Introduction Problem Statement Problem Approach Computing the Winding Number Results Conclusions

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

<u>Maria Luiza Costa Vianna</u>^{1,2} Eric Goubault ¹ Luc Jaulin ² Sylvie Putot ¹

¹ Laboratoire d'Informatique de l'École Polytechnique (LIX)

²ENSTA Bretagne, Lab-STICC

17/06/2022

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results	Conclusions

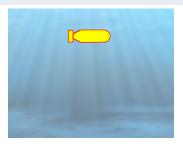
1 Introduction

- Problem Statement
- **3** Problem Approach
- Occupation Computing the Winding Number
- 6 Results

6 Conclusions

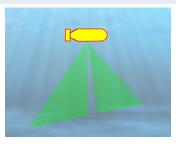
Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results	Conclusions
•00000000					

1 Introduction


- Problem Statement
- **3** Problem Approach
- Ocomputing the Winding Number
- **6** Results
- **6** Conclusions

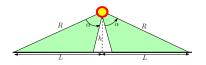
Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Introduc	tion				

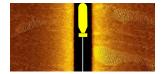
- Navigation sensors (Proprioceptive)
 - IMU, DVL ...



Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Introduc	tion				

- Navigation sensors (Proprioceptive)
 - IMU, DVL ...
- Observation sensors (Exteroceptive)
 - Camera, sonar/lidar, temperature, salinity ...

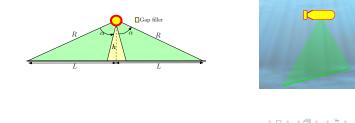




Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Conclusions	
Introduc	tion				

- Navigation sensors (Proprioceptive)
 - IMU, DVL ...
- Observation sensors (Exteroceptive)
 - Camera, sonar/lidar, temperature, salinity ...

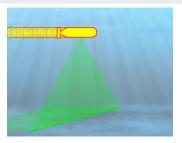
Side Scan Sonar



Introduction 000●00000	Problem Statement	Problem Approach	Computing the Winding Number	Results	Conclusions	
Introduc	tion					

- Navigation sensors (Proprioceptive)
 - IMU, DVL ...
- Observation sensors (Exteroceptive)
 - Camera, sonar/lidar, temperature, salinity ...

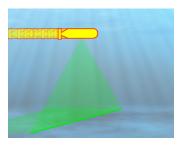
Side Scan Sonar



Introduction 0000●0000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions 00
Introduc	tion				

Explored Area

The explored area is the union of the visible areas over the whole trajectory.



Introduction 00000●000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Introduc	tion				

Objectives

- Compute the explored area.
- Compute the number of times each point in the environment has been explored.

Introduction 000000●00	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions	
Applicat	ions					

Explored Area

- Assess area-covering missions,
- plan other missions to fill possible gaps.

Coverage Measure

- Localization in homogeneous environments,
- assess revisiting missions,
- trajectory planning.

Introduction 0000000●0		Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Applicat	ions				

Coverage Measure

• Localization in homogeneous environments,

ROBEX

S. Rohou, B. Desrochers, et al., The Codac library - Constraint-programming for robotics, 2022

	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Applicat	ions				

Coverage Measure

• Localization in homogeneous environments,

ROBEX

S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

		Problem Approach	Computing the Winding Number	Results 00000	
Applicat	ions				

Coverage Measure

• Localization in homogeneous environments,

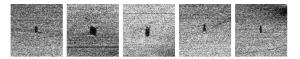


Figure 1

S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

ROBEX

Introduction	Problem Statement	Problem Approach 0000000000	Computing the Winding Number	Results 00000	Conclusions
Applicat	ions				
Cove	rage Measure				

• assess revisiting missions,

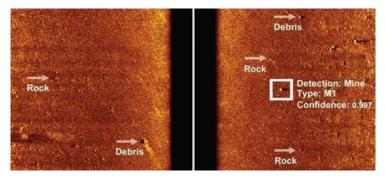


Figure 2: How marine roboticists are turning auv sight into perception,
www.maritimemagazines.com/

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

11 / 40

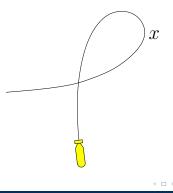
Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results	Conclusions
	•0000				

Introduction

Problem Statement

- **3** Problem Approach
- Occupation Computing the Winding Number
- **6** Results

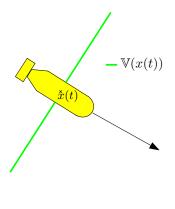
6 Conclusions



Introduction 000000000		Problem Approach	Computing the Winding Number	Results	Conclusions	
Problem	Statement					

Hypothesis

- $x:\mathbb{R}\to\mathbb{R}^2$,
- $T = [0, T_{max}],$
- x is continuous in T.


