Guaranteed Nonlinear Model Predictive Control via Validated Simulation

Mohamed Fnadi¹, Julien Alexandre Dit Sandretto², Laurent Fribourg³

¹ULCO, LISIC ²ENSTA Paris, U2IS ³ENS Paris Saclay, CNRS, LSV

International Online Seminar on Interval Methods in Control Engineering

January 2022

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Context

2 / 28

Scientific issues

- Need strong guarantees (critical systems)
- Unsafe and less reliable controllers

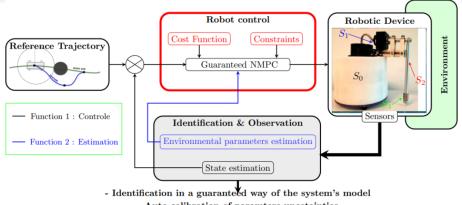
Challenges

- Complex dynamics (nonlinear ODEs)
- Uncertain models and environment

Scientific objectives of the presentation

- Estimation of dynamic behavior using interval arithmetic
- Synthesis of reliable and constrained controllers robust to uncertainties

Main contributions



- Auto-calibration of paramters uncetainties

• Addressed topics :

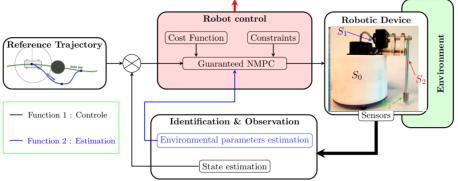
I. The accurate model requires a guaranteed identification handling all system modeling and design uncertainties

(日)

Main contributions

- Control in a guaranteed way

- Fulfill all the intrinsic and physical constraints



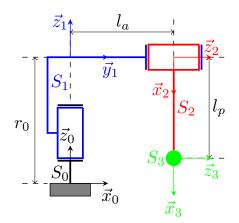
• Addressed topics :

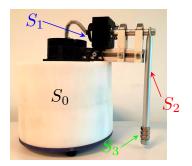
- I. The accurate model requires a guaranteed identification handling all system modeling and design uncertainties

January 2022

Guaranteed Nonlinear Model Predictive Control via Validated Simulation

Preliminary Experimental Device





A D N A B N A B N A B N

Guaranteed Nonlinear Model Predictive Control via Validated Simulation

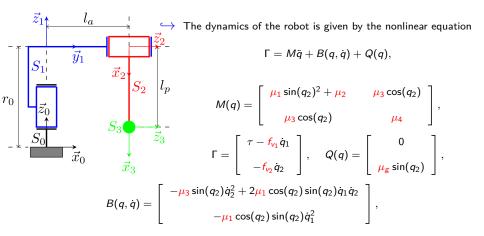
э

- 1 Part I : Guaranteed Dynamic Parameters Identification
- 2 Part II : Reliable NMPC via Validated Simulation
- Conclusion and Future Works

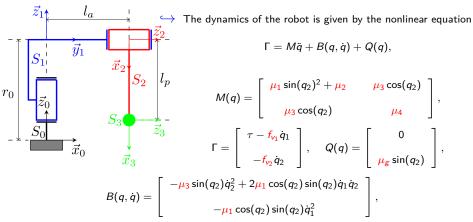
(日)

э

Recall of the Dynamic Modeling



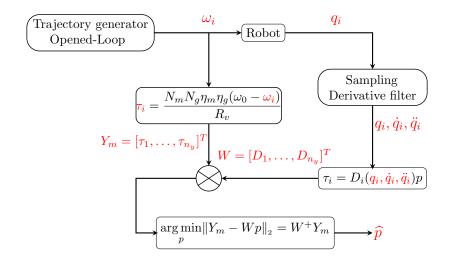
Recall of the Dynamic Modeling



 \hookrightarrow This inverse dynamic model can simply be written as,

$$y_m = f(q, \dot{q}, \ddot{q}, p),$$
$$p = [\mu_1, \mu_2, \mu_3, \mu_4, \mu_g, f_{v_1}, f_{v_2}] \in \mathbb{R}^{n_p = 7}$$

