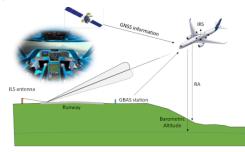
Set-based Multi-Sensor Data Fusion For Integrated Navigation Systems

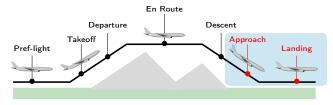
S. Ifqir¹, C. Combastel², A. Zolghadri², Senior Member, IEEE

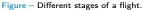
¹CRIStAL, UMR CNRS 9189, Centrale Lille, 59651 Villeneuve d'Ascq, France. ²IMS Lab, University of Bordeaux - CNRS (UMR 5218), France.

May 06, 2022


International Online Seminar on Interval Methods in Control Engineering

Introduction


- Oulti-Sensor data fusion Architecture
- Simulation Results
- Onclusion & Further results


Introduction : COCOTIER Project

- COCOTIER (COncept de COckpit et Technologies Intégrées En Rupure, 2019-2022) is a collaborative project on new technologies for future intelligent cockpit in Single Pilot Operations (SPO, 2030+).
- The project is supported by the French Directorate General of Civil Aviation (DGAC) and coordinated by Airbus.
- Partners : 14 industrial and academic partners :
 - Industrial partners : Airbus (coordinator) Dassault aviation SAFRAN Thales ATR – Factem – OKTAL Synthetic Environment – Ratier Figeac – Vodea – Zodiac Aero Electric.
 - Academic partners : IMS Lab (U-Bordeaux) LAAS-CNRS (Toulouse) LEAD Lab (Toulouse) – ONERA (French Aerospace Lab) – ENAC (French Civil Aviation University).

Objective : Provide precise Aircraft Position in runway frame.

Inputs :

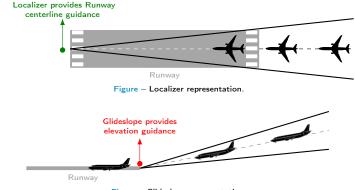
- Used for data fusion :
 - Inertial Reference System (IRS) (3D velocity).
 - Global Positioning System (GPS)(3D position).
 - Instrument Landing System (ILS) (lateral and vertical angular deviations).
- Used as reference : Differential GPS (DGPS)
- **Outputs** : Position $(X_{RWY}, Y_{RWY}, Z_{RWY})$.

- ► IRS considered as the reference sensor → Generally consolidated using dedicated on-board processing.
- Measured IRS velocity v_k :

$$\mathbf{v}_k = \mathbf{v}_k^0 + \mathbf{E}_k \omega_k \tag{1}$$

 v_k^0 : Actual aircraft 3D velocity.

 E_k : Time-varying matrix characterising the measurement noise ω_k .


• Aircraft 3D position vector $x_k = [X_k \ Y_k \ Z_k]^T$:

$$x_{k+1} = x_k + T_s(v_k^0 + E_k\omega_k) \tag{2}$$

 T_s : Sampling time.

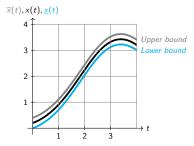
Problem Statement

- GPS : 3D position.
- ILS : aircraft vertical and lateral deviations.
 - Localizer (η_{LOC}).
 - Glideslope (η_{GS}).

Global measurement model :

$$y_{k} = \begin{bmatrix} y_{k}^{1} \\ y_{k}^{2} \end{bmatrix} = h(x_{k}) + \underbrace{\begin{bmatrix} F_{k}^{1} & 0 \\ 0 & F_{k}^{2} \end{bmatrix}}_{F_{k}} \underbrace{\begin{bmatrix} \vartheta_{k}^{1} \\ \vartheta_{k}^{2} \end{bmatrix}}_{\vartheta_{k}}$$
(3)

 y_k^1 and y_k^2 : GPS position and ILS deviations measurements, respectively.


• The observation function h(.) relates both measurements with the state vector x_k :

$$h(x_k) = \begin{pmatrix} X_k \\ Y_k \\ Z_k \\ \frac{\left(Y_k - d_{offset} - (L - X_k)sin(b_{align})\right)L}{s(L - X_k)} \\ tan^{-1} \left(\frac{T(H - Z_k)}{X_k}\right) - GPA \end{pmatrix}$$
(4)

 F_k^1 and F_k^2 characterise the GPS and ILS measurement noise ϑ_k^1 and ϑ_k^2 .

Problem Statement and Contributions

- Multi-sensor data fusion using Kalman-like filtering (prediction+update).
- How to characterize ω_k and ϑ_k ? Noise covariances may be difficult to obtain.
- Set-membership does not require any assumption about the probability distributions and rely on unknown-but-bounded uncertainties.

