A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Maria Luiza Costa Vianna ${ }^{1,2}$ Eric Goubault ${ }^{1}$ Luc Jaulin ${ }^{2}$ Sylvie Putot ${ }^{1}$
${ }^{1}$ Laboratoire d'Informatique de l'École Polytechnique (LIX)
${ }^{2}$ ENSTA Bretagne, Lab-STICC

17/06/2022
(1) Introduction
(2) Problem Statement
(3) Problem Approach
(4) Computing the Winding Number
(5) Results
(6) Conclusions

(1) Introduction

(2) Problem Statement
(3) Problem Approach
(4) Computing the Winding Number
(5) Results
(6) Conclusions

Ther

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Introduction

Case of Study

- Navigation sensors (Proprioceptive) - IMU, DVL ...

触

Introduction

Case of Study

- Navigation sensors (Proprioceptive)
- IMU, DVL ...
- Observation sensors (Exteroceptive)
- Camera, sonar/lidar, temperature, salinity ...

Introduction

Case of Study

- Navigation sensors (Proprioceptive)
- IMU, DVL ...
- Observation sensors (Exteroceptive)
- Camera, sonar/lidar, temperature, salinity ...

Side Scan Sonar

Introduction

Case of Study

- Navigation sensors (Proprioceptive)
- IMU, DVL ...
- Observation sensors (Exteroceptive)
- Camera, sonar/lidar, temperature, salinity ...

Side Scan Sonar

Introduction

Explored Area

The explored area is the union of the visible areas over the whole trajectory.

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Introduction

Objectives

- Compute the explored area.
- Compute the number of times each point in the environment has been explored.

Applications

Explored Area

- Assess area-covering missions,
- plan other missions to fill possible gaps.

Coverage Measure

- Localization in homogeneous environments,
- assess revisiting missions,
- trajectory planning.

Applications

Coverage Measure

- Localization in homogeneous environments,

(1) Proprioceptive estimation
S. Rohou, B. Desrochers, et al., The Codac library - Constraint-programming for robotics, 2022 $\overline{\overline{\mathrm{E}}}$

Applications

Coverage Measure

- Localization in homogeneous environments,

(1) Proprioceptive estimation
(2) Exteroceptive update
S. Rohou, B. Desrochers, et al., The Codac library - Constraint-programming for robotics, 2022 $\overline{\overline{\mathrm{E}}}$

Applications

Coverage Measure

- Localization in homogeneous environments,

(1) Proprioceptive estimation
(2) Exteroceptive update

Figure 1
S. Rohou, B. Desrochers, et al., The Codac library - Constraint-programming for robotics, 2022

Figure 1: S. Rohou, B. Desrochers, and L. Jaulin, "Set-membership state estimation by solving data association,",

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Applications

Coverage Measure

－assess revisiting missions，

Figure 2

Figure 2：How marine roboticists are turning auv sight into perception，
(4) Computing the Winding Number
(5) Results
(6) Conclusions

っの
A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Problem Statement

Hypothesis

- $x: \mathbb{R} \rightarrow \mathbb{R}^{2}$,
- $T=\left[0, T_{\text {max }}\right]$,
- x is continuous in T.

Problem Statement

- $\mathbb{V}(x(t))$ is the visible area at time t.

Problem Statement

$\mathbb{A}_{\mathbb{E}}$ is the explored area

$$
\mathbb{A}_{\mathbb{E}}=\bigcup_{t \in T} \mathbb{V}(t)
$$

Problem Statement

Entries

- x, the robot's trajectory,
- T, time interval.
- \mathbb{V}, visible area

Problem Statement

Entries

- x, the robot's trajectory,
- T, time interval.
- \mathbb{V}, visible area

Desired Output

- Explored area $\mathbb{A}_{\mathbb{E}}$,
- coverage measure of all the points in the plane, $\mathbb{C}_{\mathbb{M}}$.

$$
\mathbb{A}_{\mathbb{E}}=\left\{p \in \mathbb{R}^{2} \mid \mathbb{C}_{\mathbb{M}}(p)>0\right\}
$$

(3) Problem Approach
(4) Computing the Winding Number
(5) Results
(6) Conclusions

5

三

Problem Approach

The sonar's contour

- $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$,
- γ is continuous,
- $\gamma(0)=\gamma(1)$.

54

Problem Approach

Winding Number

- γ is a closed curve in \mathbb{R}^{2},
- $p \in \mathbb{R}^{2}$,
- $\eta(\gamma, p) \in \mathbb{Z}$.