(1) Identification with Classical Least Square Method (LSMI)



- 4 回 ト 4 ヨ ト 4 ヨ ト

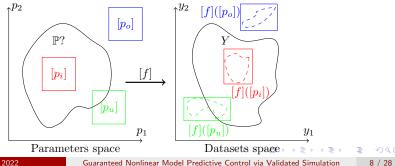
(2) Guaranteed Identification with bounded-error framework

Identification based on Interval Analysis and Set-Inversion tools

- $\,\hookrightarrow\,$ Interval analysis yields methods to compute intervals in place of real numbers.
- $\,\hookrightarrow\,$ Enclosing uncertainties coming from the system modeling and manufacturing.
- $\,\hookrightarrow\,$ SIVIA algorithm is used to find the set of all possible viscous friction coefficients.

Hypothesis

Uncertainties and errors are bounded with known prior bounds



(2) Guaranteed Identification with bounded-error framework

Identification based on Interval Analysis and Set-Inversion tools

- \hookrightarrow Interval analysis yields methods to compute intervals in place of real numbers
- $\,\hookrightarrow\,$ Enclosing uncertainties coming from the system modeling and manufacturing
- $\,\hookrightarrow\,$ SIVIA algorithm is used to find the set of all possible viscous friction coefficients

Hypothesis

Uncertainties and errors are bounded with known prior bounds

$$\mathbb{P}_{i} = \left\{ \begin{array}{l} p \in [\mathbf{p}] \mid \exists q(i) \in [\mathbf{q}](i), \exists \dot{q}(i) \in [\dot{\mathbf{q}}](i), \exists \ddot{q}(i) \in [\ddot{\mathbf{q}}](i) \\ \text{s.t.} \quad f(q(i), \dot{q}(i), \ddot{q}(i), p) \in [\mathbf{y}](i) \end{array} \right\}$$

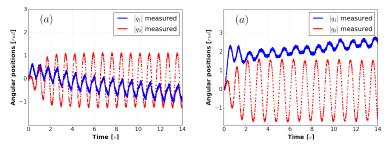
A set of feasible dynamic parameters

$$\widehat{\mathbb{P}} = igcap_{i=1}^n \mathbb{P}_i = f^{-1}([\mathbf{Y}]) \cap [\mathbf{p}]$$

January 2022

Experiments

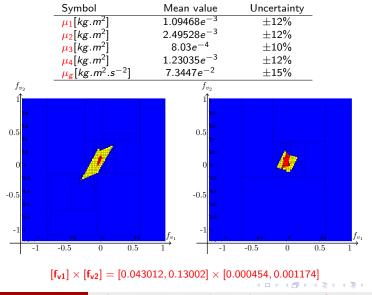
To allow high accurate identification, two data acquisition were recorded (#1 and #2), with significant dynamics, at the sampling period of 16ms.



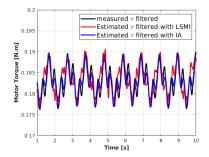
Symbol	Values with $\#1$	Values with $#2$	CAD Values
$\mu_1[kg.m^2]$	$1.04082e^{-3}$	$1.06171e^{-3}$	$1.18152e^{-3}$
μ ₂ [kg.m ²]	$2.56211e^{-3}$	$2.37309e^{-3}$	$2.55064e^{-3}$
$\mu_3[kg.m^2]$	$8.21e^{-4}$	$8.29e^{-4}$	$7.59e^{-4}$
$\mu_4[kg.m^2]$	$1.31781e^{-3}$	$1.19171e^{-3}$	$1.18152e^{-3}$
$\mu_{g}[kg.m^{2}.s^{-2}]$	$7.4175e^{-2}$	$7.2591e^{-2}$	$7.3575e^{-2}$
$f_{v_1}[N.m.s]$	$8.13e^{-2}$	$7.02e^{-2}$	_
$f_{v_2}[N.m.s]$	$6.42e^{-4}$	$5.93e^{-4}$	_
Identification results by LSMI method (B) () ()			

