Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Observer design for a class of uncertain nonlinear systems with sampled outputs

Application to the estimation of reaction heat in chemical reactors

Xue Han, Mondher Farza, Mohammed M'Saad

Laboratoire d'Ingénierie des Systèmes Université de Caen Normandie

39th International Online Seminar on Interval Methods in Control Engineering 03/06/2022

Table of Contents

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

1 Standard high gain observer (SHGO) design

2 Improved Non-peaking high gain observer (NPHGO) design

3 Simulation results

4 Conclusion

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Table of Contents

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

1 Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

SHGO design

Table of content

Standard high gain observer (SHGO) design

- Mathematical model

Consider the class of nonlinear systems that are diffeomorphic to the following triangular form:

$$\begin{cases} \dot{x}(t) = Ax(t) + \varphi(u(t), x(t)) + B\varepsilon(t) \\ y(t_k) = Cx(t_k) + \omega(t_k) = x_1(t_k) + \omega(t_k) \end{cases}$$
(1)
$$x = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^T \in \mathbb{R}^n, \ \varphi(u, x) = \begin{pmatrix} \varphi_1(u, x_1) \\ \varphi_2(u, x_1, x_2) \\ \vdots \\ \varphi_{n-1}(u, x_1, \dots, x_{n-1}) \\ \varphi_n(u, x) \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & l_{n-1} \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^n \text{ for } n \ge 2, B = \begin{pmatrix} 0 & 0 & \dots & 1 \end{pmatrix}^T, C = \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix} \text{ where } x$$

is the state vector of the system, u is the input signal, and $y(t_k)$ is the system output

and output noise. $T_s = t_{k+1} - t_k$ is defined as the sampling partition

which is available only at the sampling instants t_k . $\varepsilon(t)$ and $\omega(t)$ are system uncertainties

with

SHGO design

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Consider the class of nonlinear systems that are diffeomorphic to the following triangular form:

$$\begin{cases} \dot{x}(t) = Ax(t) + \varphi(u(t), x(t)) + B\varepsilon(t) \\ y(t_k) = Cx(t_k) + \omega(t_k) = x_1(t_k) + \omega(t_k) \end{cases}$$
(1)

Assume that:

- The state *x* is bounded;
- The functions φ_i for i ∈ [1, n] are Lipschitz with respect to x uniformly in u, i.e. ||φ_i(u, x) - φ_i(u, x̄)|| ≤ L||x - x̄||;
- The unknown function ε is essentially bounded, i.e. $\exists \delta_{\varepsilon}, \sup_{t \ge 0} \exists s_{\varepsilon}; t \ge 0$
- The noise signal ω is essentially bounded, i.e. $\exists \delta_{\omega}, \sup_{t \geq 0} \exists \delta_{\omega} \in S$

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Conclusion

References

Consider the class of nonlinear systems that are diffeomorphic to the following triangular form:

4

$$\begin{cases} \dot{x}(t) = Ax(t) + \varphi(u(t), x(t)) + B\varepsilon(t) \\ y(t_k) = Cx(t_k) + \omega(t_k) = x_1(t_k) + \omega(t_k) \end{cases}$$
(1)

Objective

Design a continuous-discrete time observer providing a continuous time estimation of the full state of system (1) by using the measurements that are available only at the sampling instants.

SHGO design

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

 Reaction heat estimation by sampled measurements

Conclusion

References

Consider the class of nonlinear systems that are diffeomorphic to the following triangular form:

$$\begin{cases} \dot{x}(t) = Ax(t) + \varphi(u(t), x(t)) + B\varepsilon(t) \\ y(t_k) = Cx(t_k) + \omega(t_k) = x_1(t_k) + \omega(t_k) \end{cases}$$
(1)

Based on the continuous-time high gain observer in (Farza, M'Saad, *et al.* 2004), the discrete-continuous time observer is designed as (Bouraoui *et al.* 2015):

Standard discrete-continuous observer

$$\dot{\hat{x}}(t) = A\hat{x}(t) + \varphi(u(t), \hat{x}(t)) - \theta \Delta_{\theta}^{-1} \mathcal{K} e^{-\theta k_1(t-t_k)} (C\hat{x}(t_k) - y(t_k)), \quad t \in [t_k, t_{k+1}]$$
 (2)

where
$$\hat{x} = \begin{pmatrix} \hat{x}_1 & \dots & \hat{x}_n \end{pmatrix}^T$$
 is the estimated state vector, $K = \begin{pmatrix} k_1 & \dots & k_n \end{pmatrix}^T$ is the gain matrix where $k_i, i = 1, \dots, n$ are chosen such that the matrix $\bar{A} = A - KC$ is Hurwitz, and $\Delta_{\theta} = diag \begin{pmatrix} 1 & \frac{1}{\theta} & \dots & \frac{1}{\theta^{n-1}} \end{pmatrix}$ is the diagonal matrix with $\theta \ge 1$.

SHGO design

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Since the matrix $\overline{A} = A - KC$ is Hurwitz, there exist a $n \times n$ symmetric positive definite (SPD) matrix P and a positive real μ such that $P\overline{A} + \overline{A}^T P \leq -2\mu I_n$. Then, for the standard discrete-continuous observer, we have:

Theorem

 $\forall \rho > 0, \exists \theta_0 > 0, \forall \theta > \theta_0, \forall u \ s.t. \|u\|_{\infty} \leq \rho$, there exist positive constants $\chi_{\theta} > 0$ and $\eta_{\theta}(T_s) > 0$ such that if the sampling interval T_s is chosen such that $T_s < \chi_{\theta}$, then for every $\hat{x}(0) \in \mathbb{R}$, we have:

$$\begin{split} \|\hat{x}(t) - x(t)\| &\leq \sigma \theta^{q-1} e^{-\eta_{\theta} t} \|\hat{x}(0) - x(0)\| \\ &+ N_{\theta} \left(\frac{\delta_{\varepsilon}}{\theta} + \theta^{n-1} \|K\| (2 - e^{-k_{1} \theta T_{s}}) \delta_{\omega} \right) \end{split}$$

where $N_{\theta} = \sigma \theta T_s \frac{2-e^{-\eta_{\theta}(T_s)T_s}}{1-e^{-\eta_{\theta}(T_s)T_s}}$, $\theta_0 = \max(1, \frac{2L\sqrt{n}\lambda_M}{\mu})$, $\sigma = \sqrt{\frac{\lambda_M}{\lambda_m}}$ is the conditioning number of the matrix P, λ_M and λ_m are the maximum and minimum eigenvalue of the matrix P. $\eta_{\theta} = a_{\theta}(1 - \frac{T_s}{\chi_{\theta}})e^{-a_{\theta}T_s}$, $\chi_{\theta} = \frac{\mu}{2(L+\theta)\sigma_{\parallel}K_{\parallel}\lambda_M}$, $a_{\theta} = \frac{\mu\theta}{2\lambda_M}$.

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Lemma

Consider a differentialable function $v(t) \in \mathbb{R}^+$ satisfying the following inequality:

$$\dot{v}(t)\leq -av(t)+b\int_{t_k}^tv(s)ds+p(t),\quad t\in[t_k,t_{k+1}]$$

with p(t) is an essentially bounded function with $c = \sup_{t \ge 0} Ess p(t)$, a and b are positive

reals satisfying $\frac{bT_s}{a} < 1$. Then, the function v(t) satisfies:

$$v(t) \leq e^{-\eta(t-t_0)}v(t_0) + c T_s rac{2-e^{-\eta T_s}}{1-e^{-\eta T_s}}$$

with
$$\eta = (a + bT_s)e^{-aT_s} > 0$$
.

The proof of this Lemma can be found in (Bouraoui et al. 2015).

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Conclusion

References

Let $\tilde{x}(t) = \hat{x}(t) - x(t)$ be the observation error, it can be easily checked that: $\dot{\tilde{x}} = A\tilde{x} + \phi(u, \hat{x}, x) - \theta \Delta_{\theta}^{-1} K e^{-\theta k_1(t-t_k)} C \tilde{x}(t_k) - B \varepsilon(t) + \theta \Delta_{\theta}^{-1} K e^{-\theta k_1(t-t_k)} \omega(t_k)$ where $\phi(u, \hat{x}, x) = \varphi(u, \hat{x}) - \varphi(u, x)$.

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Let $\widetilde{x}(t) = \hat{x}(t) - x(t)$ be the observation error, it can be easily checked that: $\dot{\widetilde{x}} = A\widetilde{x} + \phi(u, \hat{x}, x) - \theta \Delta_{\theta}^{-1} \mathcal{K} e^{-\theta k_1(t-t_k)} C\widetilde{x}(t_k) - B\varepsilon(t) + \theta \Delta_{\theta}^{-1} \mathcal{K} e^{-\theta k_1(t-t_k)} \omega(t_k)$

where $\phi(u, \hat{x}, x) = \varphi(u, \hat{x}) - \varphi(u, x)$.

• Setting $\bar{x} = \Delta_{\theta} \tilde{x}$, and taking into account the following identities:

$$\Delta_{\theta} A \Delta_{\theta}^{-1} = \theta A, C \Delta_{\theta}^{-1} = C$$

one gets:

$$\dot{\bar{x}} = \theta A \bar{x} + \Delta_{\theta} \phi(u, \hat{x}, x) - \theta K e^{-\theta k_1(t-t_k)} C \bar{x}(t_k) - \frac{1}{\theta^{n-1}} B \varepsilon(t) + \theta K e^{-\theta k_1(t-t_k)} \omega(t_k)$$
(1)

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Conclusion

References

• Setting $\bar{x} = \Delta_{\theta} \tilde{x}$, and taking into account the following identities:

$$\Delta_{\theta} A \Delta_{\theta}^{-1} = \theta A, C \Delta_{\theta}^{-1} = C$$

one gets:

$$\dot{\bar{x}} = \theta A \bar{x} + \Delta_{\theta} \phi(u, \hat{x}, x) - \theta K e^{-\theta k_1(t-t_k)} C \bar{x}(t_k) - \frac{1}{\theta^{n-1}} B \varepsilon(t) + \theta K e^{-\theta k_1(t-t_k)} \omega(t_k)$$
(1)

• Adding and subtracting the term $\theta KC\bar{x}$ yields:

$$\dot{\bar{x}} = \theta \bar{A} \bar{x} + \theta k z - \frac{1}{\theta^{n-1}} B \varepsilon(t) + \theta K e^{-\theta k_1(t-t_k)} \omega(t_k)$$
(2)

where
$$\bar{A} = A - KC$$
, $z = C\bar{x} - e^{-\theta k_1(t-t_k)}C\bar{x}(t_k) = \bar{x}_1 - e^{-\theta k_1(t-t_k)}\bar{x}_1(t_k)$

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Considering the following Lyapunov function: $V(\bar{x}) = \bar{x}^T P \bar{x}$ where P is the SPD matrix defined before, one can show that:

$$\dot{\mathcal{V}}(\bar{x}) = \theta \bar{x}^{T} (\bar{A}^{T} P + P \bar{A}) \bar{x} + 2 \bar{x}^{T} P (\Delta_{\theta} \phi(u, \hat{x}, x) + \theta K z) + 2 \bar{x}^{T} P \frac{1}{\theta^{n-1}} B \varepsilon(t) + 2 \bar{x}^{T} P \theta K e^{-\theta k_{1}(t-t_{k})} \omega(t_{k})$$
(3)

