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The parking car

Setup
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constant,
well-known

evolving over time,
well-known

constant,
estimated frequently by ŷO

Car E can:
travel straight-line with constant speed
stop
switch between dynamics instantaneously

Desired system properties:
safe := (yE ≤ yO)⇒ AG (xE < xO)
live := (yE > yO)⇒ AF (xE ≥ xO)
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The parking car

Nondeterministic hybrid automata

run
ẋE = 1 ∧ ċ = 1

yE > ŷO + δ ∧ c < 1

stop
ẋE = 0 ∧ ċ = 1

yE ≤ ŷO + δ ∧ c < 1

yE ≤ ŷO + δ

yE > ŷO + δ

c ≥ 1 ∧ ŷ′
O = yO + e ∧

c′ = 0 ∧ − ε ≤ e ≤ ε
c ≥ 1 ∧ ŷ′

O = yO + e ∧
c′ = 0 ∧ − ε ≤ e ≤ ε

(xE = 0) ∧ (yE = 6.875) ∧ (xO = 73.75) ∧ (ŷO = yO + e) ∧ (c = 0) ∧ (−ε ≤ e ≤ ε)
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The parking car

Stochastic hybrid automata

run
ẋE = 1 ∧ ċ = 1

yE > ŷO + δ ∧ c < 1

stop
ẋE = 0 ∧ ċ = 1

yE ≤ ŷO + δ ∧ c < 1

yE ≤ ŷO + δ

yE > ŷO + δ

c ≥ 1 ∧ ŷ′
O ∼ N

(
yO, σ

2) ∧ c′ = 0 c ≥ 1 ∧ ŷ′
O ∼ N

(
yO, σ

2) ∧ c′ = 0

(xE = 0) ∧ (yE = 6.875) ∧ (xO = 73.75) ∧
(
ŷO ∼ N

(
yO, σ

2)) ∧ (c = 0)
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Why traditional models fail
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Why traditional models fail

Nondeterministic modelling

Estimated datum:
uncontrollable measurement error: ŷO = yO + e
error nondeterministic but bounded: −ε ≤ e ≤ +ε
resolve nondeterminism demonically

Decision making:
yE > ŷO + δ ⇔ go ahead

A “pathological” case:

safe live
δ + max(ŷO) ≥ yE > yO trivial unsat
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Why traditional models fail

Stochastic modelling

Estimated datum:
uncontrollable measurement error: ŷO = yO + e
quantify errors by distribution, e.g. e ∼ N (µ, σ2)

set safety margin δ s.t. P(ŷO + δ < yO) < θ

Decision making:
yE > ŷO + δ ⇔ go ahead

A “pathological” case:

p(safe) p(live)
yE ≤ yO → 0 trivial x

y
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P. Kröger: Reconciling Formal Methods with Metrology 6/18



Why traditional models fail

Stochastic modelling

Estimated datum:
uncontrollable measurement error: ŷO = yO + e
quantify errors by distribution, e.g. e ∼ N (µ, σ2)

set safety margin δ s.t. P(ŷO + δ < yO) < θ
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Why traditional models fail

Basic idea

Existing flavours of HA are
too optimistic, or
too pessimistic.

This does not reflect the behaviour of real-world systems.

What is done in real-world systems (sketch):
1 Convert (frequent) observations into proper estimates.
⇒ x̂ = 5  p(x) ≡ N (5, σ2)

2 Combine all observations.
⇒ p(x) = w1 · p1(x) + w2 · p2(x) + · · ·

3 Make “rational” decisions based on combined estimates.
⇒ stop if p(safe) < ε

Can we adopt this for Hybrid-System Theory?
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Why traditional models fail

Combining observations: Bayesian inference

1 Build up evidence over measurement history via Bayesian inference.
I For normally distributed measurement errors and linear dynamics: Kálmán filter.

2 Make rational decisions: P(yE > yO) > θ ⇔ go ahead.
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Bayesian hybrid automata
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Incorporating probability density functions
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Bayesian hybrid automata

Bayesian inference in hybrid automata

State distributions become first class members of the state space.
Transitions/locations are equipped with
I mechanisms for applying Bayesian updates on measurements,
I and guards/invariants accessing estimates.