Guaranteed Nonlinear Model Predictive Control via Validated Simulation

Experiments



Results Validation - via Cross-Validation



 \hookrightarrow The RMSE is around 6.4% with LSMI against 2.6% with IA method, which indicates a reliable fit and a good coherence when the variables uncertainties are accounted.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\tau_i - \hat{\tau}_i)^2}$$

January 2022

10 / 28

- 4 回 ト 4 ヨ ト 4 ヨ ト

 \hookrightarrow Consider an IVP for nonlinear ODEs, over the time interval [0, T]

$$\begin{cases} \dot{x}(t) = \mathbf{f}(t, x(t), u(t), [\mathbf{p}]) \\ x_0 \in [\mathbf{x}_0] \subseteq \mathbb{IR}^4 \\ u_0 \in [\mathbf{u}_0] \subseteq \mathbb{IR} \end{cases}$$

This IVP (Cauchy problem) has a unique solution $x(t; x_0; u_0)$ if $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz in x and u, but for our purpose we suppose \mathbf{f} smooth enough, i.e., of class C^k

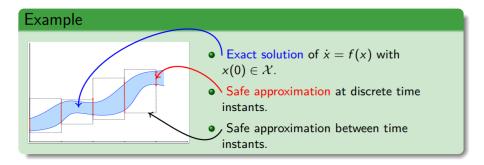
Purpose

Solve in a guaranteed way ODEs from sets of initial values and bounded parameters

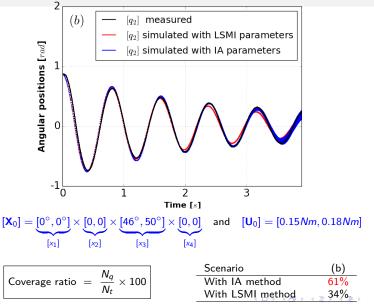
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Goal of validated numerical integration (Dynlbex solver)

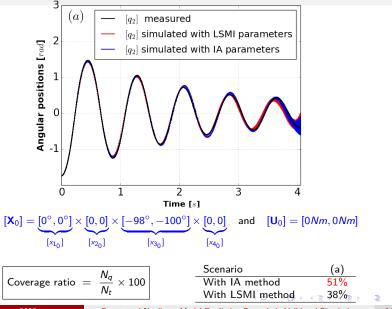
- Compute a sequence of time instants : $t_0 = 0 < t_1 < \cdots < t_n = T$
- Compute a sequence of values : $[\mathbf{x}_0], \ldots, [\mathbf{x}_n]$ such that $\forall i \in [0, n], x(t_i; x_0; u_0) \in [\mathbf{x}_i]$
- and a sequence $[\tilde{\mathbf{x}}_0], \ldots, [\tilde{\mathbf{x}}_{n-1}]$ such that $\forall i \in [0, n-1], x(t; x_0; u_0) \in [\tilde{\mathbf{x}}_i], \forall t \in [t_i, t_{i+1}]$



イロト イボト イヨト イヨト



Guaranteed Nonlinear Model Predictive Control via Validated Simulation



January 2022

Guaranteed Nonlinear Model Predictive Control via Validated Simulation

Outline

2 Part II : Reliable NMPC via Validated Simulation

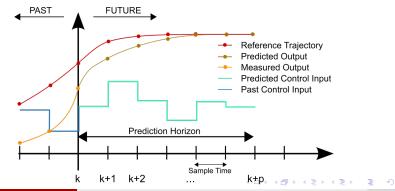
イロト イポト イヨト イヨト

э

General Concept of NMPC Control

Starting from measurements at time t:

- Prediction over an horizon $T_p = N_p \times T_c$ (N_p the number of pre-computed inputs and T_c the control sampling time)
- 2 Computation of optimal inputs $U = \{u_1, ..., u_{N_p}\}$
- Only the first input u₁ is injected into the system
- 4 $t = t + T_p$ (sliding) and goto 1



Guaranteed Nonlinear Model Predictive Control via Validated Simulation

Optimization Cost Function

The mathematical formulation is :

Find
$$\hat{u}(.) = \underset{u(.)}{\operatorname{argmin}} J(x(t), u(.))$$

Subject to :

$$\dot{x}(t) = \mathbf{f}(t, x(t), u(t))$$

 $u(t) \in \mathbb{U}, \quad \forall t \ge 0$
 $x(t) \in \mathbb{X}, \quad \forall t \ge 0$

イロト イポト イヨト イヨト

3

Optimization Cost Function

The mathematical formulation is :

Find
$$\hat{u}(.) = \underset{u(.)}{\operatorname{argmin}} J(x(t), u(.))$$

$$egin{aligned} \dot{x}(t) &= \mathbf{f}(t, x(t), u(t)) \ u(t) &\in \mathbb{U}, \quad orall t \geq 0 \ x(t) &\in \mathbb{X}, \quad orall t \geq 0 \end{aligned}$$

The continuous cost function can be derived as,

$$J(x(t), u(.)) = \int_t^{t+T_p} F(x(\tau), u(\tau)) d\tau$$

F is in general a quadratic function such that :

$$F(x, u) = (x - x_r)^T \mathbf{Q} (x - x_r) + u^T \mathbf{R} u$$

(日)

3

Guaranteed numerical integration : Runge-Kutta methods

 \hookrightarrow Consider an IVP for nonlinear ODEs, over the time interval [0, T]

$$\begin{cases} \dot{x}_t = \mathbf{f}(t, x_t, u, [\mathbf{p}]) \\ x_0 \in [\mathbf{x}_0] \subseteq \mathbb{IR}^4 \\ u \in [\mathbf{u}] \subseteq \mathbb{IR} \end{cases}$$

- A standard numerical integration method computes a sequence of values $(t_j, x_j)_{j \in \mathbb{N}}$ approximating the solution of the ODE such that $x_{j+1} \approx f(t_j, x_j, u)$
- s-stage Runge-Kutta methods is defined by the following recurrence (h : time-step) :

$$k_i = \mathbf{f}(t_0 + c_i h, x_j + h \sum_{k=1}^{s} a_{ik} k_i, u)$$
 $x_{j+1} = x_j + h \sum_{k=1}^{s} b_k k_i$

The coefficient c_i , a_{ik} and b_k characterize the Runge-Kutta methods and their are usually synthesized in a *Butcher tableau*

イロト 不得 トイヨト イヨト

Guaranteed numerical integration : Runge-Kutta methods

 \hookrightarrow Consider an IVP for nonlinear ODEs, over the time interval [0, T]

4

$$\begin{cases} \dot{x}_t = \mathbf{f}(t, x_t, u, [\mathbf{p}]) \\ x_0 \in [\mathbf{x}_0] \subseteq \mathbb{IR}^4 \\ u \in [\mathbf{u}] \subseteq \mathbb{IR} \end{cases}$$

- A standard numerical integration method computes a sequence of values $(t_j, x_j)_{j \in \mathbb{N}}$ approximating the solution of the ODE such that $x_{j+1} \approx \mathbf{f}(t_j, x_j, u)$
- s-stage Runge-Kutta methods is defined by the following recurrence (h : time-step) :

$$k_i = \mathbf{f}(t_0 + c_i h, x_j + h \sum_{k=1}^{s} a_{ik} k_i, u)$$
 $x_{j+1} = x_j + h \sum_{k=1}^{s} b_k k_i$

The coefficient c_i , a_{ik} and b_k characterize the Runge-Kutta methods and their are usually synthesized in a *Butcher tableau*