Winding Number :

```
|>-1\square
\(\square\) \(+1\) \(\square\) \(+2\)
```

คค

Problem Approach

$$
\begin{gathered}
\mathbb{C}_{\mathbb{M}}(p)=\eta(\gamma, p) \\
\mathbb{A}_{\mathbb{E}}=\left\{p \in \mathbb{R}^{2} \mid \eta(\gamma, p)>0\right\}
\end{gathered}
$$

Problem Approach

Waterfall and Mosaic spaces ${ }^{1}$

5
${ }^{1}$ A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar," $\bar{\equiv} 2016 \bar{\equiv}$

Problem Approach

Waterfall and Mosaic spaces ${ }^{1}$

5
${ }^{1}$ A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar," $\bar{\equiv} 2016 \bar{\equiv}$

Problem Approach

Waterfall and Mosaic spaces ${ }^{1}$

5
${ }^{1}$ A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar," $\bar{\equiv} 2016$

Problem Approach

Waterfall and Mosaic spaces ${ }^{1}$

${ }^{1}$ A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar," $\bar{\equiv} 2016 \bar{\equiv}$

Problem Approach

Waterfall and Mosaic spaces ${ }^{1}$

${ }^{1}$ A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar," $\bar{\equiv} 2016$

Problem Approach

Waterfall and Mosaic spaces ${ }^{1}$

From [Milnor 1965] ${ }^{2}$, if f_{p} preserves orientation,

$$
\operatorname{deg}\left(f_{p}, W\right)=\sum_{i=1}^{k} \operatorname{sign}\left(\operatorname{det} D f_{p}\left(p_{i}\right)\right)=k
$$

${ }^{1}$ A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar,", 2016
2 J. Milnor, Topology from the Differentiable Viewpoint. 1965

Problem Approach

Waterfall and Mosaic spaces ${ }^{1}$

$$
\begin{gathered}
f_{p}=f-p \\
\mathbb{C}_{\mathbb{M}}(p)=\# \operatorname{Ker} f_{p}^{-1}=\#\left\{p_{1} \ldots p_{k}\right\}=k \\
\operatorname{deg}\left(f_{p}, W\right)=k
\end{gathered}
$$

[^0]${ }^{2}$ J. Milnor, Topology from the Differentiable Viewpoint. 1965

Problem Approach

Waterfall and Mosaic spaces ${ }^{1}$

${ }^{1}$ A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar,", 2016
2 J. Milnor, Topology from the Differentiable Viewpoint. 1965

Problem Approach

What if f does not preserve orientation?

Problem Approach

What if f does not preserve orientation?

Problem Approach

What if f does not preserve orientation?

Problem Approach

Entries

- γ, the sonar's contour.

號

Problem Approach

Entries

- γ, the sonar's contour.

Desired Output

- Explored area $\mathbb{A}_{\mathbb{E}}$,
- coverage measure of all the points in the plane, $\mathbb{C}_{\mathbb{M}}$.

Proposed solution

$$
\forall p \in \mathbb{R}^{2}, \text { calculate } \eta(\gamma, p)
$$

(3) Problem Approach
(4) Computing the Winding Number
(5) Results
(6) Conclusions

Computing the Winding Number

Hypothesis on γ :

(1) continuous,
(2) finite number of crossing points,
(3) only passes through each crossing point twice.

Computing the Winding Number

- Construction of a CW-complex $C(\gamma)$ from the cycle γ

Computing the Winding Number

- Construction of a CW-complex $C(\gamma)$ from the cycle γ

0-cell

Computing the Winding Number

- Construction of a CW-complex $C(\gamma)$ from the cycle γ

1-cell

Computing the Winding Number

- Construction of a CW-complex $C(\gamma)$ from the cycle γ

號

Computing the Winding Number

Möbius's combinatorial rule for defining the winding number ${ }^{1}$

Computing the Winding Number

Möbius's combinatorial rule for defining the winding number ${ }^{1}$

Computing the Winding Number

Möbius's combinatorial rule for defining the winding number ${ }^{1}$

คaく

Computing the Winding Number

Möbius's combinatorial rule for defining the winding number ${ }^{1}$

${ }^{1}$ A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",, 1865

Computing the Winding Number

Möbius's combinatorial rule for defining the winding number ${ }^{1}$

${ }^{1}$ A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",, 1865

Computing the Winding Number

Möbius's combinatorial rule for defining the winding number ${ }^{1}$

${ }^{1}$ A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",, 1865

Computing the Winding Number

Möbius's combinatorial rule for defining the winding number ${ }^{1}$

${ }^{1}$ A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",, 1865

Computing the Winding Number

Möbius's combinatorial rule for defining the winding number ${ }^{1}$

${ }^{1}$ A. Möbius, "Über die bestimmung des inhaltes eines polyëders,",, 1865

Computing the Winding Number

Alexander numbering ${ }^{1}$

${ }^{1}$ J. W. Alexander, "Topological invariants of knots and links,", 1928
A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Computing the Winding Number