A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

æ

A ■

Introduction 000000000		Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Problem	Statement				

• $\mathbb{V}(x(t))$ is the visible area at time t.

<u>Ц</u>х

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

< □ > < 同

Introduction 000000000	Problem Statement 0000●	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Problem	Statement				

Entries

- *x*, the robot's trajectory,
- *T*, time interval.
- \mathbb{V} , visible area

Introduction 000000000	Problem Statement 0000●	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Problem	Statement				

Entries

- X, the robot's trajectory,
- *T*, time interval.
- 𝔍, visible area

Desired Output

- Explored area $\mathbb{A}_{\mathbb{E}}$,
- coverage measure of all the points in the plane, $\mathbb{C}_{\mathbb{M}}$.

$$\mathbb{A}_{\mathbb{E}} = \{ p \in \mathbb{R}^2 | \mathbb{C}_{\mathbb{M}}(p) > 0 \}$$

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results	Conclusions
		•000000000			

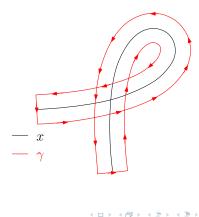
Introduction

Problem Statement

3 Problem Approach

- Occupation Computing the Winding Number
- **6** Results

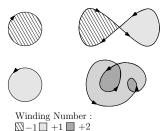
6 Conclusions



Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Problem	Approach				

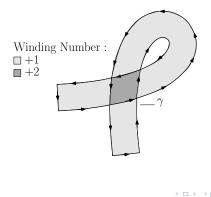
The sonar's contour

- $\gamma: [0,1]
 ightarrow \mathbb{R}^2$,
- γ is continuous,
- $\gamma(0) = \gamma(1)$.



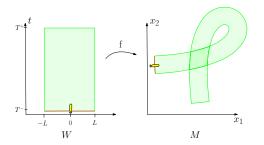
Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Problem	Approach				

Winding Number


- γ is a closed curve in \mathbb{R}^2 ,
- $p \in \mathbb{R}^2$,
- $\eta(\gamma, p) \in \mathbb{Z}$.

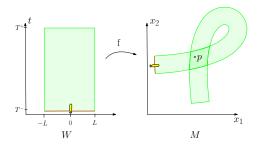
Introduction 000000000	Problem Statement	Problem Approach 000●000000	Computing the Winding Number	Results 00000	Conclusions
Problem	Approach				

$$\mathbb{C}_{\mathbb{M}}(oldsymbol{p}) = \eta(\gamma,oldsymbol{p})$$
 $\mathbb{A}_{\mathbb{E}} = \{oldsymbol{p} \in \mathbb{R}^2 | \eta(\gamma,oldsymbol{p}) > 0\}$

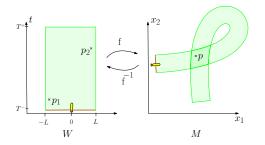


A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

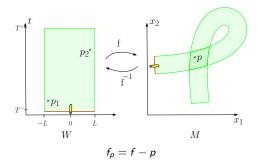
æ


Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Problem	Approach				

¹A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar;" \equiv 2016 \equiv \sim

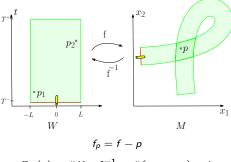

Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Problem	Approach				

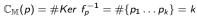
¹A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar," $\equiv 2016 \equiv -9 \circ \circ \circ$


Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Problem	Approach				

¹A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar," =2016 = ______

Introduction	Problem Statement	Problem Approach 0000●00000	Computing the Winding Number	Results 00000	Conclusions
Problem	Approach				

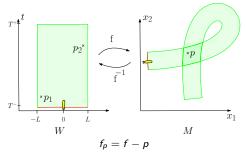




₫<mark>x</mark>

¹A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar," 2016

Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Problem	Approach				



 1 A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar," \equiv 2016 \equiv \sim

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results	Conclusions
		000000000			

