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SHGO design

Consider the class of nonlinear systems that are diffeomorphic to the following
triangular form:

x(t) = Ax(t) + ¢(u(t), x(t)) + Be(t) 1)
y(te) = Cx(t) + w(te) = xa(tc) + w(ty)
L»éjl(uvxl)
p2(u, x1, x2)
with X:(x1 L. X )TER",go(u,x): _
wn—1(U, X1, .« .y Xn—1)
en(u, x)
A:( 8 /”61 )eR”fornZZB:( 00 ... 1), Cc=(1 0 ... 0)wherex

is the state vector of the system, u is the input signal, and y(tx) is the system output
which is available only at the sampling instants tx. €(t) and w(t) are system uncertainties
and output noise. T5 = tyy1 — t is defined as the sampling partition

4/29



SHGO design

Table of content

Consider the class of nonlinear systems that are diffeomorphic to the following
S e triangular form:
(SHGO) design {x(t) = Ax(t) + o(u(t), x(t)) + Be(t) 1)
y(t) = Cx(t) + w(te) = xa(t) + w(te)

Assume that:

® The state x is bounded:;

® The functions ; for i € [1, n] are Lipschitz with respect to x uniformly in u, i.e.

l@i(u, x) = @i(u, X)|| < Lllx = X[;
® The unknown function ¢ is essentially bounded, i.e. Hés,fggEssHs(t)H <d;

® The noise signal w is essentially bounded, i.e. 39, supEss|jw(t)|| < &,
>0
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SHGO design

Consider the class of nonlinear systems that are diffeomorphic to the following
triangular form:

(1)

x(t) = Ax(t) + p(u(t), x(t)) + Be(t)
y(te) = Cx(t) + w(te) = xa(te) + w(tx)

Objective

Design a continuous-discrete time observer providing a continuous time estimation
of the full state of system (1) by using the measurements that are available only
at the sampling instants.
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Consider the class of nonlinear systems that are diffeomorphic to the following

triangular form:

Standard high x(t) = Ax(t) + p(u(t), x(t)) + Bz(t) (1)
Ghco) deser y(t) = Cx(t) + w(t) = xa(8) + w(t)
Based on the continuous-time high gain observer in (Farza, M'Saad, et al. 2004),

the discrete-continuous time observer is designed as (Bouraoui et al. 2015):

Standard discrete-continuous observer

R(t) = AR(t) + (u(t), X(t)) — 00, Ke 0=t (CR(ty) — y(tk)), t € [t tira] (2)

T T
where X = ( X1 ... Xn ) is the estimated state vector, K = ( ki ... ki ) is the gain
matrix where k;,i = 1,...,n are chosen such that the matrix A = A — KC is Hurwitz, and
Ny = diag( 1 % 9,,—1,1 ) is the diagonal matrix with 0 > 1.
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SHGO design

Since the matrix A = A — KC is Hurwitz, there exist a n X n symmetric positive
definite (SPD) matrix P and a positive real p such that PA+ ATP < —2ul,.
Then, for the standard discrete-continuous observer, we have:

Theorem

Vp > 0,30 > 0,V > 6p,Vu s.t.||ul|o < p, there exist positive constants xg > 0 and
n9(Ts) > 0 such that if the sampling interval T is chosen such that T < xg, then for
every X(0) € R, we have:

1%(t) = x(t)[| o607 e™™"[[2(0) — x(0)|

e _ _
+ Ny (0 + 0" K||(2-e k19T5)6w>

(Ts)T. .
whereNp = 00T % 0o = max(1, 2Lf>\M) o ’;’V’ is the conditioning number of the
matrix P, Ay and )\, are the maximum and minimum elgenvalue of the matrix P.
— _ Ts\a—asT: — I _ ub
o = ap(1 = 3=)e™"" X0 = yrra Ry 2 = 35y
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Lemma

i Consider a differentialable function v(t) € R satisfying the following inequality:
tandar i
gain observfr
(SHGO) design

v(t) < —av(t) + b/t v(s)ds + p(t), t € [tk, tut1]

ti

with p(t) is an essentially bounded function with ¢ = supEss p(t), a and b are positive
>0

reals satisfying b} <1

Then, the function v(t) satisfies:

= e*"?Ts

2
—n(t—t
V(t) <e n( O)V(to)"‘CTsm

withn = (a+ bT,)e~2Ts > 0.

