Reconciling Formal Methods with Metrology Improving Verification Verdicts of Traditional Hybrid Automata

Paul Kröger Martin Fränzle

Research Group Hybrid Systems Carl von Ossietzky Universität Oldenburg

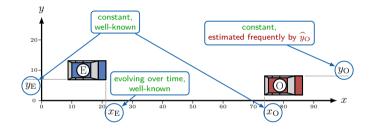
2022-03-25

Outline

- The parking car: A toy example.
- 2 Why traditional hybrid automata models fail.
- Bayesian hybrid automata: Hybrid automata incorporating Bayesian-style state-estimates.
 - a) Incorporating probability density functions.
 - **b**) The impact of hybrid dynamics.

The parking car

The parking car Setup



Car E can:

travel straight-line with constant speed

stop

switch between dynamics instantaneously

Desired system properties:

• safe \coloneqq ($y_{\mathrm{E}} \leq y_{\mathrm{O}}$) \Rightarrow AG ($x_{\mathrm{E}} < x_{\mathrm{O}}$)

• live := (
$$y_{\mathrm{E}} > y_{\mathrm{O}}$$
) \Rightarrow AF ($x_{\mathrm{E}} \ge x_{\mathrm{O}}$)

The parking car Nondeterministic hybrid automata

$$(x_{\rm E}=0) \land (y_{\rm E}=6.875) \land (x_{\rm O}=73.75) \land (\widehat{y}_{\rm O}=y_{\rm O}+e) \land (c=0) \land (-\varepsilon \le e \le \varepsilon$$

The parking car Stochastic hybrid automata

$$(x_{\rm E} = 0) \land (y_{\rm E} = 0.873) \land (x_{\rm O} = 13.73) \land (y_{\rm O} \sim \mathcal{N}(y_{\rm O}, \sigma^2)) \land (c = 0)$$

$$(x_{\rm E} = 0) \land (y_{\rm C} = 0) \land (y_{\rm O}, \sigma^2) \land (x_{\rm O} = 13.73) \land (y_{\rm O} \sim \mathcal{N}(y_{\rm O}, \sigma^2)) \land (z = 0)$$

$$(x_{\rm E} = 0) \land (y_{\rm O}, \sigma^2) \land (z = 0) \land (y_{\rm O}, \sigma^2) \land (z = 0)$$

$$(x_{\rm E} = 0) \land (y_{\rm O}, \sigma^2) \land (z = 0) \land (y_{\rm O}, \sigma^2) \land (z = 0)$$

$$(x_{\rm E} = 0) \land (y_{\rm O}, \sigma^2) \land (z = 0) \land (y_{\rm O}, \sigma^2) \land (z = 0)$$

$$(x_{\rm E} = 0) \land (y_{\rm O}, \sigma^2) \land (z = 0) \land (y_{\rm O}, \sigma^2) \land (z = 0)$$

$$(x_{\rm E}=0) \land (y_{\rm E}=6.875) \land (x_{\rm O}=73.75) \land \left(\widehat{y}_{\rm O} \sim \mathcal{N}(y_{\rm O}, \sigma^2)\right) \land (c=0)$$

Why traditional models fail

P. Kröger: Reconciling Formal Methods with Metrology

Why traditional models fail **Nondeterministic modelling**

Estimated datum:

- \blacksquare uncontrollable measurement error: $\widehat{y}_{\mathrm{O}} = y_{\mathrm{O}} + e$
- \blacksquare error nondeterministic but bounded: $-\varepsilon \leq e \leq +\varepsilon$
- resolve nondeterminism demonically

Decision making:

• $y_{\rm E} > \widehat{y}_{\rm O} + \delta \Leftrightarrow$ go ahead

Why traditional models fail Nondeterministic modelling

Estimated datum:

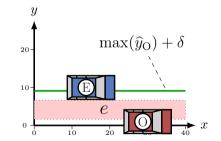
- \blacksquare uncontrollable measurement error: $\widehat{y}_{\mathrm{O}} = y_{\mathrm{O}} + e$
- \blacksquare error nondeterministic but bounded: $-\varepsilon \leq e \leq +\varepsilon$
- resolve nondeterminism demonically

Decision making:

• $y_{\rm E} > \widehat{y}_{\rm O} + \delta \Leftrightarrow$ go ahead

A "pathological" case:

	safe	live
$\delta + \max(\widehat{y}_{\mathrm{O}}) \geq y_{\mathrm{E}} > y_{\mathrm{O}}$	trivial	unsat



P. Kröger: Reconciling Formal Methods with Metrology

Why traditional models fail **Stochastic modelling**

Estimated datum:

- \blacksquare uncontrollable measurement error: $\widehat{y}_{\mathrm{O}} = y_{\mathrm{O}} + e$
- \blacksquare quantify errors by distribution, e.g. $e \sim \mathcal{N}(\mu, \sigma^2)$
- set safety margin δ s.t. $P(\hat{y}_{\rm O} + \delta < y_{\rm O}) < \theta$

Decision making:

• $y_{\rm E} > \widehat{y}_{\rm O} + \delta \Leftrightarrow$ go ahead

P. Kröger: Reconciling Formal Methods with Metrology

Why traditional models fail **Stochastic modelling**

Estimated datum:

- \blacksquare uncontrollable measurement error: $\widehat{y}_{\mathrm{O}} = y_{\mathrm{O}} + e$
- \blacksquare quantify errors by distribution, e.g. $e \sim \mathcal{N}(\mu, \sigma^2)$
- set safety margin δ s.t. $P(\hat{y}_{\rm O} + \delta < y_{\rm O}) < \theta$

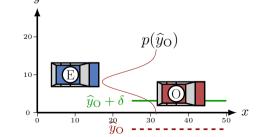
Decision making:

•
$$y_{
m E} > \widehat{y}_{
m O} + \delta \Leftrightarrow$$
 go ahead

A "pathological" case:

$$p(\mathsf{safe}) \quad p(\mathsf{live})$$

 $y_{\mathrm{E}} \leq y_{\mathrm{O}} \quad
ightarrow 0 \quad \mathsf{trivial}$



Existing flavours of HA are

- too optimistic, or
- too pessimistic.

Existing flavours of HA are

- too optimistic, or
- too pessimistic.

- Existing flavours of HA are
 - too optimistic, or
 - too pessimistic.

- What is done in real-world systems (sketch):
 - **1** Convert (frequent) observations into proper estimates.

- Existing flavours of HA are
 - too optimistic, or
 - too pessimistic.

- What is done in real-world systems (sketch):
- 1 Convert (frequent) observations into proper estimates. $\Rightarrow \quad \hat{x} = 5 \quad \rightsquigarrow \quad p(x) \equiv \mathcal{N}(5, \sigma^2)$

- Existing flavours of HA are
 - too optimistic, or
 - too pessimistic.

- What is done in real-world systems (sketch):
 - **1** Convert (frequent) observations into proper estimates. $\Rightarrow \quad \hat{x} = 5 \quad \rightsquigarrow \quad p(x) \equiv \mathcal{N}(5, \sigma^2)$
 - 2 Combine all observations.

- Existing flavours of HA are
 - too optimistic, or
 - too pessimistic.

This does not reflect the behaviour of real-world systems.

- What is done in real-world systems (sketch):
 - **1** Convert (frequent) observations into proper estimates. $\Rightarrow \quad \hat{x} = 5 \quad \rightsquigarrow \quad p(x) \equiv \mathcal{N}(5, \sigma^2)$
 - **2** Combine all observations.

 $\Rightarrow \quad p(x) = w_1 \cdot p_1(x) + w_2 \cdot p_2(x) + \cdots$

- Existing flavours of HA are
 - too optimistic, or
 - too pessimistic.

This does not reflect the behaviour of real-world systems.

