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Guaranteed Results with Result Verification
Verification — Are we building the product right? [Boehm]

Code V
(→ literate programming)

Formal V
(→ model checking)

Result V
(→ interval arithmetic)

Principle: Prove mathematically the correctness of the computer
result (fixed point theorems + set-based arithmetics)

Advantages: Account for rounding or conversion errors; propagate
epistemic uncertainty

Disadvantages: Possibly too pessimistic ( overestimation)

Approaches: Interval, affine, Taylor model, ... based methods

E. Auer, A. Ahrens
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Result Verification: Applications

Main area: Engineering
→ Robotics [Jaulin,Merlet]

→ Chemical engineering [Stadtherr]

→ Particle accelerators [Makino,Berz]

→ Control theory [Walter,Rauh]

→ ... many more ...

And now: Wireless communications!

http://www.cs.utep.edu/interval-comp/
A positioner for

the ESRF, Merlet

Other application areas

→ Computer graphics [Luther,Stolfi]

→ Finance/decision-making [Hu,Tsao]

→ Imprecise probability [Kreinovich,Ferson]

Computer assisted proofs

Smale’s 14th: Do the properties of
the Lorenz attractor exhibit
that of a strange attractor?

Answer: Yes, proved by W. Tucker
in 2002 with intervals
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Focus: MIMO (Multiple Input Multiple Output) Systems

Improve the channel capacity/integrity without
increasing the channel bandwidth or the trans-
mit power

Method: Multiple data streams are transmitted on the same
frequency band and at the same time

Separation: Spatial, for example, multiple antennas at the
transmitter and receiver side at different locations

Correlation effect: Caused by the proximity of the multiple antennas;
transmit-to-receive paths might become too similar!

Channel capacity: The information theoretic limit on the bit ratio (BER)

BER: The number of bits per second that can be
transmitted through a physical channel error free

E. Auer, A. Ahrens
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Modeling and Simulation of a MIMO Digital Channel

System
configuration

nT, nR antennas
other hardware

low/high
correlation effect

Channel
modeling/estimation

H ∈ CnR×nT

LS optimization
(via pilot sequences)

Interference
suppression

~y = H · ~a + ~n
 Σ~a + ~w

SV decomposition

Resources’
allocation

bit or power
allocation

Lagrange multipliers
optimization

InformationInformation Quality criterion: BER

Interference suppression → L̂ independent, weighted SISO links

(pre: ~z = V~a, post: ~u := U †~z = U †
(
UΣV †

)
V~a+ U †~n = Σ~a+ ~w)

ul = λlal + wl for l = 1 . . . L (ideally non-interfering)

Resources allocation: L number of activated layers, P
(l)
s transmit power,

Ml constellation size

Each stage might be affected by uncertainty and numerical errors!
E. Auer, A. Ahrens
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Uncertainty

MIMO achieve high capacity gains under perfect channel state information

Imperfect knowledge might be due to

Channel estimation stage:

→ channel estimation error at the receiver

→ limited feedback capability

Interference suppression/ Resources’ allocation stages:

→ λl =
√
ξl — errors in singular values of H

→ σ2 — uncertain noise variance at the receiver side

Usually treated by traditional UQ techniques

A combined treatment using verified techniques is possible

E. Auer, A. Ahrens
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Good and Poor Scattering Conditions:
Uncorrelated and Correlated Channel Realizations

Weights λl are not equal

Proximity might make this stronger! Indicator: ϑ =
the smallest λ

the largest λ
Illustration for a (4× 4) MIMO channel (5000 realizations each):
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Enclosing the BER for Uncertain Parameters

BER Pb =
2

L∑
l=1

log2Ml

L∑
l=1

(
1− 1√

Ml

)
· erfc

(
λl
2σ

√
3 · Ps

L(Ml − 1)

)

Task: Minimize the BER for uncertain λl ∈ [λl, λl], σ ∈ [σ, σ]

→ Minimize the upper bound!

Bound:
2

L∑
l=1

log2Ml

L∑
l=1

(
1− 1√

Ml

)
· erfc

(
λl
2σ

√
3Ps

L(Ml − 1)

)

Minimize wrt. P
(l)
s ( power allocation) and L,Ml ( bit allocation)

Power allocation: Largange multipliers + software with result verification

Bit allocation: Non-linear mixed-integer programming problem + software
with result verification + power allocation

E. Auer, A. Ahrens
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Power allocation: Problem Formulation

Idea: Assign more power to the layers with small weights! (L, Ml fixed)

→ P
(l)
s = Ps

L (equally distributed)  π2l · P
(l)
s so that

L∑
l=1

π2l · P
(l)
s = Ps

Method: Constrained optimization with Lagrange multipliers

J(π1 . . . πL, µ) = 2
L∑

l=1
log2Ml

L∑
l=1

(
1− 1√

Ml

)
·

erfc

(
πlλl
2σ

√
3 · Ps

L(Ml − 1)