- ▶ Set-based data fusion → Extended Zonotopic Kalman Filter (EZKF).
- Normalized uncertainties are assumed to be bounded by a unit hypercube expressed as a zero-centered zonotope :

$$\omega_k \in \langle 0, I_{n_x} \rangle, \quad \vartheta_k \in \langle 0, I_{n_y} \rangle \tag{5}$$

 I_{n_x} and I_{n_y} are identity matrices.

Online tuning/adaption of E_k and F_k (state and meas. noise bounds).

Set-based multi-Sensor Data Fusion Architecture

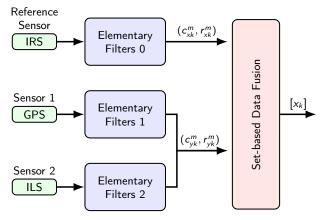


Figure - Set-based navigation sensor fusion scheme.

Elementary Filters

- Extraction of features and useful infor. from each scalar preprocessed signal :
- Basic (first order) learned/tuned model + First order interval-based algorithm.
- Structure inspired by a ZKF¹ optimizing a 1-norm criterion.

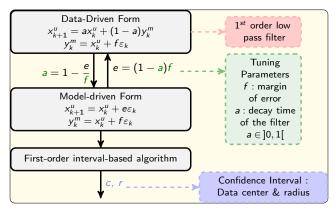
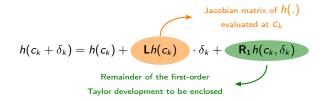


Figure - Elementary Filter's layout.

^{1.} Christophe Combastel. Zonotopes and kalman observers : Gain opti-mality under distinct uncertainty paradigms and robust convergence. Automatica, 55 :265–273, 2015


Algorithm 1: Simplified 1-norm based scalar ZKF as used in the bank of elementary filters.

Input: a, f and y_k^m **Output:** c_k^m and r_k^m Initialize: $c_k^u \leftarrow c_0^u, r_k^u \leftarrow r_0^u$ 1 for k = 1 to N do if $r_k^u < f$ then 2 3 $\gamma_k = a$ else 4 $\gamma_k = 0$ 5 end if 6 $c_{k+1}^u = \gamma_k c_k^u + (1 - \gamma_k) y_k^m$ 7 $r_{k+1}^{u} = pos(|y_{k}^{m} - c_{k}^{u}| - f) + a.min(r_{k}^{u}, f)$ 8 $c_{k}^{m} = c_{k}^{u}$ 9 $r_{k}^{m} = r_{k}^{u} + f$ 10

• IRS/GPS/ILS measurement model (with ILS nonlinearities) :

$$y_k = h(x_k) + F_k \vartheta_k$$

• The observation function h(.) is approximated, for $x_k = c_k + \delta_k$ with $\delta_k \in [\delta_k] = (0 \pm r_k)$, as follows :

• After some calculation, the following inclusion holds :

$$h(c_k + \delta_k) \in h(c_k) + Lh(c_k)\delta_k + (c_{hk} \pm r_{hk})$$

where c_{h_k} and r_{h_k} are the center and radius of the interval enclosing the remainder term.

• After some developments,

$$y_{k} = C_{k} x_{k} + \hat{F}_{k} \hat{\vartheta}_{k} + u_{k}, \quad \hat{\vartheta}_{k} \in \langle 0, I_{n_{y}} \rangle$$
(6)

where

$$C_k = \mathbf{L}h(c_k) \tag{7a}$$

$$\hat{F}_k \hat{\vartheta}_k \in 0 \pm r_h k + F_k \vartheta_k \tag{7b}$$

$$u_k = h(c_k) - \mathbf{L}h(c_k)c_k + c_{hk}$$
(7c)

- Data fusion based on an Extension of ZKF².
- In the proposed design, the time-varying matrices *E_k* and *F_k* are updated in real-time using the information processed by the elementary filters :

$$E_k = diag(r_{xk}^m) \tag{8a}$$

$$F_k = diag(r_{\gamma k}^m) \tag{8b}$$

^{2.} Christophe Combastel. Zonotopes and kalman observers : Gain optimality under distinct uncertainty paradigms and robust convergence.Automatica, 55 :265–273, 2015