Prediction between measurements requires an application of the correct (!) dynamics to
distributions.

run
ẋE = 1 ∧ ċ = 1

yE > ŷO + δ(ρ, θ) ∧ c < 1

stop
ẋE = 0 ∧ ċ = 1

yE ≤ ŷO + δ(ρ, θ) ∧ c < 1

yE ≤ ŷO + δ(ρ, θ)

yE > ŷO + δ(ρ, θ)

c ≥ 1 ∧m ∼ N
(
yO, σ

2)

∧ ŷ′O = ρ·ŷO+ρm·m
ρ′

∧ ρ′ = ρ+ ρm
∧ c′ = 0

c ≥ 1 ∧m ∼ N
(
yO, σ

2)

∧ ŷ′O = ρ·ŷO+ρm·m
ρ′

∧ ρ′ = ρ+ ρm
∧ c′ = 0

(xE = 0) ∧ (yE = 6.875) ∧ (xO = 73.75) ∧
(
m ∼ N

(
yO, σ

2)) ∧ (ŷO = m) ∧ (ρ = ρm) ∧ (c = 0)
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Bayesian hybrid automata

Bayesian cars

Estimated datum:
is a probability density function p(yO)
updated by means of a Bayes filter

Decision making:
P(yE ≤ yO) > δ ⇔ stop
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p(yO + e)ŷO = p(yO)
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Bayesian hybrid automata

Experiment: safety
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Bayesian hybrid automata

Experiment: liveness
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The impact of hybrid dynamics
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Bayesian hybrid automata

Yet another toy example

x

y
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Ship O . . .
chooses a direction for the evasive manoeuvre (left or right):
I to the left, if yo ≤ 0
I to the right, if yo > 0

Ship E . . .
is not aware of O’s decision.
chooses direction based on ŷO.
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Bayesian hybrid automata

The consequence of hybrid dynamics

left
ẏO = −1

right
ẏO = 1

run
ẏO = 0

continue
ẏO = 0

ŷO ≤ −10 ŷO ≥ 10

ŷO ≤ 0 ŷO > 0

Apply correct mode dynamics to right part of the continous state space:

guards enabled with some probability (yields probability of the mode)
successor mode is ambiguous
distribute the distribution over enabled transitions

→ mixture distributions for continuous state

Estimate at time t:
continuous state: weighted re-assembly from (partial) distributions
discrete state: derived from probability mass shifted “into” the mode
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ŷO ≤ −10 ŷO ≥ 10
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ŷO ≤ 0 ŷO > 0
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ẏO = −1

right
ẏO = 1

run
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Bayesian hybrid automata

Guess what I’m doing: hybrid estimation

So far, upon new measurements
mixture components are updated (via filtering)
but mode probabilites remain unchanged.

However, measurements yield information about the true mode:
Given a measurement, obtain the distribution of the true continuous state according to
that measurement: x̂ = 5  p(x) ≡ N (5, σ2).
Reweighted probability mass of mode invariant under this distribution yields probability of
the mode according to the measurement result, e.g. via

∫
inv(run) p(x).

This gives raise to a filter process for modes (e.g. using Bayes’ rule).

This sketches of the idea of currently ongoing work only.
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Bayesian hybrid automata

Example
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Bayesian hybrid automata

The decomposed model

OA
Observed

Automaton
(S)HA repre-
senting car O

xo

EA
Estimate

Automaton
holds estimate

of car O

xo, x̂

CA
Controller
Automaton

models controller
of car E

x̂, xc

imperfect

observation
estimate

mimicks

sharing xo sharing x̂

In case of more complex measurement processes
another automaton modelling this process may be introduced

between OA and EA.
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Bayesian hybrid automata

Some papers

� M. Fränzle and P. Kröger.
The demon, the gambler, and the engineer – reconciling hybrid-system theory with metrology.
In Symposium on Real-Time and Hybrid Systems, volume 11180 of Theoretical Computer Science and
General Issues, pages 165–185, Cham, 2018. Springer International Publishing.

� M. Fränzle and P. Kröger.
Guess what I’m doing! Rendering Formal Verification Methods Ripe for the Era of interacting Intelligent
Systems
In Leveraging Applications of Formal Methods, Verification and Validation: Applications, pages 255–272,
Cham, 2020. Springer International Publishing.

� P. Kröger and M. Fränzle.
Bayesian hybrid automata: A formal model of justified belief in interacting hybrid systems subject to
imprecise observation.
accepted for LITES. 2021.
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