The proof of this Lemma can be found in (Bouraoui et al. 2015).
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gain observer
(SHGO) design

Let x(t) = %(t) — x(t) be the observation error, it can be easily checked that
X = AX + ¢(u, &, x) — 00, Ke P =t CX(t)) — Be(t) 4 04, Ke Ol y(1,)

where ¢(U7)?, X) = QO(U,)?) - QD(U, X)'
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Let X(t) = %(t) — x(t) be the observation error, it can be easily checked that:
Standard high

S X = AX + ¢(u, %, x) — 00, Ke 0=t CX(t)) — Be(t) 4+ 04, Ke 0halt=t (1)

where ¢(u, %, x) = p(u, %) — p(u, x).

e Setting X = AyX, and taking into account the following identities:
DoAN T =0A,CA = C

one gets:

X = OAR+Dg¢(u, 8, x)—OKe 0t Cx( 1) Be(t)+0Ke 0ht=ty (1) (1)

- 9"_1
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e Setting X = Ayx, and taking into account the following identities:
Standard high

ain observer -1 _ ~1_
(gSHG(l))) design DALy~ =0A, CAy" = C
one gets:
. 1
X = 0AX+Dgo(u, %, x)—OKe 0=t Cx(1,)— T Be(t)+0Ke 0kt (1) (1)
® Adding and subtracting the term §KCX yields:
% = 0A% + Okz — —— Be(t) + OKe 0= t)y(1,) )
- gnfl k

where A=A — KC, z = Cx — e Pt Cx(t)) = %, — e R(t=t) 3 (1)
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Standard high
gain observer

(SHGO) design 3 3 . . _ T D= . .
Considering the following Lyapunov function: V(x) = X' Px where P is the SPD matrix

defined before, one can show that:

V(%) =0xT (AT P 4 PA)X + 2% P(Agp(u, %, x) 4 0Kz)
(3)

+ 28T P——Be(t) + 28T PoKe™ V=t (1))

1
9n—1
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Considering the following Lyapunov function: V(X) = X" Px where P is the SPD matrix
defined before, one can show that:

St%mdard high . — _ -

b V(%) =07 (ATP + PA)R + 257 P(£g6(u, %, x) + 0KZ) “

1
+ QXTPmBs(t) + 23T PoKe™ V=t (1))

® According to the Lipschitz assumption and the triangular structure of ¢, for 6 > 1,
one has (Farza, M'Saad, et al. 2004):

23T PAgd(u, R, x) < 2¢/nAm LR

_ 1 |€ )|V Am —
2XTPWBE(t) S 2%\/ V(X)
25T POKe™ M=ty (1) < 20||w(t) |V AmIIK]A/ V(X)
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Considering the following Lyapunov function: V(x) = xT Px where P is the SPD matrix

Standard high defined before, one can show that:
ain observer
(gSHGO) design - T, AT - _T R
V(x) =0x" (A" P+ PA)Xx +2x' P(Agd(u, X, x) + 0Kz)
1 3
- 2xTPmBg(t) + 2T POKe™Vhat=t) (1) ®)
® One gets:
V(%) < = 2(ub — VaAmL)[[%]1% + 20/ A K |12l V(%)
et — (4)
+ 2y (B84 orietean) v
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Table of content Considering the following Lyapunov function: V/(X) = X7 Px where P is the SPD matrix
defined before, one can show that:

Stanciod high V(x) —9>‘<T(Z\TP + PA)R + 23T P(Dpg(u, R, x) + OK2Z)
ain observer 3
(gSHGO) design + 2% ( ) + 2)_(TP6K6_9k1(t_tk)oJ(tk) ( )

9
® One gets:

V(R) < — 208~ VDRI + 20V Al K 211V 3)
6 4
+ 20 (10 ok tol) V) “

® Choosing 6 such that 2(uf — \/nApmL) > pb, ie. 8 > 6y = 2\/nApyL/p, the last
inequality becomes:

V(%) < — 2 v(x) + 20V Aul K] 2] V)
w2y (1580 4 kit ) vV
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Standard high
gain observer
(SHGO) design .
Calculation of |z||

As mentioned before, z = Cx — e %\(t=t) Cx(t,) = X1 — e~ (t=t) (1)), the time

derivative of z can be written as follows:
z = );q + kﬁe’akl(t’tk))'q(tk) = 0x> + (Z)l(u, X1, X1) + kﬁe’akl(t’“)w(tk) (6)

where ¢1(u, X1, x1) = @1(u, %) — p1(u, x1).