- What is done in real-world systems (sketch):
 - **1** Convert (frequent) observations into proper estimates. $\Rightarrow \quad \hat{x} = 5 \quad \rightsquigarrow \quad p(x) \equiv \mathcal{N}(5, \sigma^2)$
 - 2 Combine all observations.

 $\Rightarrow \quad p(x) = w_1 \cdot p_1(x) + w_2 \cdot p_2(x) + \cdots$

3 Make "rational" decisions based on combined estimates.

- Existing flavours of HA are
 - too optimistic, or
 - too pessimistic.

- What is done in real-world systems (sketch):
 - **1** Convert (frequent) observations into proper estimates. $\Rightarrow \quad \hat{x} = 5 \quad \rightsquigarrow \quad p(x) \equiv \mathcal{N}(5, \sigma^2)$
 - 2 Combine all observations.
 - $\Rightarrow \quad p(x) = w_1 \cdot p_1(x) + w_2 \cdot p_2(x) + \cdots$
 - 3 Make "rational" decisions based on combined estimates.
 - \Rightarrow stop if $p(safe) < \varepsilon$

- Existing flavours of HA are
 - too optimistic, or
 - too pessimistic.

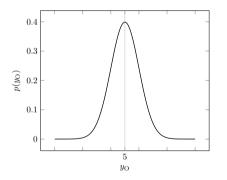
This does not reflect the behaviour of real-world systems.

- What is done in real-world systems (sketch):
 - **1** Convert (frequent) observations into proper estimates. $\Rightarrow \quad \hat{x} = 5 \quad \rightsquigarrow \quad p(x) \equiv \mathcal{N}(5, \sigma^2)$
 - 2 Combine all observations.
 - $\Rightarrow \quad p(x) = w_1 \cdot p_1(x) + w_2 \cdot p_2(x) + \cdots$
 - 3 Make "rational" decisions based on combined estimates.
 - \Rightarrow stop if $p(safe) < \varepsilon$

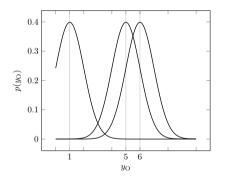
Can we adopt this for Hybrid-System Theory?

1 Build up evidence over measurement history via Bayesian inference.

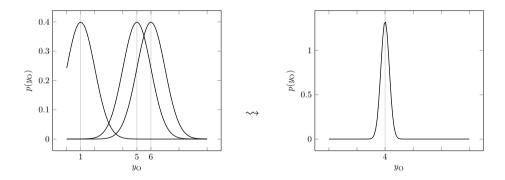
1 Build up evidence over measurement history via Bayesian inference.



1 Build up evidence over measurement history via Bayesian inference.

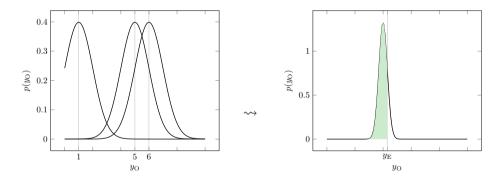


1 Build up evidence over measurement history via Bayesian inference.



1 Build up evidence over measurement history via Bayesian inference.

► For normally distributed measurement errors and linear dynamics: Kálmán filter.



2 Make rational decisions: $P(y_{\rm E} > y_{\rm O}) > \theta \Leftrightarrow$ go ahead.

Bayesian hybrid automata

Incorporating probability density functions

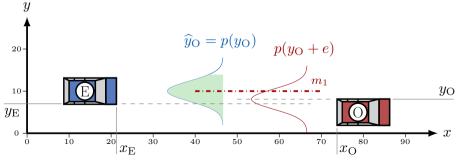
Bayesian hybrid automata Bayesian inference in hybrid automata

- State distributions become first class members of the state space.
- Transitions/locations are equipped with
 - mechanisms for applying Bayesian updates on measurements,
 - ▶ and guards/invariants accessing estimates.
- Prediction between measurements requires an application of the correct (!) dynamics to distributions.