Table of content

Considering the following Lyapunov function: $V(\bar{x}) = \bar{x}^T P \bar{x}$ where P is the SPD matrix defined before, one can show that:

$$\dot{V}(\bar{x}) = \theta \bar{x}^{T} (\bar{A}^{T} P + P \bar{A}) \bar{x} + 2 \bar{x}^{T} P (\Delta_{\theta} \phi(u, \hat{x}, x) + \theta K z) + 2 \bar{x}^{T} P \frac{1}{\theta^{n-1}} B \varepsilon(t) + 2 \bar{x}^{T} P \theta K e^{-\theta k_{1}(t-t_{k})} \omega(t_{k})$$
(3)

 According to the Lipschitz assumption and the triangular structure of φ, for θ > 1, one has (Farza, M'Saad, *et al.* 2004):

$$\begin{aligned} & 2\bar{x}^{T} P \Delta_{\theta} \phi(u, \hat{x}, x) \leq 2\sqrt{n} \lambda_{M} L \|\bar{x}\|^{2} \\ & 2\bar{x}^{T} P \frac{1}{\theta^{n-1}} B \varepsilon(t) \leq 2 \frac{\|\varepsilon(t)\| \sqrt{\lambda_{M}}}{\theta^{n-1}} \sqrt{V(\bar{x})} \\ & 2\bar{x}^{T} P \theta K e^{-\theta k_{1}(t-t_{k})} \omega(t_{k}) \leq 2\theta \|\omega(t_{k})\| \sqrt{\lambda_{M}} \|K\| \sqrt{V(\bar{x})} \end{aligned}$$

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Conclusion

References

Considering the following Lyapunov function: $V(\bar{x}) = \bar{x}^T P \bar{x}$ where P is the SPD matrix defined before, one can show that:

$$\dot{V}(\bar{x}) = \theta \bar{x}^{T} (\bar{A}^{T} P + P \bar{A}) \bar{x} + 2 \bar{x}^{T} P (\Delta_{\theta} \phi(u, \hat{x}, x) + \theta K z) + 2 \bar{x}^{T} P \frac{1}{\theta^{n-1}} B \varepsilon(t) + 2 \bar{x}^{T} P \theta K e^{-\theta k_{1}(t-t_{k})} \omega(t_{k})$$
(3)

• One gets:

$$\dot{V}(\bar{x}) \leq -2(\mu\theta - \sqrt{n}\lambda_{M}L)\|\bar{x}\|^{2} + 2\theta\sqrt{\lambda_{M}}\|K\|\|z\|\sqrt{V(\bar{x})} \\
+ 2\sqrt{\lambda_{M}}\left(\frac{\|\varepsilon(t)\|}{\theta^{n-1}} + \theta\|K\|\|\omega(t_{k})\|\right)\sqrt{V(\bar{x})}$$
(4)

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Considering the following Lyapunov function: $V(\bar{x}) = \bar{x}^T P \bar{x}$ where P is the SPD matrix defined before, one can show that:

$$\dot{V}(\bar{x}) = \theta \bar{x}^{T} (\bar{A}^{T} P + P \bar{A}) \bar{x} + 2 \bar{x}^{T} P (\Delta_{\theta} \phi(u, \hat{x}, x) + \theta K z) + 2 \bar{x}^{T} P \frac{1}{\theta^{n-1}} B \varepsilon(t) + 2 \bar{x}^{T} P \theta K e^{-\theta k_{1}(t-t_{k})} \omega(t_{k})$$
(3)

• One gets:

$$\dot{V}(\bar{x}) \leq -2(\mu\theta - \sqrt{n}\lambda_{M}L)\|\bar{x}\|^{2} + 2\theta\sqrt{\lambda_{M}}\|K\|\|z\|\sqrt{V(\bar{x})} \\
+ 2\sqrt{\lambda_{M}}\left(\frac{\|\varepsilon(t)\|}{\theta^{n-1}} + \theta\|K\|\|\omega(t_{k})\|\right)\sqrt{V(\bar{x})}$$
(4)

Choosing θ such that 2(μθ − √nλ_ML) > μθ, i.e. θ > θ₀ = 2√nλ_ML/μ, the last inequality becomes:

$$\dot{V}(\bar{x}) \leq -\frac{\mu\theta}{\lambda_{M}}V(\bar{x}) + 2\theta\sqrt{\lambda_{M}}\|K\|\|z\|\sqrt{V(\bar{x})} + 2\sqrt{\lambda_{M}}\left(\frac{\|\varepsilon(t)\|}{\theta^{n-1}} + \theta\|K\|\|\omega(t_{k})\|\right)\sqrt{V(\bar{x})}$$
(5)
(7/29)

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Calculation of ||z||As mentioned before, $z = C\bar{x} - e^{-\theta k_1(t-t_k)}C\bar{x}(t_k) = \bar{x}_1 - e^{-\theta k_1(t-t_k)}\bar{x}_1(t_k)$, the time derivative of z can be written as follows:

$$\dot{z} = \dot{\bar{x}}_1 + k_1 \theta e^{-\theta k_1 (t-t_k)} \bar{x}_1(t_k) = \theta \bar{x}_2 + \phi_1(u, \hat{x}_1, x_1) + k_1 \theta e^{-\theta k_1 (t-t_k)} \omega(t_k)$$
(6)

where $\phi_1(u, \hat{x}_1, x_1) = \varphi_1(u, \hat{x}_1) - \varphi_1(u, x_1)$.

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Calculation of ||z||

As mentioned before, $z = C\bar{x} - e^{-\theta k_1(t-t_k)}C\bar{x}(t_k) = \bar{x}_1 - e^{-\theta k_1(t-t_k)}\bar{x}_1(t_k)$, the time derivative of z can be written as follows:

$$\dot{z} = \dot{\bar{x}}_1 + k_1 \theta e^{-\theta k_1 (t-t_k)} \bar{x}_1(t_k) = \theta \bar{x}_2 + \phi_1(u, \hat{x}_1, x_1) + k_1 \theta e^{-\theta k_1 (t-t_k)} \omega(t_k)$$
(6)

where $\phi_1(u, \hat{x}_1, x_1) = \varphi_1(u, \hat{x}_1) - \varphi_1(u, x_1)$.