)
+ µ


constraint︷ ︸︸ ︷
L∑
l=1

π2l − L

 −→πl,µ min
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Power allocation: Verified Solution

Possibility 1 Mix analytical and numerical techniques

Stationary points: From the nonlinear algebraic system

∂J(π1...πL,µ)
∂πl

= − 2kl√
π

(
clλle

−c2l λ
2
l π

2
l

)
+ 2µπl = 0,

L∑
l=1

π2l − L = 0

with kl = 2
L∑

l=1
log2Ml

·
(

1− 1√
Ml

)
> 0, cl = 1

2σ

√
3·Ps

L(Ml−1) > 0

Solve using software with result verification  

C-XSC www2.math.uni-wuppertal.de/wrswt/xsc/cxsc.html

The (bordered) Hessian can be shown to be built in such a way that a
stationary point is a local minimum!

Possibility 2 Use global optimization directly (e.g., in C-XSC)

Possibility 2 is usually more afflicted by overestimation!

E. Auer, A. Ahrens
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Overestimation: A MIMO Link with Four Antennas,
Four Active Layers (L = 4)

MIMO: Frequency flat, nT = nR = 4 , T = 8 bit/s/Hz, Ps = 1 W

A data set with λ1 ≈ 1.903, λ2 ≈ 0.624, λ3 ≈ 0.212, λ4 ≈ 0.0692

Strong correlation: ϑ ≈ 0.036

Results for optimal π2i at SNR of 10 dB (σ ≈ 0.2236)

Possibility 2: π21 ∈ [0.5884, 0.5886], π22 ∈ [1.9511, 1.9513],

π31 ∈ [1.3002, 1.3005], π24 ∈ [0.15, 0.17]

Possibility 1: π21 ∈ 0.58850319691, π22 ∈ 1.951166375,

π31 ∈ 1.3003310363, π24 ∈ 0.15999940898

E. Auer, A. Ahrens
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The Bordered Hessian

0 2π1 · · · 2πL

2π1 2µ+
4k1c

3
1λ

3
1√

π
π1e
−c21λ

2
1π

2
1 · · · 0

2π2 0 . . . 0
...

...
. . .

...

2πL 0 . . . 2µ+
4kLc

3
Lλ

3
L√

π
πLe

−c2Lλ
2
Lπ

2
L


∂2J

∂πl∂πm
= 0 for l 6= m, , µ > 0 from ∂J(π1...πL,µ)

∂πl
= 0  

∂2J

∂π2l
> 0

(l + 1)× (l + 1) :

∣∣∣∣∣∣∣∣∣
0 a1 · · · al
a1 d1 · · · 0
...

. . .

al 0 · · · dl

∣∣∣∣∣∣∣∣∣ = −
l∑
i=1

a2i l∏
k=1,k 6=i

dk

 < 0

 a local minimum in (π1 . . . πL); unique solution  globality
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Power Allocation: A Special Case (1)

Special case: L = 2 and M1 = M2 = M (λ1 > λ2 as usual)

The system: k =
1

log2M
·
(

1− 1√
M

)
, c =

1

2σ

√
3 · Ps

L(M − 1)

∂J

∂π1
=

2k√
π

(
−cλ1e−c

2λ2
1π

2
1

)
+ 2µπ1 = 0

∂J

∂π2
=

2k√
π

(
−cλ2e−c

2λ2
2π

2
2

)
+ 2µπ2 = 0

∂J

∂µ
= π2

1 + π2
2 − 2 = 0

can be reduced to π1 =
λ1
λ2
e−c

2(π2
1(λ

2
1+λ

2
2)−2λ22) ·

√
2− π21

Not optimal: Choosing
π1
π2

=
λ2
λ1

(π1 = λ2

√
2

λ21 + λ22
)

E. Auer, A. Ahrens
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Power Allocation: A Special Case (2)

The intersection of a hyperbola and an exponential function

−1 +
2

2− x
=

(
λ1
λ2

)2

κ1e
−κ2x

with κ1 = e4c
2λ22 and κ2 = 2c2(λ21 + λ22).

Solution: x ∈ (0, 2) (unique with e.g. Banach’s theorem)

Example: λ1 = 4.341226, λ2 = 2.178729, M = 16, π21 ≈ 0.51
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Bit allocation

BER: Pb =
2

L∑
l=1

log2Ml

L∑
l=1

(
1− 1√

Ml

)
· erfc

(
λl
2σ

√
3 · Ps

L(Ml − 1)

)

→ Ml influences the overall BER

→ But also L (given throughput T )
case L layer 1 2 3 4

1 L = 1 256 — — —
2 L = 2 64 4 — —
3 L = 2 16 16 — —
4 L = 3 16 4 4 —
5 L = 4 4 4 4 4

(throughput T = 8 bit/s/Hz)
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Constraint:
∑L

l=1 log2Ml = T

Solution: Brute force for small T and L̂ possible (+ power allocation)!