Estimated datum:

- is a probability density function $p(y_{\rm O})$
- updated by means of a Bayes filter

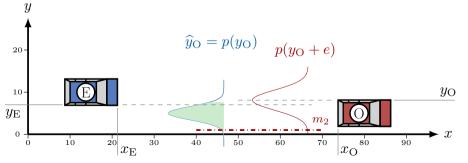
•
$$P(y_{\rm E} \leq y_{\rm O}) > \delta \Leftrightarrow {
m stop}$$



Estimated datum:

- is a probability density function $p(y_{\rm O})$
- updated by means of a Bayes filter

•
$$P(y_{\rm E} \leq y_{\rm O}) > \delta \Leftrightarrow {
m stop}$$

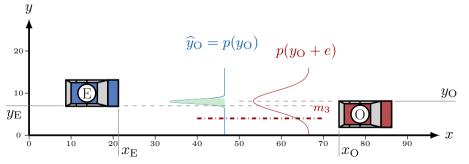


P. Kröger: Reconciling Formal Methods with Metrology

Estimated datum:

- is a probability density function $p(y_{\rm O})$
- updated by means of a Bayes filter

•
$$P(y_{\rm E} \leq y_{\rm O}) > \delta \Leftrightarrow {
m stop}$$

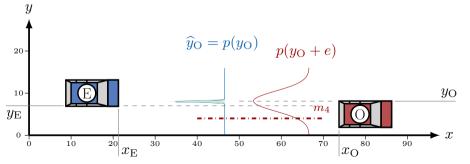


P. Kröger: Reconciling Formal Methods with Metrology

Estimated datum:

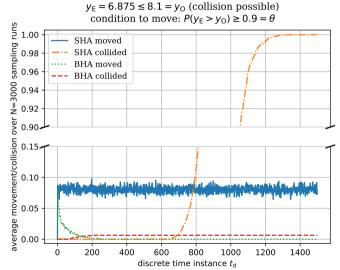
- is a probability density function $p(y_{\rm O})$
- updated by means of a Bayes filter

•
$$P(y_{\rm E} \leq y_{\rm O}) > \delta \Leftrightarrow {
m stop}$$

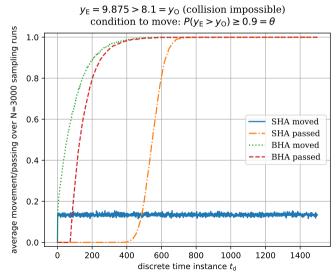


P. Kröger: Reconciling Formal Methods with Metrology

Bayesian hybrid automata Experiment: safety



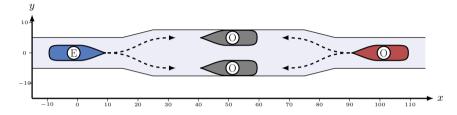
Bayesian hybrid automata Experiment: liveness



P. Kröger: Reconciling Formal Methods with Metrology

The impact of hybrid dynamics

Bayesian hybrid automata Yet another toy example



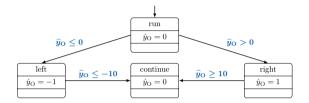
Ship O ...

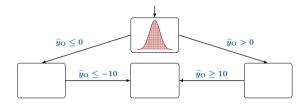
• chooses a direction for the evasive manoeuvre (left or right):

- ▶ to the left, if $y_o \leq 0$
- ▶ to the right, if $y_o > 0$

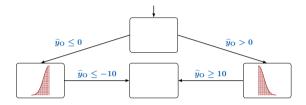
Ship E ...

- is not aware of O's decision.
- chooses direction based on \hat{y}_{O} .