• Integrating (6) from t_k to t while using the fact that $z(t_k) = 0$ yields:

$$z = \int_{t_k}^t \left(\theta x_2(s) + \phi_1(u(s), \hat{x}_1(s), x_1(s))\right) ds + (1 - e^{-k_1 \theta(t - t_k)}) \omega(t_k)$$
(7)

Table of content

Standard high gain observer (SHGO) design

Calculation of ||z||

As mentioned before, $z = C\bar{x} - e^{-\theta k_1(t-t_k)}C\bar{x}(t_k) = \bar{x}_1 - e^{-\theta k_1(t-t_k)}\bar{x}_1(t_k)$, the time derivative of z can be written as follows:

$$\dot{z} = \dot{\bar{x}}_1 + k_1 \theta e^{-\theta k_1 (t-t_k)} \bar{x}_1(t_k) = \theta \bar{x}_2 + \phi_1(u, \hat{x}_1, x_1) + k_1 \theta e^{-\theta k_1 (t-t_k)} \omega(t_k)$$
(6)

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

where $\phi_1(u, \hat{x}_1, x_1) = \varphi_1(u, \hat{x}_1) - \varphi_1(u, x_1)$. • Integrating (6) from t_k to t while using the fact that $z(t_k) = 0$ yields:

$$z = \int_{t_k}^t \left(\theta x_2(s) + \phi_1(u(s), \hat{x}_1(s), x_1(s))\right) ds + (1 - e^{-k_1 \theta(t - t_k)}) \omega(t_k)$$
(7)

• Bearing in mind that $\phi(u, \hat{x}_1, x_1) = \varphi_1(u, \hat{x}_1) - \varphi_1(u, x_1)$, one gets:

$$z \| \leq (\theta + L) \int_{t_k}^t \|\bar{x}(s)\| ds + (1 - e^{-k_1 \theta (t - t_k)}) \delta_\omega$$

$$\leq ((\theta + L)/\sqrt{\lambda_m}) \int_{t_k}^t \|\sqrt{V(\bar{x}(s))}\| ds + (1 - e^{-k_1 \theta T_s}) \delta_\omega$$
(8)

Table of content

Combing the above inequalities, one obtains:

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

$$\dot{V}(\bar{x}) \leq -\frac{\mu\theta}{\lambda_{M}}V(\bar{x}) + 2\theta\sqrt{\frac{\lambda_{M}}{\lambda_{m}}} \|K\|(\theta+L)\sqrt{V(\bar{x})}\int_{t_{k}}^{t} \|\sqrt{V(\bar{x}(s))}\|ds + 2\sqrt{\lambda_{M}}\left(\frac{\|\varepsilon\|}{\theta^{n-1}} + \theta\|K\|(2-e^{-k_{1}\theta T_{s}})\delta_{\omega}\right)\sqrt{V(\bar{x})}$$
(9)

Equivalently, one has:

$$\frac{d}{dt}\sqrt{V(\bar{x})} \leq -\frac{\mu\theta}{2\lambda_{M}}\sqrt{V(\bar{x})} + \theta\sigma \|K\|(\theta+L)\int_{t_{k}}^{t}\|\sqrt{V(\bar{x}(s))}\|ds + \sqrt{\lambda_{M}}\left(\frac{\|\varepsilon\|}{\theta^{n-1}} + \theta\|K\|(2-e^{-k_{1}\theta T_{s}})\delta_{\omega}\right)$$
(10)

where $\sigma = \sqrt{\lambda_M/\lambda_m}$ is the conditioning number of *P*.

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

1

Conclusion

References

Finally, let $a_{\theta} = \frac{\mu\theta}{2\lambda_{M}}$, $b_{\theta} = \theta\sigma \|K\|(\theta + L)$, $p_{\theta} = \sqrt{\lambda_{M}} \left(\frac{\|\varepsilon\|}{\theta^{n-1}} + \theta \|K\|(2 - e^{-k_{1}\theta T_{s}})\delta_{\omega}\right)$, and assume that the upper diameter of the sampling partition T_{s} satisfies the following condition: $T_{s} \leq \frac{a_{\theta}}{b_{\theta}} = \frac{\mu}{2(\theta + L)\sigma \|K\|\lambda_{M}} = \chi_{\theta}$. Then, according to Lemma, one has:

$$\sqrt{V(\bar{x})} \le e^{-\eta_{\theta}t} \sqrt{V(\bar{x}(0))} + c_{\theta} T_s \frac{2 - e^{-\eta_{\theta}T_s}}{1 - e^{-\eta_{\theta}T_s}}$$
(11)

where
$$c_{\theta} = \sup_{t \ge 0} Ess \ p_{\theta} = \sqrt{\lambda_M} \left(\frac{\delta_{\varepsilon}}{\theta^{n-1}} + \theta \| K \| (2 - e^{-k_1 \theta T_s}) \delta_{\omega} \right)$$
, and
 $\eta_{\theta} = (a_{\theta} - b_{\theta} T_s) e^{-a_{\theta} T_s}$.

