclusion and future work References

Future work

- compare more thoroughly with affine arithmetic;
- investigate more properties of SVD decomposition, to get a nice theoretical bounds (as the one for Lohner's QR);
- expand the set of test matrices, use real-life ones:
 - taken from the integration of ODEs: A = I + hB with h small,
 - ► taken from real-life control theory: A companion, take benefit from the zeros
- experiment with interval matrix A
- experiment with the numerical quality of the SVD, with certified SVD (van der Hoeven&Yakoubsohn, 2018)

References 1/3

Software: Octave and interval package from Oliver Heimlich. Also used, but more anecdotically (for the time being): Intlab, the Matlab package by Siegfried Rump.

Bibliography:

- H-R. Arndt & G. Mayer: On the semi-convergence of interval matrices, Linear Algebra and its Applications, vol. 393, pp. 15-35, 2004.
- O. Beaumont: Solving Interval Linear Systems with Oblique Boxes, preprint Irisa no 1315, 2000.
- N.J. Higham: QR factorization with complete pivoting and accurate computation of the SVD, Linear Algebra and its Applications, vol. 309, pp. 153-174, 2000.
- M. Hladik, D. Daney & E. Tsigaridas: Bounds on Real Eigenvalues and Singular Values of Interval Matrices, SIAM J.

Matrix Analysis and Applications, vol. 31, no. 4, pp. 2116-2129,

Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

Conclusion and future work References

References 2/3

Bibliography:

- I. Lewkowicz: Bounds for the Singular Values of a Matrix with Nonnegative Eigenvalues, Linear Algebra and its Applications, vol. 112, pp. 29-37, 1989.
- R. Lohner: On the Ubiquity of the Wrapping Effect in the Computation of Error Bounds, Perspectives on Enclosures Methods, Kulisch, Lohner, Facius eds, Springer, pp. 201-217, 2001.
- ► G. Mayer & I. Warnke: On the fixed points of the interval function [f]([x]) = [A][x] + [b], Linear Algebra and its Applications, vol. 363, pp 201–216, 2003.

References 3/3

Bibliography:

- N. Nedialkov & K. Jackson: A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations, Perspectives on Enclosures Methods, Kulisch, Lohner, Facius eds, Springer, pp. 219-264, 2001.
- A. Neumaier: Solving Ill-Conditioned and Singular Linear Systems: a Tutorial on Regularization, SIAM Review, vol. 40, no. 3, pp. 636-666, 1998.
- J. van der Hoeven & J-C. Yakoubsohn: Certified Singular Value Decomposition, preprint 2018, https://hal.archives-ouvertes.fr/hal-01941987.

Iterations and Wrapping Effect Two preconditionings Experimental results Conclusion

Conclusion and future work References