Algorithm 2: Dedicated EZKF Algorithm. **Input:** c_{xk}^m , r_{xk}^m , c_{uk}^m and r_{uk}^m **Output:** \underline{x}_k and \overline{x}_k Initialize: $c_k \leftarrow c_0, H_k \leftarrow H_0$ 1 for k = 1 to N do /* Compute reduced zonotope ***/** $\overline{H}_k = \downarrow_a H_k$ 2 /* Compute Jacobian matrix \mathcal{C}_k */ $\mathcal{C}_k = \mathbf{L}h(c_k)$ 3 /* Compute time varying matrices E_k , \hat{F}_k , P_k and Q_k $E_k = diaq(r_{xk}^m)$ 4 $\hat{F}_k = diag\left(r_{hk} + r_{yk}^m\right)$ 5 $P_k = \overline{H}_k \overline{H}_k^T, \quad Q_k = \hat{F}_k \hat{F}_k^T$ 6 /* Compute the optimal filter gain $G_k = P_k \mathcal{C}_k^T \left(\mathcal{C}_k P_k C_k^T + Q_k \right)^{-1}$ 7 /* Compute the center and generator matrix of the zonotope \mathcal{Z}_k $c_{k+1} = (I_{n_x} - G_k \mathcal{C}_k) c_k + T_s c_{xk}^m + G_k (c_{uk}^m - u_k)$ 8 $H_{k+1} = \left[(I_{n_x} - G_k \mathcal{C}_k) \overline{H}_k, \ T_s E_k, \ -G_k \hat{F}_k \right]$ 9 /* Compute the interval hull of $\mathcal{Z}_k = \langle c_k, H_k \rangle$ */ $\Box \mathcal{Z}_{k+1} = \langle c_{k+1}, |H_{k+1}| \mathbf{1} \rangle$ 10 /* Compute the upper and lower bounds of fused data $\overline{x}_{k+1} = c_{k+1} + |H_{k+1}|\mathbf{1}$ 11 $\underline{x}_{k+1} = c_{k+1} - |H_{k+1}|\mathbf{1}$

Tuning parameters inputs :

• IRS, GPS and ILS margin of errors, f_x and f_y ,

$$f_x = \begin{bmatrix} 0.1087\\ 0.4052\\ 0.1589 \end{bmatrix}, \quad f_y = \begin{bmatrix} 45.3618\\ 35.5192\\ 4.1909\\ 0.1625\\ 6.3898 \end{bmatrix}$$

Simulation based on real data provided by Airbus : Scenario 1

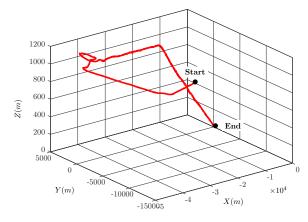


Figure - 3-D Trajectory of landing scenario 1.

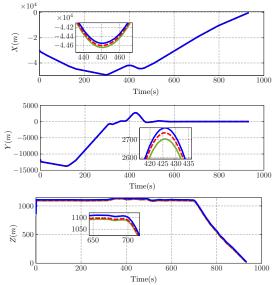


Figure - Interval Estimation of positions along x-, y- and z-axis for Scenario 1.

Simulation based on real data provided by Airbus : Scenario 2

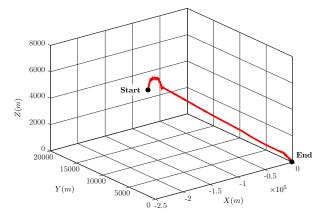


Figure - 3-D Trajectory of landing scenario 2.

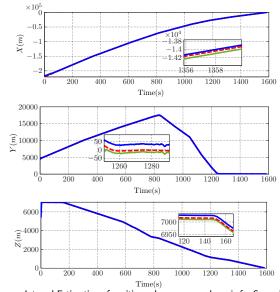
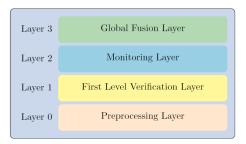


Figure – Interval Estimation of positions along x-, y- and z-axis for Scenario 2.


Conclusion & Perspectives

Conclusion

- IRS/GPS/ILS set-based multi-Sensor data fusion.
- Extended zonotopic Kalman filter enclosing ILS nonlinearities.
- Simulation experiments based on real flight data provided by Airbus.

Further results³

- Fault-tolerant issues and merging set-membership and probabilistic paradigms.
- Further extensive simulations.
- Layered data-fusion architecture.

^{3.} S. Ifqir, C. Combastel, A. Zolghadri, G. Alcalay, P. Goupil, S. Merlet, Fault tolerant multi-sensor data fusion for autonomous navigation in future civil aviation operations, Control Engineering Practice, Volume 123, 2022. https://doi.org/10.1016/j.conengprac.2022.105132.