Alexander numbering ${ }^{1}$

${ }^{1}$ J. W. Alexander, "Topological invariants of knots and links,", 1928
A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Computing the Winding Number

Alexander numbering ${ }^{1}$

${ }^{1}$ J. W. Alexander, "Topological invariants of knots and links,", 1928
A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Computing the Winding Number

Alexander numbering ${ }^{1}$

${ }^{1}$ J. W. Alexander, "Topological invariants of knots and links,", 1928
A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Computing the Winding Number

Alexander numbering ${ }^{1}$

Computing the Winding Number

Alexander numbering ${ }^{1}$

Computing the Winding Number

Algorithm:

(1) Detection of self-intersections (0-cell),

$$
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

(2) Alexander numbering the regions (2-cell).

Computing the Winding Number

Algorithm:

(1) Detection of self-intersections (0-cell),

$$
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

(2) Alexander numbering the regions (2-cell).

Computing the Winding Number

Algorithm:

(1) Detection of self-intersections (0-cell),

$$
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

(2) Alexander numbering the regions (2-cell).

Computing the Winding Number

Algorithm:

(1) Detection of self-intersections (0-cell),

$$
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

(2) Alexander numbering the regions (2-cell).

Computing the Winding Number

Algorithm:

(1) Detection of self-intersections (0-cell),

$$
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

(2) Alexander numbering the regions (2-cell).

Computing the Winding Number

Algorithm:

(1) Detection of self-intersections (0-cell),

$$
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

(2) Alexander numbering the regions (2-cell).

Computing the Winding Number

Algorithm:

(1) Detection of self-intersections (0-cell),

$$
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

(2) Alexander numbering the regions (2-cell).

Computing the Winding Number

Algorithm:

(1) Detection of self-intersections (0-cell),

$$
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

(2) Alexander numbering the regions (2-cell).

Computing the Winding Number

Algorithm:

(1) Detection of self-intersections (0-cell),

$$
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

(2) Alexander numbering the regions (2-cell).

Computing the Winding Number

Let S_{i} be the closure of the union of the regions with a winding value greater or equal to i.

Computing the Winding Number

Theorem 1 in [Mcintyre 1993] ${ }^{1}$:

$$
\eta(\gamma)=\sum_{i>0} \chi s_{i}-\sum_{i<0} \chi s_{i}
$$

$$
\eta(\gamma)=\chi s_{1}+\chi s_{2}
$$

Where,

$$
\chi_{s_{i}}(p)= \begin{cases}0, & \text { if } p \notin S_{i} \\ 1, & \text { if } p \in S_{i}\end{cases}
$$

[^1]
Computing the Winding Number

Theorem 1 in [Mcintyre 1993] ${ }^{1}$:

$$
\eta(\gamma)=\sum_{i>0} \chi s_{i}-\sum_{i<0} \chi s_{i}
$$

$$
\eta(\gamma)=\chi s_{1}+\chi s_{2}
$$

Where,

$$
\chi_{s_{i}}(p)= \begin{cases}0, & \text { if } p \notin S_{i} \\ 1, & \text { if } p \in S_{i}\end{cases}
$$

[^2]
Computing the Winding Number

Theorem 1 in [Mcintyre 1993] ${ }^{1}$:

$$
\eta(\gamma)=\sum_{i>0} \chi s_{i}-\sum_{i<0} \chi s_{i}
$$

$$
\eta(\gamma)=\chi s_{1}+\chi s_{2}
$$

Where,

$$
\chi_{s_{i}}(p)= \begin{cases}0, & \text { if } p \notin S_{i} \\ 1, & \text { if } p \in S_{i}\end{cases}
$$

${ }^{1}$ M. Mcintyre and G. Cairns, "A new formula for winding number,", 1993 皿

Computing the Winding Number

Theorem 1 in [Mcintyre 1993] ${ }^{1}$:

$$
\eta(\gamma)=\sum_{i>0} \chi s_{i}-\sum_{i<0} \chi s_{i}
$$

$$
\eta(\gamma)=\chi S_{1}+\chi S_{2}
$$

Where,

$$
\chi_{S_{i}}([b])= \begin{cases}{[0,0],} & \text { if }[b] \cap S_{i}=\emptyset \\ {[1,1],} & \text { if }[b] \subset S_{i} \\ {[0,1],} & \text { otherwise }\end{cases}
$$