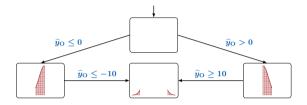




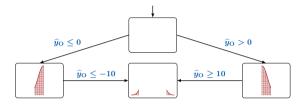
- guards enabled with some probability (yields probability of the mode)
- successor mode is ambiguous
- distribute the distribution over enabled transitions
 - $\rightarrow~$ mixture distributions for continuous state



- guards enabled with some probability (yields probability of the mode)
- successor mode is ambiguous
- distribute the distribution over enabled transitions
 - $\rightarrow~$ mixture distributions for continuous state



- guards enabled with some probability (yields probability of the mode)
- successor mode is ambiguous
- distribute the distribution over enabled transitions
 - $\rightarrow~$ mixture distributions for continuous state



Apply correct mode dynamics to right part of the continous state space:

- guards enabled with some probability (yields probability of the mode)
- successor mode is ambiguous
- distribute the distribution over enabled transitions
 - $\rightarrow~$ mixture distributions for continuous state

Estimate at time *t*:

- continuous state: weighted re-assembly from (partial) distributions
- discrete state: derived from probability mass shifted "into" the mode

Bayesian hybrid automata Guess what I'm doing: hybrid estimation

So far, upon new measurements

- mixture components are updated (via filtering)
- but mode probabilites remain unchanged.

Bayesian hybrid automata Guess what I'm doing: hybrid estimation

- So far, upon new measurements
 - mixture components are updated (via filtering)
 - but mode probabilites remain unchanged.

However, measurements yield information about the true mode:

- Given a measurement, obtain the distribution of the true continuous state according to that measurement: $\hat{x} = 5 \quad \rightsquigarrow \quad p(x) \equiv \mathcal{N}(5, \sigma^2)$.
- Reweighted probability mass of mode invariant under this distribution yields probability of the mode according to the measurement result, e.g. via $\int_{inv(run)} p(x)$.
- This gives raise to a filter process for modes (e.g. using Bayes' rule).

Bayesian hybrid automata Guess what I'm doing: hybrid estimation

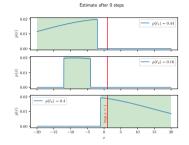
- So far, upon new measurements
 - mixture components are updated (via filtering)
 - but mode probabilites remain unchanged.

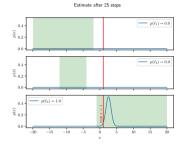
However, measurements yield information about the true mode:

- Given a measurement, obtain the distribution of the true continuous state according to that measurement: $\hat{x} = 5 \quad \rightsquigarrow \quad p(x) \equiv \mathcal{N}(5, \sigma^2)$.
- Reweighted probability mass of mode invariant under this distribution yields probability of the mode according to the measurement result, e.g. via $\int_{inv(run)} p(x)$.
- This gives raise to a filter process for modes (e.g. using Bayes' rule).

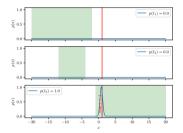
This sketches of the idea of currently ongoing work only.

Bayesian hybrid automata Example

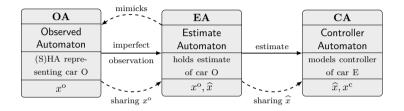




Estimate after 50 steps



Bayesian hybrid automata The decomposed model



In case of more complex measurement processes another automaton modelling this process may be introduced between OA and EA.

Bayesian hybrid automata Some papers

M. Fränzle and P. Kröger.

The demon, the gambler, and the engineer – reconciling hybrid-system theory with metrology. In *Symposium on Real-Time and Hybrid Systems*, volume 11180 of *Theoretical Computer Science and General Issues*, pages 165–185, Cham, 2018. Springer International Publishing.

M. Fränzle and P. Kröger.

Guess what I'm doing! Rendering Formal Verification Methods Ripe for the Era of interacting Intelligent Systems

In *Leveraging Applications of Formal Methods, Verification and Validation: Applications*, pages 255–272, Cham, 2020. Springer International Publishing.

P. Kröger and M. Fränzle.

Bayesian hybrid automata: A formal model of justified belief in interacting hybrid systems subject to imprecise observation.

accepted for LITES. 2021.