The purpose of a validated or guaranteed numerical integration method is to compute the sequence of boxes (t_j, [x_j])_{j∈ℕ} such that [x_{j+1}] ⊇ [f](t_j, [x_j], [u])

 \Rightarrow DynIbex library is developed for this purpose

January 2022

17 / 28

人名英法德 医马尔氏试验检试验

Validated NMPC - Global Approach

Based on two stages :

- Filtering and branching : uses the validated simulation methods to compute the N_p guaranteed inputs $[\mathbf{U}] = [\mathbf{u}_1] \times [\mathbf{u}_2] \times \ldots \times [\mathbf{u}_{N_p}]$ ensuring state variables constraints $(x_i \in [\mathbf{x}_i])$ and convergence to the reference set $(x_i \to [\mathbf{x}_r])$ (Dynlbex)
- Interval optimization : from safe input boxes, the optimization stage aims to compute the sub-optimal input interval that minimizes as much as we can the formulated interval cost-function

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

(1) Filtering and branching

Main algorithm

- Inputs
 - the initial conditions interval [x₀]
 - the set-point interval [x_r]
 - NMPC parameters N_p, T_c, T_p
 - Simulation time T_f
 - ▶ input bounds, i.e., $\forall k$, $u_{\min} \leq u_k \leq u_{\max}$
 - ▶ state bounds, i.e., $\forall t$, $x_{\min} \leq x_t \leq x_{\max}$
 - initial control box (actuator's bounds) $[\mathbf{U}] = [\mathbf{u}_1] \times \ldots \times [\mathbf{u}_{N_p}]$
- The main steps are (in a loop) :
 - validated simulation of the IVP-ODE to compute the new state domain over the sampling time T_c, [x_{t+T_c}] = [f](t, [x_t], [u_k])
 - 2 if $[\mathbf{x}_{t+T_c}] \subseteq [\mathbf{x}_r]$, so k = k+1, $[\mathbf{x}_t] = [\mathbf{x}_{t+T_c}]$, $t = t + T_c$ and goto 1
 - 3 else successive bisections of the input interval $[\mathbf{u}_k]$ to minimize its width
 - Re-starting validated simulation, one side of bisected intervals is kept by considering these criteria :
 - (i) a branch leading to unsafe state is removed (i.e., $[\mathbf{x}_{t+Tc}] \notin [x_{\min}, x_{\max}]$)
 - (ii) a branch leading to a state far from the reference interval $[\mathbf{x}_r]$ is eliminated
 - (iii) a branch leading to the opposite "ways" is avoided (sensitivity analysis)

5
$$k = k + 1$$
, $[\mathbf{x}_t] = [\mathbf{x}_{t+T_c}]$, $t = t + T_c$ and goto 1

ヘロト 人間 ト イヨト イヨト

(2) Interval Optimization

- NMPC needs to evaluate the integral of the interval cost function expressed from safe computed control box and state intervals at each prediction horizon N_p
- Using rectangle rule, we can write :

$$\begin{split} \mathcal{I}(y, u) &= \int_{t}^{t+T_{p}} \left[(x(\tau) - x_{r})^{T} \mathbf{Q} (x(\tau) - x_{r}) + u(\tau)^{T} \mathbf{R} u(\tau) \right] d\tau \\ &= \sum_{k=1}^{N_{p}} \int_{t+(i-1)T_{c}}^{t+iT_{c}} \left[(x(\tau) - x_{r})^{T} \mathbf{Q} (x(\tau) - x_{r}) \right] d\tau + T_{c} \sum_{i=1}^{N_{p}} \left[u_{k}^{T} \mathbf{R} u_{k} \right] \\ &\in T_{c} \sum_{k=1}^{N_{p}} \left[\tilde{\mathbf{x}}_{k} \right]^{T} \mathbf{Q} \left[\tilde{\mathbf{x}}_{k} \right] + T_{c} \sum_{k=1}^{N_{p}} \left[\mathbf{u}_{k} \right]^{T} \mathbf{R} \left[\mathbf{u}_{k} \right] \\ &\leq ub \left\{ T_{c} \sum_{k=1}^{N_{p}} \left[\left[\tilde{\mathbf{x}}_{k} \right]^{T} \mathbf{Q} \left[\tilde{\mathbf{x}}_{k} \right] + \left[\mathbf{u}_{k} \right]^{T} \mathbf{R} \left[\mathbf{u}_{k} \right] \right] \right\} \end{split}$$