Problem Approach

Waterfall and Mosaic spaces ¹

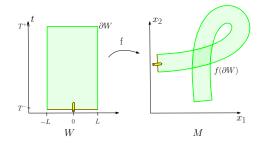
$$\mathbb{C}_{\mathbb{M}}(p) = \# Ker \ f_p^{-1} = \# \{ p_1 \dots p_k \} = k$$

From [Milnor 1965] ², if f_p preserves orientation,

$$deg(f_p, W) = \sum_{i=1}^{k} sign(det Df_p(p_i)) = k$$

¹A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar,", 2016 ²J. Milnor, *Topology from the Differentiable Viewpoint*. 1965 ← □ → ← (□) → (□)

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot



21 / 40

Introduction	Problem Approach 00000●0000	Computing the Winding Number	Results 00000	

Problem Approach

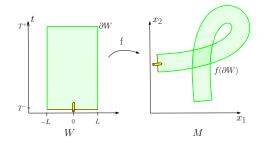
Waterfall and Mosaic spaces ¹

 $f_{\rho} = f - \rho$ $\mathbb{C}_{\mathbb{M}}(\rho) = \# Ker \ f_{\rho}^{-1} = \# \{p_1 \dots p_k\} = k$ $deg(f_{\rho}, W) = k$

¹A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar,", 2016

² J. Milnor, Topology from the Differentiable Viewpoint. 1965 $\langle \Box \rangle$

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot



22 / 40

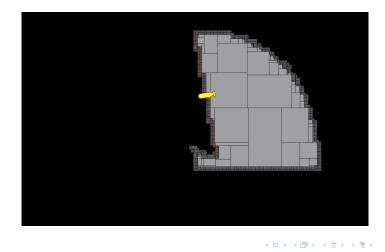
Introduction 000000000	Problem Statement	Problem Approach 00000●0000	Computing the Winding Number	Results 00000	

Problem Approach

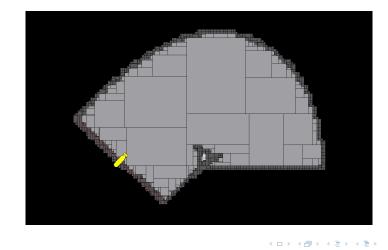
Waterfall and Mosaic spaces ¹

 $f_{p} = f - p$ $\mathbb{C}_{\mathbb{M}}(p) = \# Ker \ f_{p}^{-1} = \# \{p_{1} \dots p_{k}\} = k$ $deg(f_{p}, W) = k$ $deg(f_{p}, W) = \eta(f_{p}(\partial W), 0) = \eta(f(\partial W), p) = \mathbb{C}_{\mathbb{M}}(p)$

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results	Conclusions
Problem	Approach				


What if f does not preserve orientation?

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Problem	Approach				


What if f does not preserve orientation?

Introduction	Problem Statement	Problem Approach 00000000000	Computing the Winding Number	Results	Conclusions
Problem	Approach				

What if f does not preserve orientation?

Introduction	Problem Statement	Problem Approach 000000000●	Computing the Winding Number	Results 00000	Conclusions
Problem	Approach				

Entries

• γ , the sonar's contour.

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

æ

э

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions 00
Problem	Approach				

Entries

• γ , the sonar's contour.

Desired Output

- Explored area $\mathbb{A}_{\mathbb{E}}$,
- coverage measure of all the points in the plane, $\mathbb{C}_\mathbb{M}.$

Proposed solution

$$orall \pmb{p} \in \mathbb{R}^2$$
, calculate $\eta(\gamma, \pmb{p})$

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results	Conclusions
			0000000		

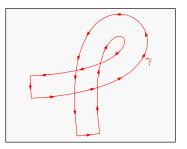
Introduction

- Problem Statement
- **3** Problem Approach

Occupation Computing the Winding Number

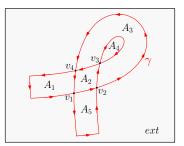
6 Results

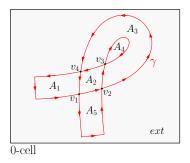
6 Conclusions

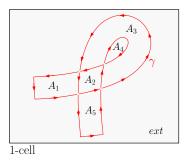


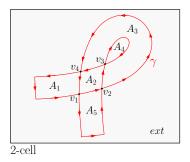
Introduction Problem Statement Problem Approach computing the Winding Number Results conclusions of Conclusions of Computing the Winding Number Results conclusions of Conclusions of Computing the Winding Number Results conclusions of Conclusions

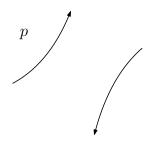
Hypothesis on γ :


- continuous,
- 2 finite number of crossing points,
- **3** only passes through each crossing point twice.