E. Auer, A. Ahrens
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Example: A MIMO Link with Four Antennas

Simulation Settings

MIMO: Frequency flat, nT = nR = 4 , T = 8 bit/s/Hz, Ps = 1 W

Two data sets with 5000 channel realizations each for correlated
and uncorrelated case (simulated)
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Results for the SNR 10 dB (corresponding to σ ≈ 0.2236)
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Power Allocation for Four Active Layers (L = 4)

Case M1 = 4, M2 = 4, M3 = 4, M4 = 4

Uncorrelated data set
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BER is reduced for each constellation of sigular values!
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Bit Allocation for a (4× 4) MIMO System

λ1 ≥ λ2 ≥ λ3 ≥ λ4 −→ M1 ≥M2 ≥M3 ≥M4

( [lowest, highest] BER for 5000 channel realizations)
Layer BER BER-PA BER BER-PA
M1,M2,M3,M4 (correlated) (correlated) (uncorrelated) (uncorrelated)

One active layer
1 256, 0, 0, 0 [0.0023,0.1492] the same [0.0240, 0.13423] the same

Two active layers
2 128, 2, 0, 0 [0.0022,0.1449] [0.0001,0.1220] [0.0232, 0.1304] [0.0059, 0.1036]

3 64, 4, 0, 0 [55·10−6,0.1103] [4·10−6,0.0959] [0.0044, 0.0928] [0.0007, 0.0749]

4 32, 8, 0, 0 [10·10−7,0.0808] [2·10−7,0.0773] [0.0002, 0.0599] [0.0001, 0.0556]

5 16, 16, 0, 0 [40·10−7,0.1092] [3·10−7,0.0981] [1.4·10−4, 0.06710] [1.1·10−4, 0.0589]
Three active layers

6 64, 2, 2, 0 [8·10−4,0.1279] [8·10−6,0.1002] [0.0127, 0.1121] [0.0009, 0.0771]

7 32, 4, 2, 0 [12·10−6,0.0926] [2·10−6,0.0775] [0.0015, 0.0739] [6·10−5, 0.0533]

8 16, 8, 2, 0 [11·10−6,0.1006] [5·10−6,0.0936] [0.0001, 0.06417] [2·10−5, 0.0584]

9 16, 4, 4, 0 [11·10−5,0.1015] [1·10−5,0.0972] [9·10−5, 0.0850] [1·10−5, 0.0785]

10 8, 8, 4, 0 [0.0001,0.1429] [7·10−5,0.1282] [2·10−5, 0.1048] [1·10−5, 0.0916]
Four active layers

11 32, 2, 2, 2 [0.0106,0.1532] [0.0032,0.1255] [0.0073, 0.1426] [0.0005, 0.1129]

12 16, 4, 2, 2 [0.0071,0.1252] [0.0023,0.1181] [0.0006, 0.1099] [7·10−5, 0.1010]

13 8, 4, 4, 2 [0.0109,0.1665] [0.0038,0.1529] [7·10−5, 0.1419] [4·10−5, 0.1344]
14 4, 4, 4, 4 [0.0414,0.2180] [0.0228,0.2028] [0.0014, 0.1909] [0.0002, 0.1785]

All four layers should never be activated at the same time!
E. Auer, A. Ahrens
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Interference Suppression – Another Approach

~y = H · ~a+ ~n

→ ~y received signal
→ ~a transmitted signal
→ ~n noise
→ hij the fading coefficient between

jth rec. / ith trans. antenna

 ?

Until now SVD: Σ~a+ ~w with Σ = diag
(√
ξ1, . . . ,

√
ξL̂
)

Pre-/Postprocessing: ~z = V~a, ~u := U †~z = U †
(
UΣV †

)
V~a+ U †~n = Σ~a+ ~w

→ ul = λlal + wl, L̂ independent SISO links with (unequal) λl =
√
ξl

Another possibility: GMD Decompose into L̂ identical subchannels!

→ ûl = λ̂lal + ŵl with λ̂l = L

√(∏L
i=1 λl

)
, L =?

→ Asymptotically optimal for high SNR (channel throughput, BER)

→ Supposedly no trade-off between the capacity and BER

E. Auer, A. Ahrens
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Conclusions

Results:

→ Problem solved by a mixed analytical/numerical technique with
result verification

→ At least the weakest layer should be switched off

→ For correlated systems, resource allocation plays an especially
important role

→ Best performance for two active layers

Future work:

→ Analyse the influence of the noise (σ)

→ Use GMD instead of SVD for obtaining equal weights — does the
performance improve?

Thank you for your attention!
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