-

(日)

э

(2) Interval Optimization

Main algorithm of the optimization procedure :

$$\begin{array}{l} \textbf{Require} : [\mathbf{x}_{I}], [\mathbf{x}_{1}], \dots, [\mathbf{x}_{N_{p}}], [\mathbf{u}_{1}], \dots, [\mathbf{u}_{N_{p}}], \textit{To}!; \\ \textbf{while } w([u_{1}]) \geq \textit{Tol } \textit{do} \\ & \begin{bmatrix} [\mathbf{U}]_{\textit{left}} = [\mathbf{u}_{1}]_{\textit{l}} \times [\mathbf{u}_{2}] \times \dots \times [\mathbf{u}_{N_{p}}]; \\ [\mathbf{U}]_{\textit{right}} = [\mathbf{u}_{1}]_{\textit{r}} \times [\mathbf{u}_{2}] \times \dots \times [\mathbf{u}_{N_{p}}]; \\ & \text{if } J([\mathbf{X}], [\mathbf{U}]_{\textit{left}}) \geq J([\mathbf{X}], [\mathbf{U}]_{\textit{right}}) \textit{ then} \\ & | \quad [\mathbf{U}] = [\mathbf{U}]_{\textit{right}}; \\ & \text{else} \\ & | \quad [\mathbf{U}] = [\mathbf{U}]_{\textit{left}}; \\ & \text{end} \\ \\ \begin{array}{l} end \\ \hat{u}_{1} = \min[\textit{lb}([\mathbf{u}_{1}]), \ \textit{ub}([\mathbf{u}_{1}])]; \\ \\ & \text{send} \ (\hat{u}_{1}); \\ \end{array} \right. \end{aligned}$$

Sub-optimal solution

But robust to uncertainties!

(日)

3

Inverted pendulum constraints and NMPC parameters

Parameters for NMPC :

 $N_p = 10, T_c = 0.01, T_p = 0.1$ and $T_f = 0.4$

State and Input constraints :

$$egin{array}{lll} orall t:& x_1(t)\in [-\pi,\pi]\ x_2(t)\in [-40,40]\ x_3(t)\in [-\pi,\pi]\ x_4(t)\in [-50,50]\ u\in [-8.1,8.1] \end{array}$$

Goal :

$$q_2 \in [\pi - 0.1, \pi + 0.1]$$

Weighing matrices :

 $\mathbf{R} = 0.5$ and $\mathbf{Q} = diag[1000, 1000, 1000, 1000]$

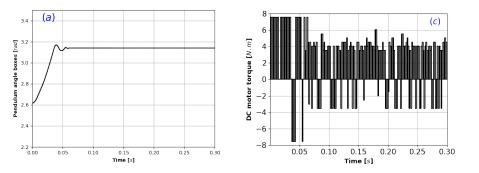
January 2022

Guaranteed Nonlinear Model Predictive Control via Validated Simulation

22 / 28

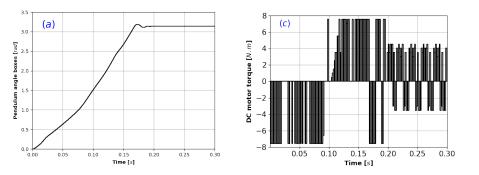
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Validated NMPC results starting from $[\mathbf{x}_{3_0}] = [149^\circ, 151^\circ]$