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Finally, let $a_{\theta} = \frac{\mu\theta}{2\lambda_{M}}$, $b_{\theta} = \theta\sigma \|K\|(\theta + L)$, $p_{\theta} = \sqrt{\lambda_{M}} \left(\frac{\|\varepsilon\|}{\theta^{n-1}} + \theta \|K\|(2 - e^{-k_{1}\theta T_{s}})\delta_{\omega}\right)$, and assume that the upper diameter of the sampling partition T_{s} satisfies the following condition: $T_{s} \leq \frac{a_{\theta}}{b_{\theta}} = \frac{\mu}{2(\theta + L)\sigma \|K\|\lambda_{M}} = \chi_{\theta}$. Then, according to Lemma, one has:

$$\sqrt{V(\bar{x})} \le e^{-\eta_{\theta}t} \sqrt{V(\bar{x}(0))} + c_{\theta} T_s \frac{2 - e^{-\eta_{\theta}T_s}}{1 - e^{-\eta_{\theta}T_s}}$$
(11)

where
$$c_{\theta} = \sup_{t \ge 0} Ess \ p_{\theta} = \sqrt{\lambda_M} \left(\frac{\delta_{\varepsilon}}{\theta^{n-1}} + \theta \| K \| (2 - e^{-k_1 \theta T_s}) \delta_{\omega} \right)$$
, and
 $\eta_{\theta} = (a_{\theta} - b_{\theta} T_s) e^{-a_{\theta} T_s}$.

• Thus, one obtains:

$$\|\bar{x}\| \le \sigma e^{-\eta_{\theta} t} \|\bar{x}(0)\| + \frac{c_{\theta} T_s}{\sqrt{\lambda_m}} \frac{2 - e^{-\eta_{\theta} T_s}}{1 - e^{-\eta_{\theta} T_s}}$$
(12)

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

$$\|\bar{x}\| \leq \sigma e^{-\eta_{\theta} t} \|\bar{x}(0)\| + \frac{c_{\theta} T_s}{\sqrt{\lambda_m}} \frac{2 - e^{-\eta_{\theta} T_s}}{1 - e^{-\eta_{\theta} T_s}}$$
(11)

• Recall that
$$\bar{x} = \Delta_{\theta} \tilde{x}$$
 with $\Delta_{\theta} = diag \left(\begin{array}{ccc} 1 & \frac{1}{\theta} & \dots & \frac{1}{\theta^{n-1}} \end{array} \right)$.

 Then, coming back to the original coordinates of the observation error x̃, for θ > 1, one has:

$$\frac{1}{\theta^{n-1}} \|\widetilde{x}\| \le \|\Delta_{\theta}\widetilde{x}\| = \|\overline{x}\| \le \sigma e^{-\eta_{\theta}t} \|\Delta_{\theta}\| \|\widetilde{x}(0)\| + \frac{c_{\theta}T_s}{\sqrt{\lambda_m}} \frac{2 - e^{-\eta_{\theta}T_s}}{1 - e^{-\eta_{\theta}T_s}}$$
(12)

Table of content

- Recall that $\bar{x} = \Delta_{\theta} \tilde{x}$ with $\Delta_{\theta} = diag \left(\begin{array}{ccc} 1 & \frac{1}{\theta} & \dots & \frac{1}{\theta^{n-1}} \end{array} \right)$.
- Then, coming back to the original coordinates of the observation error x̃, for θ > 1, one has:

$$\frac{1}{\theta^{n-1}} \|\widetilde{x}\| \le \|\Delta_{\theta} \widetilde{x}\| = \|\overline{x}\| \le \sigma e^{-\eta_{\theta} t} \|\Delta_{\theta}\| \|\widetilde{x}(0)\| + \frac{c_{\theta} T_s}{\sqrt{\lambda_m}} \frac{2 - e^{-\eta_{\theta} T_s}}{1 - e^{-\eta_{\theta} T_s}}$$
(11)

• Substituting in c_{θ} defined before, one gets:

$$\begin{split} \|\widetilde{x}\| \leq &\sigma\theta^{q-1} e^{-\eta_{\theta} t} \|\widetilde{x}(0)\| \\ &+ N_{\theta} \left(\frac{\delta_{\varepsilon}}{\theta} + \theta^{n-1} \|K\| (2 - e^{-k_{1}\theta T_{s}}) \delta_{\omega} \right) \end{split}$$

where $N_{\theta} = \sigma \theta T_s \frac{2 - e^{-\eta_{\theta}(T_s)T_s}}{1 - e^{-\eta_{\theta}(T_s)T_s}}$. Theorem has been proved.

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

Table of Contents

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

1 Standard high gain observer (SHGO) design

2 Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Improved NPHGO design

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

In order to eliminate the peaking phenomenon, an improved NP observer has been proposed for the continuous-time system in (Farza, Ragoubi, *et al.* 2021). Therefore, for the nonlinear system with sampled measurements (1), an improved NP discrete-continuous observer can be written as follows:

Improved NP discrete-continuous observer

$$\dot{\hat{x}}(t) = A\hat{x}(t) + \varphi(u(t), \hat{x}(t)) - \theta^{1+\eta}H(t), \quad t \in [t_k, t_{k+1}]$$
 (12)

Improved NPHGO design

Table of content

Improved NP discrete-continuous observer

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Conclusion

References

$$\dot{\hat{x}}(t) = A\hat{x}(t) + \varphi(u(t), \hat{x}(t)) - \theta^{1+\eta}H(t), \quad t \in [t_k, t_{k+1}]$$
 (12)

where
$$H(t) = \begin{pmatrix} H_1(t) & \dots & H_n(t) \end{pmatrix}^T$$
 is defined as follows:

$$\begin{cases}
H_1(t) = sat_{\nu,1} \left(\theta^{-\eta} k_1 e^{-\theta k_1(t-t_k)} (C\hat{x}(t_k) - y(t_k)) \right) \\
H_i(t) = sat_{\nu,i} \left(\theta \frac{k_i}{k_{i-1}} H_{i-1}(t_k) \right), \quad i = 2, \dots, n
\end{cases}$$
(13)

with $k_i \in K = \begin{pmatrix} k_1 & \dots & k_n \end{pmatrix}^T$ are the gain parameters which are chosen such that the matrix $\overline{A} = A - KC$ is Hurwitz. η is a small positive constant. $sat_{\nu}(\cdot)$ is a saturation function defined as:

$$\forall z \in \mathbb{R}, \quad sat_{\nu}(z) = \begin{cases} z, & \text{if } |z| \le \nu \\ \nu \cdot sign(z), & \text{if } |z| > \nu \end{cases}$$
(14)

where $\nu > 0$ is a positive constant; and $sign(\cdot)$ is the usual signum function.