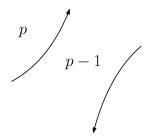

Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions 00
Computi	ng the Windi	ng Number			


Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions 00
Computi	ng the Windi	ng Number			


Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions 00
Computi	ng the Windi	ng Number			


Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions 00
Computi	ng the Windi	ng Number			

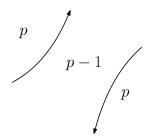
Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions	
Computi	ing the Windi	ng Number				



BOBEN

¹A. Möbius, "Über die bestimmung des inhaltes eines polyëders,", **(1865** \triangleleft \models

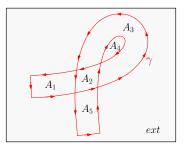
Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions	
Computi	ng the Windi	ng Number				



ROBEX

¹A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",1865

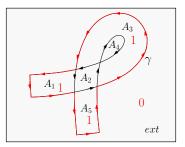
Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results	Conclusions
Computi	ing the Windi	ng Number			



ROBEX

¹A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",1865

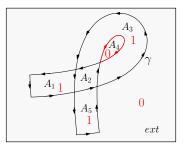
Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions	
Computi	ing the Windi	ng Number				



 1 A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",<1865 \triangleleft

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

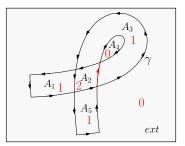
Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions	
Computi	ing the Windi	ng Number				



 1 A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",<1865 \prec

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

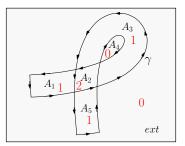
Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions	
Computi	ing the Windi	ng Number				



 1 A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",<1865 \triangleleft

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions	
Computi	ing the Windi	ng Number				



 1 A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",<1865 \triangleleft

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

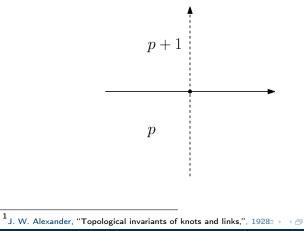
Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions	
Computi	ing the Windi	ng Number				

 1 A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",<1865 \triangleleft

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

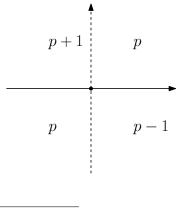
Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions	
Computi	ing the Windi	ng Number				

Alexander numbering ¹



 1 J. W. Alexander, "Topological invariants of knots and links,", 1928: $\scriptstyle{\triangleright}$ < \bigcirc

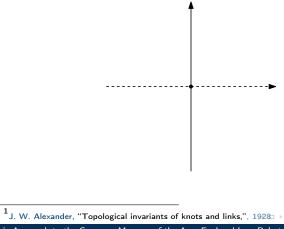
Introduction Problem Statement Problem Approach computing the Winding Number Results conclusions occorrections occorrection occorrections occo


Alexander numbering ¹

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Introduction Problem Statement Problem Approach computing the Winding Number Results conclusions concerns the Results conclusions concerns the Results concerns the Result

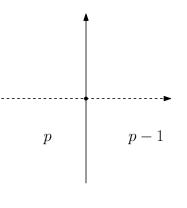
Alexander numbering ¹



 1 J. W. Alexander, "Topological invariants of knots and links,", 1928 \rightarrow < \bigcirc

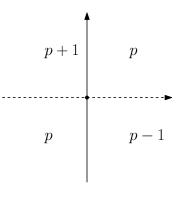
Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions	
Comput	ing the Windi	ng Number				

Alexander numbering ¹



Introduction Problem Statement Problem Approach computing the Winding Number Results Conclusions occore concerned to the Winding Number Conclusion occore concerned to the Winding Number Concerned to t

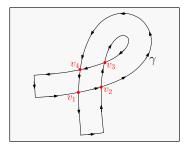
Alexander numbering ¹



 1 J. W. Alexander, "Topological invariants of knots and links,", 1928 \rightarrow < \bigcirc

Introduction Problem Statement Problem Approach computing the Winding Number Results conclusions occorrections the Winding Number Results conclusions occorrections concerned to the Winding Number Results conclusions concerned to the Winding Number Results concerned to the Winding Number Re