${ }^{1}$ M. Mcintyre and G. Cairns, "A new formula for winding number,", 1993,

Computing the Winding Number

Theorem 1 in [Mcintyre 1993] ${ }^{1}$:

$$
\eta(\gamma)=\sum_{i>0} \chi s_{i}-\sum_{i<0} \chi s_{i}
$$

$$
\eta(\gamma)=\chi S_{1}+\chi S_{2}
$$

Where,

$$
\chi_{S_{i}}([b])= \begin{cases}{[0,0],} & \text { if }[b] \cap S_{i}=\emptyset \\ {[1,1],} & \text { if }[b] \subset S_{i} \\ {[0,1],} & \text { otherwise }\end{cases}
$$

${ }^{1}$ M. Mcintyre and G. Cairns, "A new formula for winding number,", 1993,1) Introduction
(2) Problem Statement
(3) Problem Approach
(4) Computing the Winding Number
(5) Results
(6) Conclusions

5

三

Simulation

${ }^{1}$ S. Rohou, B. Desrochers, et al., The Codac library - Constraint-programming for robotics, 2022 $\overline{\underline{\underline{E}}}$

Simulation

Using the Codac Library ${ }^{1}$
${ }^{1}$ S. Rohou, B. Desrochers, et al., The Codac library - Constraint-programming for robotics, $2022 \bar{\equiv}$

Simulation

\square
Using the Codac Library ${ }^{1}$
${ }^{1}$ S. Rohou, B. Desrochers, et al., The Codac library - Constraint-programming for $\begin{aligned} & \text { robotics, } 2022 \bar{\equiv}\end{aligned}$

Daurade

Data

- DVL,
- IMU,
- Pressure.

Mission

- Classical survey path (law-mowing pattern),
- Roadstead of Brest (France, Brittany),
- 47 minutes.

Dataset and photo courtesy of DGA/GESMA.

Daurade

Using the Codac Library ${ }^{1}$
${ }^{1}$ S. Rohou, B. Desrochers, et al., The Codac library - Constraint-programming for robotics, $2022 \overline{\overline{\#}}$

Daurade

Using the Codac Library ${ }^{1}$
${ }^{1}$ S. Rohou, B. Desrochers, et al., The Codac library - Constraint-programming for robotics, 2022 $\overline{\overline{=}}$
っの

Daurade

Using the Codac Library ${ }^{1}$

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Daurade

Using the Codac Library ${ }^{1}$

號
${ }^{1}$ S．Rohou，B．Desrochers，et al．，The Codac library－Constraint－programming for robotics， 2022 ${ }^{2}$ B．Desrochers and L．Jaulin，＂Computing a guaranteed approximation of the zone explored by a robot，＂， 2017

4 $\square>4$ 号 >4 三

っの

Daurade

Using the Codac Library ${ }^{1}$
refer
${ }^{1}$ S．Rohou，B．Desrochers，et al．，The Codac library－Constraint－programming for robotics， 2022 ${ }^{2}$ B．Desrochers and L．Jaulin，＂Computing a guaranteed approximation of the zone explored by a robot，＂， 2017

っの＠

Daurade

Using the Codac Library ${ }^{1}$

50
${ }^{1}$ S. Rohou, B. Desrochers, et al., The Codac library - Constraint-programming for robotics, 2022
${ }^{2}$ B. Desrochers and L. Jaulin, "Computing a guaranteed approximation of the zone explored by a robot,", 2017
A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

Daurade

Using the Codac Library ${ }^{1}$

趣
${ }^{1}$ S. Rohou, B. Desrochers, et al., The Codac library - Constraint-programming for robotics, 2022
${ }^{2}$ B. Desrochers and L. Jaulin, "Computing a guaranteed approximation of the zone explored by a robot,", 2017
A Geometric Approach to the Coverage Measure of the Area Explored by a Robot
(4) Computing the Winding Number
(5) Results
(6) Conclusions

5

\equiv

Conclusions

Future Work:

- Relation between persistent homology and uncertain winding number values [Bhattacharya 2015] ${ }^{1}$,
- coverage measures dealing with multiple robots [De Silva 2007] ${ }^{2}$,
- uncertainty in the robot's trajectory using thick sets,
- contour reversing orientation,
- real-time computation,
- localization application using the exteroceptive data.

[^3]
[^0]: ${ }^{1}$ A. Burguera and G. Oliver, "High-resolution underwater mapping using side-scan sonar,", 2016

[^1]: ${ }^{1}$ M. Mcintyre and G. Cairns, "A new formula for winding number,", 1993 皿

[^2]: ${ }^{1}$ M. Mcintyre and G. Cairns, "A new formula for winding number,", 1993 皿

[^3]: ${ }^{1}$ S. Bhattacharya, R. Ghrist, and V. Kumar, "Persistent homology for path planning in uncertain environments,", 2015