8/29



Proof of Theorem

Table of content

St it Calculat'non of ||z|| et s i - .
e As mentioned before, z = Cx — e PRt Cx(t) = X — e PMlE=M)% (84 ), the time
i) ek=ip derivative of z can be written as follows:

Zz = );q + k19e_9kl(t_tk))'q(tk) = 9)?2 + qbl(u,)?l,xl) + kﬁe‘gkl(t_tk)w(tk) (6)
where ¢1(u, %1,x1) = p1(u, %1) — ¢1(u, x1).

® Integrating (6) from t to t while using the fact that z(tx) = 0 yields:

z= / (0x2(s) + p1(u(s), %1(s), x1(s))) ds + (1 — e M=) y( 1) (7)

tk
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Proof of Theorem

Table of content  Calculation of ||z||
As mentioned before, z = Cx — e~ h(t=%) Cx(t)) = 5 — e~ 7Ma(t=%) % (1), the time

derivative of z can be written as follows:
Standard high

Ehico) desen 2 =%+ kife "5 (1) = 0% + d1(u, R0, %) + ke " Wuw(n) - (6)

where ¢1(u, %1,x1) = p1(u, %1) — ¢1(u, x1).

® Integrating (6) from tx to t while using the fact that z(tx) = 0 yields:

z= / (0x2(s) + p1(u(s), %1(s), x1(s))) ds + (1 — e M=t )y( 1) (7)

ty
¢ Bearing in mind that ¢(u, X1, x1) = ¢1(u, X1) — p1(u, x1), one gets:

t
2l <(0+ L)/ 15(s) s + (1 — e~ k#(E—t))5,
ty

S((9+L)/\/E)/t I/ V(x(s))|lds + (1 — e k0755,
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Combing the above inequalities, one obtains:

Standard high

. 0 ) t
e V(%) <~ L2 v(z) + 20,/ T2 K10 + L)V V(F) / IV V(x(s))llds
(SHGO) design Am Am th

(9)
+ 20 (ks + K12~ e ™3, ) VR
Equivalently, one has:
SV < = S 01K 0+ 1) [ 1V o
" (10)

v/ (s +olKI 2 - eWsm)
where 0 = \/Aum/Am is the conditioning number of P.
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Standard high
gain observer
(SHGO) design

Proof of Theorem

Finally, let ag = 2%, by = 80||K || (0 + L), po = VAm (g"f”l FOIK|(2 —

and assume that the upper diameter of the samplmg partition T, sat|sf|es the following

. P B
condition: T, < 22 b = WETDe TR = X0

Then, according to Lemma, one has:

— e~ "o Ts

V V(%) <e ™ /V(x(0)) + co Tsﬁ

where ¢5 = supEss py = v/ Au (go=r + 0||K||(2 — e749T-)d,,), and
>0

N = (aa — by Ts)e_ag T

10/29
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Standard high
gain observer
(SHGO) design

Proof of Theorem

Finally, let ag = 22, by = 60||K||(6 + L), ps = /3w (e‘f”l +0|K||(2 - fh@Ts)csw),
and assume that the upper diameter of the sampllng partition T satisfies the following
condition: T S be m = X0-

Then, according to Lemma, one has:

2 _ e MTs

\/ <e nst\/ +C9Tm (].1)

where ¢y = supEss py = /Au (2= + 0||K||(2 — e ¥97%)4,,), and
£>0

ne = (39 — by Ts)efas Ts
® Thus, one obtains:

pT-2—e s

o\ l e~ 1—_enoTs

x| < oe™|x(0)| +

10/29
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_ ® Thus, one obtains:
Standard high

gain observer

(SHGO) design cls2—e o Ts

\/7 1—e Mo 1—em0Ts

IX|l < oe™™*[IX(0)]| +

® Recall that X = Agx with Ag =diag (1 % ... 71 ).
® Then, coming back to the original coordinates of the observation error x, for 6 > 1,
one has:
1 - ~ _ _ ~ cpTs2—e s
gt Xl < 1 A6x]| = [IX]] < oe™ ™[ Aql[IX(0)]| + Vﬁm (12)
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® Recall that X = Agx with Ag =diag (1 § ... z=1 ).
Standard high ® Then, coming back to the original coordinates of the observation error x, for § > 1,
gain observer h .
(SHGO) design one has:

coTs2—eTs

VA, 1—emTs

(11)

1 e _ -
gt Xl < N8eXI = [Ix]] < oe™™ [ Aq [ X(0)]] +

® Substituting in ¢y defined before, one gets:
IX|l <009~ e~ |[x(0)]|

e
o (G4 oKz - ek, )

(Ts)Ts

_ 2—e” 0
where Ny = o0 TSW. Theorem has been proved.