12 / 29

Table of Contents

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

1 Standard high gain observer (SHGO) design

) Improved Non-peaking high gain observer (NPHGO) desig

3 Simulation results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Mathematical model of the reactor

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

 Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

A main reaction (perhydrolysis of formic acid to peroxyformic acid by hydrogen peroxide) with three decomposition reactions take place in the considered batch reactor (Vernières-Hassimi *et al.* 2017; Leveneur *et al.* 2012; Zheng *et al.* 2016).

(15)

Mathematical model

$$\begin{cases} \dot{C}_{HCOOH} = -r_{perh} + r_{decomp,2} \\ \dot{C}_{H_2O_2} = -r_{perh} - r_{decomp,3} \\ \dot{C}_{HCOOOH} = r_{perh} - r_{decomp,1} - r_{decomp,2} \\ \dot{C}_{H_2O} = r_{perh} + r_{decomp,1} + r_{decomp,3} \\ \dot{T}_R = \frac{q_R}{\rho V C_P} + \frac{UA}{\rho V C_P} (T_J - T_R) - \frac{q_{loss}}{\rho V C_P} \end{cases}$$

$$H_2O + \frac{1}{2}O_2$$

$$\uparrow decomposition 3$$

$$HCOOH + H_2O_2 \rightleftharpoons HCOOOH + H_2O$$

$$decomposition 2$$

$$CO_2 + H_2O$$

$$HCOOH + \frac{1}{2}O_2$$

Figure: Chemical reactions occur in the batch reactor

Mathematical model of the reactor

 $\begin{cases} \dot{C}_{HCOOH} = -r_{perh} + r_{decomp,2} \\ \dot{C}_{H_2O_2} = -r_{perh} - r_{decomp,3} \\ \dot{C}_{HCOOOH} = r_{perh} - r_{decomp,1} - r_{decomp,2} \\ \dot{C}_{H_2O} = r_{perh} + r_{decomp,1} + r_{decomp,3} \\ \dot{T}_R = \frac{q_R}{\rho V C_P} + \frac{UA}{\rho V C_P} (T_J - T_R) - \frac{q_{loss}}{\rho V C_P} \end{cases}$

Mathematical model

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements
- Conclusion

References

A main reaction (perhydrolysis of formic acid to peroxyformic acid by hydrogen peroxide) with three decomposition reactions take place in the considered batch reactor (Vernières-Hassimi *et al.* 2017; Leveneur *et al.* 2012; Zheng *et al.* 2016). where

(15)

• T: temperature (K)

- C: concentration $(mol \cdot L^{-1})$
- r: reaction rate (mol $\cdot L^{-1} \cdot s^{-1}$)
- $q_R = -\sum_i r_i \Delta H_{R,i} V$ is the reaction heat, with ΔH_R is the reaction enthalpy
- q_{loss} = 0 is the heat loss
- subscript *R*, *J* are the reaction, the jacket of the reactor, respectively
- Others are constants

Temperature comparison

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

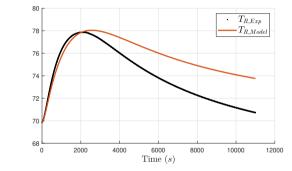
Simulatior results

Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References



Initial conditions:

- $C_{HCOOH} = 2.5 \text{ mol} \cdot \text{L}^{-1}$
- $C_{H_2O_2} = 2.8 \text{ mol} \cdot \text{L}^{-1}$
- $C_{HCOOOH} = 0 \text{ mol} \cdot L^{-1}$
- $C_{H_2O} = 50.27 \text{ mol} \cdot \text{L}^{-1}$
- $T_R = 69.8511 \ ^{\circ}\text{C}$

Figure: Temperature comparison between the experimental data and the simulated data

Temperature comparison

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

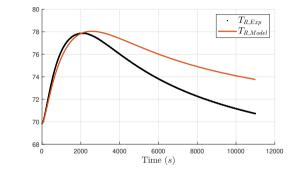
Simulatior results

Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References



Initial conditions:

- $C_{HCOOH} = 2.5 \text{ mol} \cdot \text{L}^{-1}$
- $C_{H_2O_2} = 2.8 \text{ mol} \cdot \text{L}^{-1}$
- $C_{HCOOOH} = 0 \text{ mol} \cdot L^{-1}$
- $C_{H_2O} = 50.27 \text{ mol} \cdot \text{L}^{-1}$
- $T_R = 69.8511 \ ^{\circ}\text{C}$

We focus on $t \in [0, 3600]$

Figure: Temperature comparison between the experimental data and the simulated data

Reaction heat estimation by sampled measurements

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

 Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

• Rewrite the reactor model into the observer-construction form Define $x_1(t) = T_R(t)$, $x_2(t) = \frac{q_R(t)}{\rho V C_P}$, one gets:

$$\begin{cases} \dot{x}_1(t) = \dot{T}_R(t) = x_2(t) + \varphi_1(t) \\ \dot{x}_2(t) = \frac{\dot{q}_R(t)}{\rho V C_P} = \varepsilon(t) \end{cases}$$
(16)

with
$$arphi_1(t) = rac{UA}{
ho VC_{
ho}}(T_J - T_{
m R}(t)) - rac{q_{
m loss}}{
ho VC_{
ho}}$$