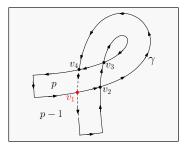
Alexander numbering ¹


 1 J. W. Alexander, "Topological invariants of knots and links,", 1928 \triangleright

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Comput	ing the Windi	ng Number			

1 Detection of self-intersections (0-cell) ,

$$V = \{v_1, v_2, v_3, v_4\}$$

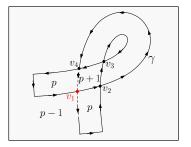


Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Comput	ing the Windi	ng Number			

1 Detection of self-intersections (0-cell) ,

$$V = \{v_1, v_2, v_3, v_4\}$$

2 Alexander numbering the regions (2-cell).

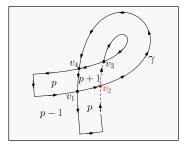


Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Comput	ing the Windi	ng Number			

1 Detection of self-intersections (0-cell) ,

$$V = \{v_1, v_2, v_3, v_4\}$$

2 Alexander numbering the regions (2-cell).

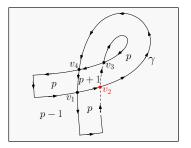


Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Comput	ing the Windi	ng Number			

1 Detection of self-intersections (0-cell) ,

$$V = \{v_1, v_2, v_3, v_4\}$$

2 Alexander numbering the regions (2-cell).

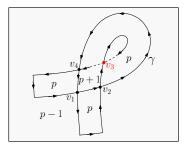


Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Comput	ing the Windi	ng Number			

1 Detection of self-intersections (0-cell) ,

$$V = \{v_1, v_2, v_3, v_4\}$$

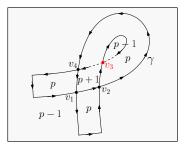
2 Alexander numbering the regions (2-cell).



Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Comput	ing the Windi	ng Number			

1 Detection of self-intersections (0-cell) ,

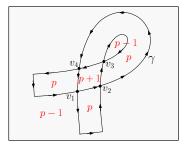
$$V = \{v_1, v_2, v_3, v_4\}$$



Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Comput	ing the Windi	ng Number			

1 Detection of self-intersections (0-cell) ,

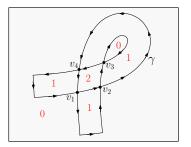
$$V = \{v_1, v_2, v_3, v_4\}$$



Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Comput	ing the Windi	ng Number			

1 Detection of self-intersections (0-cell) ,

$$V = \{v_1, v_2, v_3, v_4\}$$

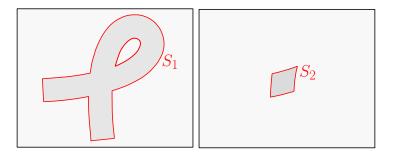


Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Comput	ing the Windi	ng Number			

1 Detection of self-intersections (0-cell) ,

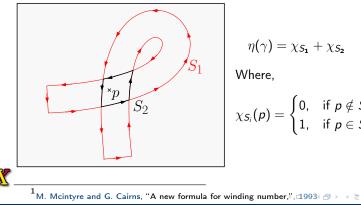
$$V = \{v_1, v_2, v_3, v_4\}$$

2 Alexander numbering the regions (2-cell).



Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions
Computing the Winding Number					

Let S_i be the closure of the union of the regions with a winding value greater or equal to i.



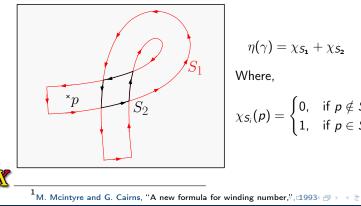
Introduction 000000000		Problem Approach	Computing the Winding Number	Results 00000	
<u> </u>	. 1				

Theorem 1 in [Mcintyre 1993] ¹:

$$\eta(\gamma) = \sum_{i>0} \chi_{S_i} - \sum_{i<0} \chi_{S_i}$$

 $\eta(\gamma) = \chi_{S_1} + \chi_{S_2}$

Where.


$$\chi_{S_i}(p) = \begin{cases} 0, & \text{if } p \notin S_i \\ 1, & \text{if } p \in S_i \end{cases}$$