10/29
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@ Improved Non-peaking high gain observer (NPHGO) design
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In order to eliminate the peaking phenomenon, an improved NP observer has been
proposed for the continuous-time system in (Farza, Ragoubi, et al. 2021).

Improved . . H

Nor-pesking Therefore, for the nonlinear system with sampled measurements (1), an improved
1gh gain . . .

i NP discrete-continuous observer can be written as follows:

o . ,

e Improved NP discrete-continuous observer

X(t) = AR(t) + (u(t), #(t)) — OFTH(t), t € [te, tesa] (12)

12/29
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Improved NPHGO design

Improved NP discrete-continuous observer

>*<(t) = AR(t) + o(u(t), 2(t)) — O*TH(t), t € [ty ter1] (12)
where H(t) = ( Hi(t) ... Ha(t) )T is defined as follows:
Hy(t) = satu,1 (0_”k1e_9k‘(t_t”(c>?(tk) - Y(fk)))
. (13)
H,'(t) = sat,,; (Hk H,',l(tk)> , I=2,...,n
i—1
with k; € K = ( ki ... ky )T are the gain parameters which are chosen such that the
matrix A = A — KC is Hurwitz. 7 is a small positive constant. sat,(-) is a saturation
function defined as:
z, iflz]| <v
Vz€R, sat,(z)= , 12| < , (14)
v-sign(z), iflz] >v

where v > 0 is a positive constant; and sign(-) is the usual signum function.
12/29
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A main reaction (perhydrolysis of formic acid to peroxyformic acid by hydrogen
peroxide) with three decomposition reactions take place in the considered batch
reactor (Verniéres-Hassimi et al. 2017; Leveneur et al. 2012; Zheng et al. 2016).

Mathematical model H,O + %02

T decomposition 3

Chicoor = —Iperh + rdecomp,2 HCOOH + H,0, = HCOOOH + H,0
B CH,0, = —I'perh — Fdecomp,3 / \
of the renctor | g decomposition 2 decomposition 1
R heat CHCOOOH = Iperh — Fdecomp,1 — F'decomp,2 (15) 1
" CHQO = Iperh ate I'decomp,1 ate I'decomp,3 CO2 + HZO HCOOH + 502
- qr UA loss
Tr = — (T, — Tgr) — . . . .
s o pVCp( s~ Tr) pVCr Figure: Chemical reactions occur in the

batch reactor
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Mathematical model of the reactor

Table of content A main reaction (perhydrolysis of formic acid to peroxyformic acid by hydrogen
peroxide) with three decomposition reactions take place in the considered batch
reactor (Vernieres-Hassimi et al. 2017; Leveneur et al. 2012; Zheng et al. 2016).

where
Mathematical model ® T: temperature (K)
e C: concentration (mol - L™1)

* r: reaction rate (mol - L™1.s71)

CHCOOH = —I'perh I I'decomp,2
. ° _ o ) .
- Mathematical model CH202 = —Iperh — I'decomp,3 qr . Z’ r’AI—_IR’l V 15 the
of the reactor ] reaction heat, with AHrg is the
e " P CHcoooH = I'perh — Fdecomp,1 — I'decomp,2 (15) reaction enthalpy

CHzO = rperh + Fdecomp,1 + Fdecomp,3

. A

Tr=—2_4 A
pVCp pVCP

® (joss = 0 is the heat loss

Qloss
Ty — Tiia)) — = . :
(7 7) pVCp ® subscript R, J are the reaction, the

jacket of the reactor, respectively

Others are constants 14/29
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- Mathematical model

of the reactor 68 L L L L I I}
Eoniheat 0 2000 4000 6000 8000 10000 12000
tion by sam Time (s)

Figure: Temperature comparison between the
experimental data and the simulated data

Initial conditions:

CHcooH = 2.5 mol - Lt

* Ch0, =28 mol-L7!