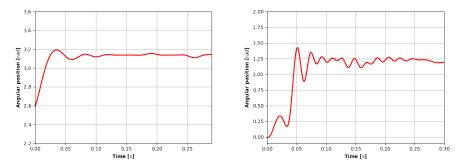
◆ □ ▶ ◆ □ ▶

Validated NMPC results starting from $[\textbf{x}_{3_0}] = [0^\circ, 4^\circ]$



< (日) × (日) × (1)

Experimental validation using real inverted pendulum



Advantages of the proposed validated NMPC

© Robust to uncertainties © Constraints satisfaction © Optimal controller

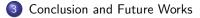
Drawbacks

© Huge computation time (real-time problem)

< //>
</

Outline

2 Part II : Reliable NMPC via Validated Simulation



A D N A B N A B N A B N

э

Conclusion and Outlook

Summary

• Contributions in topic I : Guaranteed identification

- Guaranteed identification of dynamic parameters with interval analysis and set-inversion tools
- Validated numerical integration (DynIbex) to compute tight enclosures of state variables

• Contributions in topic II : Guaranteed NMPC

- New formulation of a guaranteed NMPC strategy via validated simulation
- Robust to uncertainties with constraints satisfaction

< 日 > < 同 > < 三 > < 三 > <

Conclusion and Outlook

Summary

• Contributions in topic I : Guaranteed identification

- Guaranteed identification of dynamic parameters with interval analysis and set-inversion tools
- Validated numerical integration (DynIbex) to compute tight enclosures of state variables

• Contributions in topic II : Guaranteed NMPC

- New formulation of a guaranteed NMPC strategy via validated simulation
- Robust to uncertainties with constraints satisfaction

Future Works

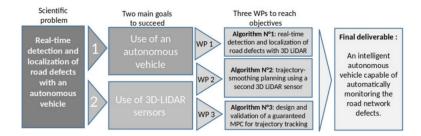
- Real-time improvements (efficient onboard-GPU, distributed computing and relaxation methods)
- Projection of all our algorithms on a complex systems (e.g., underwater robot)
- On-line estimation and self-calibration of the environment parameters via Interval Arithmetic (i.e., aerodynamics coefficients)

イロト イポト イヨト イヨト

э

Projet ANR JCJC - AutoROAD (submitted)

Autonomous RObotic System for Detection And Location of Pavement Defects : Application to Road Network State Evaluation



イロト イポト イヨト イヨト

References

- M., Fnadi, and J., Alexandre dit Sandretto. Experimental Validation of a Guaranteed Nonlinear Model Predictive Control. Algorithms, 14(8), 248, 2021.
- M., Fnadi, J. Alexandre dit Sandretto, G., Ballet, and L. Fribourg. Guaranteed Identification of Viscous Friction for a Nonlinear Inverted Pendulum Through Interval Analysis and Set Inversion. 2021 American Control Conference (ACC), 3920-3926.
 - L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Interval analysis. In Applied interval analysis. pp. 11-43, 2001. Springer, London.
- Julien Alexandre Dit Sandretto, and Alexandre Chapoutot. Validated explicit and implicit Runge-Kutta methods. Reliable Computing electronic edition 22 (2016).
- Frank Allgower, Rolf Findeisen, and Zoltan K. Nagy. Nonlinear model predictive control : From theory to application. Journal-Chinese Institute Of Chemical Engineers 35.3 (2004) : 299-316.
- L. Jaulin, and E. Walter. Set inversion via interval analysis for nonlinear bounded-error estimation. 1993. Automatica, 29(4), pp.1053-1064.

イロト イポト イヨト イヨト

Thank you for your attention $\ensuremath{\mathfrak{S}}$

medfanadi@gmail.com

・ 何 ト ・ ヨ ト ・ ヨ ト

Guaranteed Nonlinear Model Predictive Control via Validated Simulation