• SHGO construction

Standard discrete-continuous observer

$$\dot{\hat{T}}_{R}(t) = \frac{\hat{q}_{R}(t)}{\rho V C_{P}} + \frac{UA}{\rho V C_{P}} (T_{J} - \hat{T}_{R}(t)) - \frac{q_{loss}}{\rho V C_{P}} - \theta k_{1} e^{-\theta k_{1}(t-t_{k})} (\hat{T}_{R}(t_{k}) - T_{R}(t_{k}))$$

$$\dot{\hat{q}}_{R}(t) = -\rho V C_{P} \theta^{2} e^{-\theta k_{1}(t-t_{k})} (\hat{T}_{R}(t_{k}) - T_{R}(t_{k}))$$
(17)

Reaction heat estimation by sampled measurements

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor where

- Reaction heat estimation by sampled measurements

Conclusion

References

Improved NP discrete-continuous observer

$$\begin{cases} \dot{\hat{T}}_{R}(t) = \frac{\hat{q}_{R}(t)}{\rho V C_{P}} + \frac{UA}{\rho V C_{P}} (T_{J} - sat_{\nu, T_{R}}(\hat{T}_{R}(t))) - \frac{q_{loss}}{\rho V C_{P}} - \theta^{1+\eta} H_{1}(t) \\ \dot{\hat{q}}_{R}(t) = -\theta^{1+\eta} H_{2}(t) \end{cases}$$
(18)

$$\begin{aligned}
H_{1}(t) &= sat_{\nu,1} \left(\theta^{-\eta} k_{1} e^{-\theta k_{1}(t-t_{k})} (\hat{T}_{R}(t_{k}) - T_{R}(t_{k})) \right) \\
H_{2}(t) &= sat_{\nu,2} \left(\rho V C_{P} \theta \frac{k_{2}}{k_{1}} H_{1}(t) \right)
\end{aligned} \tag{19}$$

Initial conditions

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Conclusion

References

In the following simulations:

• $\hat{C}_{HCOOH} = C_{HCOOH}$

•
$$\hat{C}_{H_2O_2} = C_{H_2O_2}$$

- $\hat{C}_{HCOOOH} = C_{HCOOOH}$
- $\hat{C}_{H_2O} = C_{H_2O}$
- $\hat{T}_R = 65 \ ^{\circ}{
 m C}$
- $\hat{q}_R = 0$

• $K = \begin{pmatrix} k_1 & k_2 \end{pmatrix}^T = \begin{pmatrix} 2 & 1 \end{pmatrix}^T$ • $\theta = 1$

•
$$\nu, T_R = 85 \ ^{\circ}\mathrm{C}$$

- $\nu, 1 = 10$
- $\nu, 2 = 1$

•
$$\eta = 0.01$$

•
$$t_0 = 0$$

Reaction heat estimation by sampled measurements

Model based estimation. Case 1: $T_s = 2s$

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

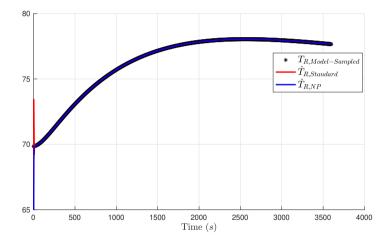


Figure: Temperature T_R (°C) and its estimation \hat{T}_R based on the reactor model

Model based estimation. Case 1: $T_s = 2s$

Table of content

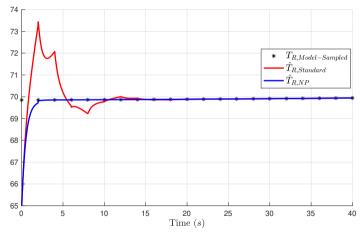
Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements
- Conclusion

References



Model based estimation. Case 1: $T_s = 2s$

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

 Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

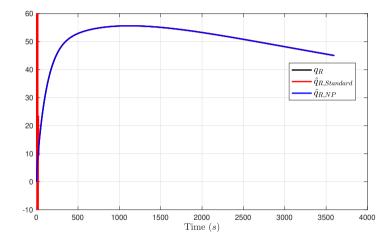


Figure: Reaction heat q_R (J · s⁻¹) and its estimation \hat{q}_R based on the reactor model

Model based estimation. Case 1: $T_s = 2s$

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

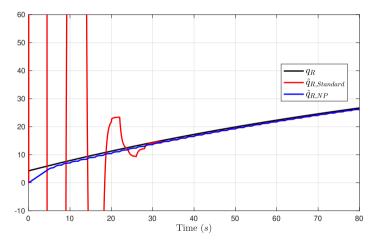
Simulatior results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References



Model based estimation. Case 2: $T_s = 4s$

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

 Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

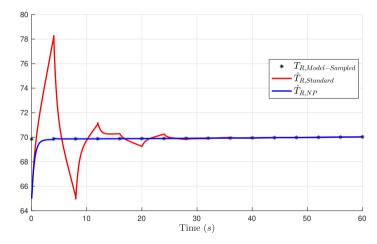


Figure: Temperature T_R (°C) and its estimation \hat{T}_R based on the reactor model

21 / 29

Model based estimation. Case 2: $T_s = 4s$

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

 Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

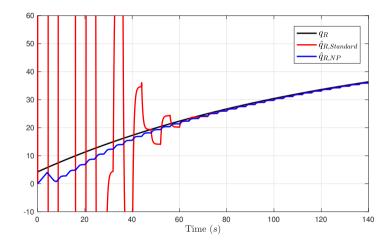


Figure: Reaction heat q_R (J · s⁻¹) and its estimation \hat{q}_R based on the reactor model

Experimental data based estimation. Case 1: $T_s = 2s$

Standard high gain observer (SHGO) design

Table of content

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

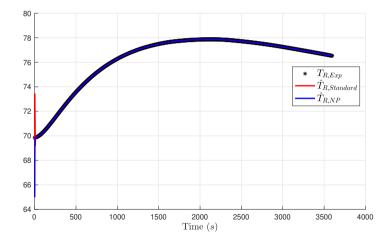


Figure: Temperature T_R (°C) and its estimation \hat{T}_R based on experimental data