Cricooor = 0 mol - L1
Cr,0 = 50.27 mol - L1
Tr = 69.8511 °C
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Temperature comparison
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Initial conditions:

® CycooH = 2.5 mol - Lt

* Ch0, =28 mol-L7*

* Chcooon = 0 mol - L7

* Chy0 =50.27 mol - L1
s 6 : : : : : : e Tr =69.8511 °C

0 2000 4000 . 6000 8000 10000 12000
Time (2) We focus on t € [0,3600]

Figure: Temperature comparison between the
experimental data and the simulated data
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e Rewrite the reactor model into the observer-construction form

Define x1(t) = Tgr(t), x(t) = ZRv(ct,Zv one gets:

x1(t) = Tr(t) = x(t) + ¢a(t)

Jo(t) = Zf\?/(ég e(t)
with ¢1(t) = S02-(T) — Tr(t)) — e

® SHGO construction

qR(t) UA _ _ Gloss
e T oves (T Ta(®)) VCr

Gr(t) = —pVCpo®e =8 (Tr(ti) — Tr(t))

Tr (t) = — Ok =t (To(t) — Tr(t))

(16)

Standard discrete-continuous observer

(17)
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Improved NP discrete-continuous observer

A . flR(t) UA _ S _ Qioss  p14n
TR(t)_pVCPJr—pVCP(TJ saty, 7, (Tr(t))) VG 0""H.(t) (18)

Gr(t) = —6"""Ha(t)

Hi(t) = sat, 1 (ef"kle*%(f*fk)(ﬁe(tk) - TR(tk)))
(19)

Hz(t) = sat, 2 <pVCp9%H1(t)>
1

17/29



Initial conditions

Table of content

In the following simulations:

T T
~ o K=( ki k =(2 1
® ChcooH = CHcooH (ko k) ( )

N ° () —
" Creon = Chio: o v, Tp=85°C
o C/:HCOOOH = CHCoooH . V’ L~ 10
® Cho = Ciro . ;2:1
- Rzt b * Tr=65°C ° 7_ 0.01
© Gr=0 : ;70—_ 0

18/29



Reaction heat estimation by sampled measurements

Tableof content Model based estimation. Case 1: T, = 2s

80 -
* TR Model—Sampled
75l TR Standard
——TrnNpP
70
- Reaction heat
estimation by sampled
measurements
65 L L L L L L L I}
0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

Figure: Temperature Tg (°C) and its estimation T based on the reactor model 1929
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Reaction heat estimation by sampled measurements

Model based estimation. Case 1: T, = 2s

74
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!

70

69
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TR Standard

——Trnpr

I
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Time (s)

Figure: Zoom in
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60
50 | e
40 qr =
—— 4R Standard

30 F QR.NP |
20 e
10 e
0 J

-1 O L L L L L L L

0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

Figure: Reaction heat gg (J - sfl) and its estimation gr based on the reactor model ,
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Tableof content Model based estimation. Case 2: T, = 4s

60
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Figure: Reaction heat gg (J - Sil) and its estimation gr based on the reactor model ,
21/29



Reaction heat estimation by sampled measurements

Tableof content Experimental data based estimation. Case 1: T, = 2s

80 -
78 -
==
76 -
* TR.Ea.'p
74 TR standard
TrNp
72 |
70
- Reaction heat 68|
estimation by sampled
measurements
66 |-
64 L L L L L L L I}
0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

Figure: Temperature Tg (°C) and its estimation Tg based on experimental data 22



Reaction heat estimation by sampled measurements

Tableof content Experimental data based estimation. Case 1: T, = 2s

74 -

73
* TR Exp

72 TR standard

—TrnNp

71

70,

69

68

67

- Reaction heat
estimation by sampled
its

measuremen 66

65 |-

64 I I I I
0 5 10 15 20 25 30 35 40

Time (s)

Figure: Zoom in
22/29



Reaction heat estimation by sampled measurements

Tableof content Experimental data based estimation. Case 1: T, = 2s
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80 -

* TR Ewp
TR Standard
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Figure: Temperature Tg (°C) and its estimation Tg based on experimental data .
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Figure: Reaction heat gg (J - sfl) and its estimation gg based on experimental data2
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Conclusion

Conclusion

A standard high gain observer (SHGO) has been presented for the system
with sampled measurements.

An improved non-peaking observer (NPHGO) has been proposed for the
mentioned system, and the peaking phenomenon has been eliminated
compared to the SHGO.

The reaction heat of the batch reactor has been well estimated by the
proposed observes.

Both of the observers have been proved to be efficient with an enlarged
sampling interval.
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