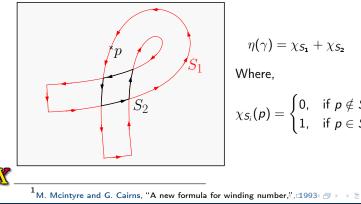
Introduction 000000000		Problem Approach	Computing the Winding Number	Results 00000	
<u> </u>	. 1				

Theorem 1 in [Mcintyre 1993] ¹:

$$\eta(\gamma) = \sum_{i>0} \chi_{S_i} - \sum_{i<0} \chi_{S_i}$$

 $\eta(\gamma) = \chi_{S_1} + \chi_{S_2}$

Where.


$$\chi_{S_i}(p) = \begin{cases} 0, & \text{if } p \notin S_i \\ 1, & \text{if } p \in S_i \end{cases}$$

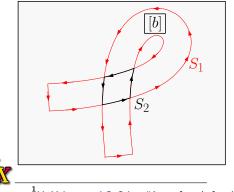
Introduction 000000000		Problem Approach	Computing the Winding Number	Results 00000	
<u> </u>	. 1				

Theorem 1 in [Mcintyre 1993] ¹:

$$\eta(\gamma) = \sum_{i>0} \chi_{S_i} - \sum_{i<0} \chi_{S_i}$$

 $\eta(\gamma) = \chi_{S_1} + \chi_{S_2}$

Where.


$$\chi_{S_i}(p) = \begin{cases} 0, & \text{if } p \notin S_i \\ 1, & \text{if } p \in S_i \end{cases}$$

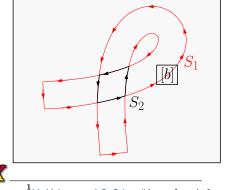
Introduction		Problem Approach	Computing the Winding Number	Results 00000	
<u> </u>	1				

Theorem 1 in [Mcintyre 1993] ¹:

$$\eta(\gamma) = \sum_{i>0} \chi_{S_i} - \sum_{i<0} \chi_{S_i}$$

 $\eta(\gamma) = \chi_{S_1} + \chi_{S_2}$

Where,


$$\chi_{S_i}([b]) = \begin{cases} [0,0], & \text{if } [b] \cap S_i = \emptyset\\ [1,1], & \text{if } [b] \subset S_i\\ [0,1], & \text{otherwise} \end{cases}$$

Introduction 000000000	Problem Approach	Computing the Winding Number	Results 00000	
<u> </u>	 N. 1			

Theorem 1 in [Mcintyre 1993] ¹:

$$\eta(\gamma) = \sum_{i>0} \chi_{S_i} - \sum_{i<0} \chi_{S_i}$$

 $\eta(\gamma) = \chi_{S_1} + \chi_{S_2}$

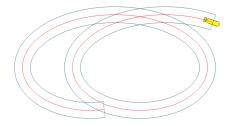
Where,

$$\chi_{S_i}([b]) = \begin{cases} [0,0], & \text{if } [b] \cap S_i = \emptyset\\ [1,1], & \text{if } [b] \subset S_i\\ [0,1], & \text{otherwise} \end{cases}$$

 1 M. Mcintyre and G. Cairns, "A new formula for winding number,", 1993 \oplus $\,$ $\,$ $\,$ $\,$ \equiv

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results	Conclusions
				00000	

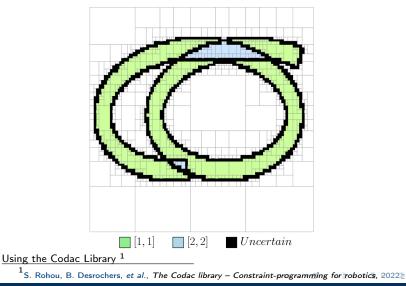
Introduction


- Problem Statement
- **3** Problem Approach
- Occupation Computing the Winding Number
- **6** Results

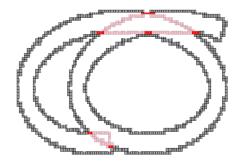
6 Conclusions

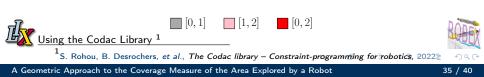
Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 0●000	Conclusions
Simulati	on				

¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022


Introd	luction

Problem Statement


P**roblem Approach** 2000000000 Computing the Winding Number


Results Conclusion: 0●000 00

Simulation

Introduction 000000000		Problem Approach	Computing the Winding Number	Results 0●000	
Simulati	on				

Introduction 000000000 Problem Statement

Problem Approac

Computing the Winding Number

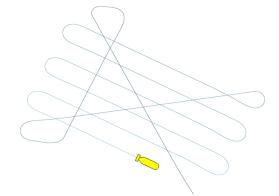
Results Conclusion 00●00 00

Daurade

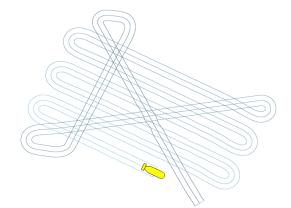
Data

- DVL,
- IMU,
- Pressure.

Mission

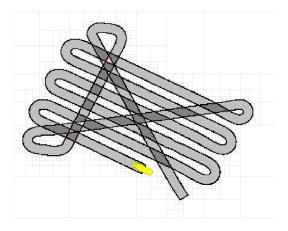

- Classical survey path (law-mowing pattern),
- Roadstead of Brest (France, Brittany),
- 47 minutes.

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 000●0	Conclusions
Daurade					



¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

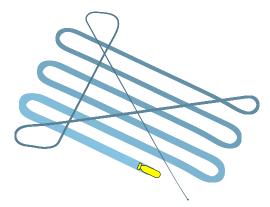
Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 000●0	Conclusions	
Daurade						



240

¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 000●0	Conclusions
Daurade	2				



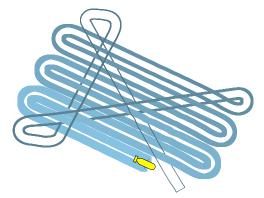
Using the Codac Library ¹

BODEX

¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 0000●	Conclusions	
Daurade						

Using the Codac Library ¹

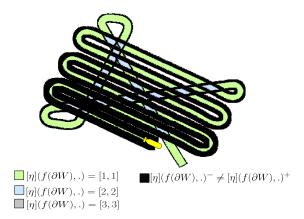


¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

²B. Desrochers and L. Jaulin, "Computing a guaranteed approximation of the zone explored by a robot,", 2017 $\langle \Box \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Xi} \rangle + \langle \overline{\Xi} \rangle = 1$

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results 0000●	Conclusions	
Daurade						

Using the Codac Library ¹


¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

²B. Desrochers and L. Jaulin, "Computing a guaranteed approximation of the zone explored by a robot,", 2017 $\langle \Box \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Xi} \rangle + \langle \overline{\Xi} \rangle$

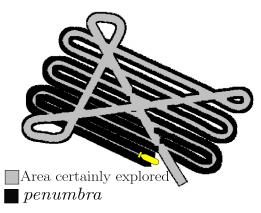
Introduction	Problem Approach 0000000000	Computing the Winding Number	Results 0000●	

Daurade

Using the Codac Library ¹

¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

Introd	luction


Problem Statement

Problem Approacl

Computing the Winding Number

Results Conclusion

Using the Codac Library ¹

¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

²B. Descochers and L. Jaulin, "Computing a guaranteed approximation of the zone explored by a robot,", 2017 $\langle \Box \rangle \langle \exists \rangle \rangle \langle \exists \rangle \rangle \langle \exists \rangle \rangle \langle \exists \rangle \rangle$

Introduction	Problem Statement	Problem Approach	Computing the Winding Number	Results	Conclusions
					•o

Introduction

- Problem Statement
- **3** Problem Approach
- Occupation Computing the Winding Number
- **6** Results

6 Conclusions

Introduction 000000000	Problem Statement	Problem Approach	Computing the Winding Number	Results 00000	Conclusions ○●
Conclusions					

Future Work:

- Relation between persistent homology and uncertain winding number values [Bhattacharya 2015]¹,
- coverage measures dealing with multiple robots [De Silva 2007]²,
- uncertainty in the robot's trajectory using thick sets,
- contour reversing orientation,
- real-time computation,
- localization application using the exteroceptive data.

¹S. Bhattacharya, R. Ghrist, and V. Kumar, "Persistent homology for path planning in uncertain environments,", 2015

 2 V. D. Silva and R. Ghrist, "Homological sensor networks,", 2007 < \Box > < \square > < \square > <