Experimental data based estimation. Case 1: $T_s = 2s$

Standard high gain observer (SHGO) design

Table of content

Improved Non-peaking high gain observer (NPHGO) design

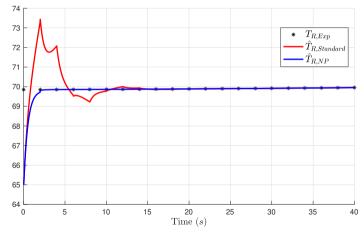
Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References



Experimental data based estimation. Case 1: $T_s = 2s$

Standard high gain observer (SHGO) design

Table of content

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

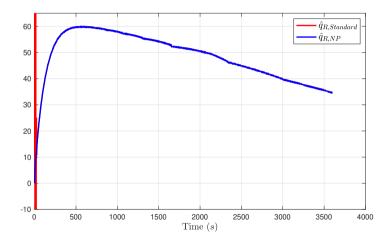


Figure: Reaction heat q_R (J · s⁻¹) and its estimation \hat{q}_R based on experimental data

Experimental data based estimation. Case 1: $T_s = 2s$

Standard high gain observer (SHGO) design

Table of content

Improved Non-peaking high gain observer (NPHGO) design

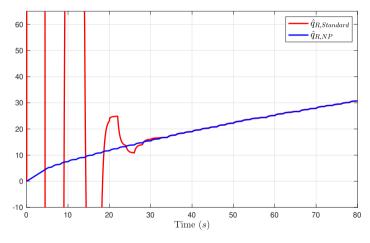
Simulatior results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References



Experimental data based estimation. Case 2: $T_s = 4s$

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

 Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

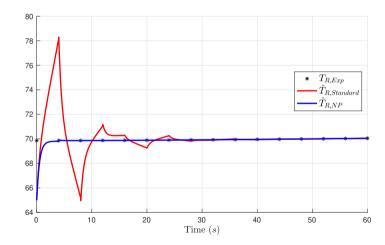


Figure: Temperature T_R (°C) and its estimation \hat{T}_R based on experimental data

Experimental data based estimation. Case 2: $T_s = 4s$

Standard high gain observer (SHGO) design

Table of content

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

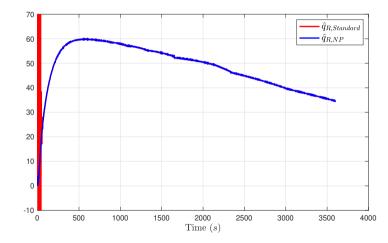


Figure: Reaction heat q_R (J · s⁻¹) and its estimation \hat{q}_R based on experimental data

Experimental data based estimation. Case 2: $T_s = 4s$

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

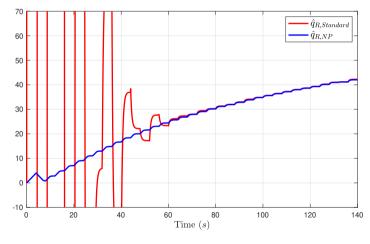


Table of Contents

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

1 Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) desigr

Simulation results

4 Conclusion

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Conclusion

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

- A standard high gain observer (SHGO) has been presented for the system with sampled measurements.
- An improved non-peaking observer (NPHGO) has been proposed for the mentioned system, and the peaking phenomenon has been eliminated compared to the SHGO.
- The reaction heat of the batch reactor has been well estimated by the proposed observes.
- Both of the observers have been proved to be efficient with an enlarged sampling interval.

List of References

Table of content

Standard high gain observer (SHGO) design

[2]

[4]

Improved Non-peaking high gain observer (NPHGO) design

Simulatior results

- Mathematical model of the reactor

- Reaction heat estimation by sampled measurements

Conclusion

References

 M. Farza, M. M'Saad, and L. Rossignol, "Observer design for a class of mimo nonlinear systems," *Automatica*, vol. 40, no. 1, pp. 135–143, 2004.

I. Bouraoui, M. Farza, T. Ménard, R. B. Abdennour, M. M'Saad, and H. Mosrati, "Observer design for a class of uncertain nonlinear systems with sampled outputs—application to the estimation of kinetic rates in bioreactors," *Automatica*, vol. 55, pp. 78–87, 2015.

[3] M. Farza, A. Ragoubi, S. Hadj Saiäd, and M. M'Saad, "Improved high gain observer design for a class of disturbed nonlinear systems," *Nonlinear Dynamics*, vol. 106, no. 1, pp. 631–655, 2021.

L. Vernières-Hassimi, A. Dakkoune, L. Abdelouahed, L. Estel, and S. Leveneur, "Zero-order versus intrinsic kinetics for the determination of the time to maximum rate under adiabatic conditions (tmrad): Application to the decomposition of hydrogen peroxide," *Industrial & Engineering Chemistry Research*, vol. 56, no. 45, pp. 13040–13049, 2017.

List of References

Table of content

Standard high gain observer (SHGO) design

[5]

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Conclusion

References

S. Leveneur, M. Thönes, J.-P. Hébert, B. Taouk, and T. Salmi, "From kinetic study to thermal safety assessment: Application to peroxyformic acid synthesis," *Industrial & engineering chemistry research*, vol. 51, no. 43, pp. 13999–14007, 2012.

[6] J. L. Zheng, J. Wärnå, T. Salmi, F. Burel, B. Taouk, and S. Leveneur, "Kinetic modeling strategy for an exothermic multiphase reactor system: Application to vegetable oils epoxidation using p rileschajew method," *AIChE Journal*, vol. 62, no. 3, pp. 726–741, 2016.

Table of content

Standard high gain observer (SHGO) design

Improved Non-peaking high gain observer (NPHGO) design

Simulation results

- Mathematical model of the reactor
- Reaction heat estimation by sampled measurements

Conclusion

References

Thank You!