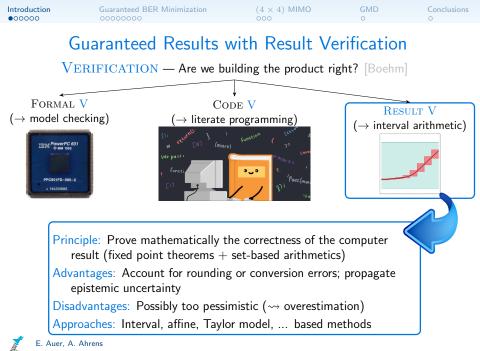
# Uses of Methods with Result Verification for Dealing with Uncertainty during MIMO Modeling and Simulation Process

Ekaterina Auer and Andreas Ahrens



University of Applied Sciences Wismar

July 1, 2022



Result Verification for MIMO Systems

| Introduction |  |
|--------------|--|
| 00000        |  |

## Result Verification: Applications

#### Computer assisted proofs

 Smale's 14th: Do the properties of the Lorenz attractor exhibit that of a strange attractor?
 Answer: Yes, proved by W. Tucker in 2002 with intervals

#### Other application areas

- $\rightarrow$  Computer graphics [Luther,Stolfi]
- $\rightarrow$  Finance/decision-making [Hu,Tsao]
- → Imprecise probability [Kreinovich, Ferson]

### Main area: Engineering

- → Robotics [Jaulin,Merlet]
- $\rightarrow$  Chemical engineering [Stadtherr]
- → Particle accelerators [Makino,Berz]
- $\rightarrow$  Control theory [Walter,Rauh]
- $\rightarrow$  ... many more ...

#### And now: Wireless communications!

http://www.cs.utep.edu/interval-comp/

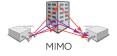


A positioner for the ESRF, Merlet



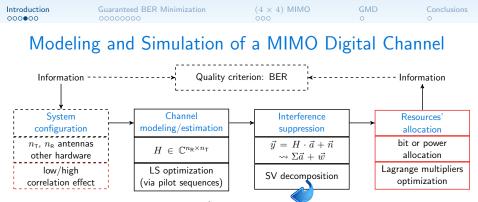
| Introduction | Guaranteed BER Minimization | $(4 \times 4)$ MIMO | GMD | Conclusions |
|--------------|-----------------------------|---------------------|-----|-------------|
| 00000        | 0000000                     | 000                 | 0   | 0           |
|              |                             |                     |     |             |

# Focus: MIMO (Multiple Input Multiple Output) Systems



Improve the channel capacity/integrity without increasing the channel bandwidth or the transmit power

| Method:             | Multiple data streams are transmitted on the same frequency band and at the same time                    |
|---------------------|----------------------------------------------------------------------------------------------------------|
| Separation:         | Spatial, for example, multiple antennas at the transmitter and receiver side at different locations      |
| Correlation effect: | Caused by the proximity of the multiple antennas;<br>transmit-to-receive paths might become too similar! |
| Channel capacity:   | The information theoretic limit on the bit ratio (BER)                                                   |
| BER:                | The number of bits per second that can be transmitted through a physical channel error free              |



Interference suppression  $\rightarrow \hat{L}$  independent, weighted SISO links (pre:  $\vec{z} = V\vec{a}$ , post:  $\vec{u} := U^{\dagger}\vec{z} = U^{\dagger} (U\Sigma V^{\dagger}) V\vec{a} + U^{\dagger}\vec{n} = \Sigma\vec{a} + \vec{w}$ )  $u_l = \lambda_l a_l + w_l$  for  $l = 1 \dots L$  (ideally non-interfering) Resources allocation: L number of activated layers,  $P_s^{(l)}$  transmit power,  $M_l$  constellation size

Each stage might be affected by uncertainty and numerical errors!



| Introduction | Guaranteed BER Minimization | (4 	imes 4) MIMO | GMD | Conclusions |
|--------------|-----------------------------|------------------|-----|-------------|
| 000000       | 0000000                     | 000              | 0   | 0           |

## Uncertainty

MIMO achieve high capacity gains under perfect channel state information

Imperfect knowledge might be due to

Channel estimation stage:

- $\rightarrow\,$  channel estimation error at the receiver
- $\rightarrow$  limited feedback capability

Interference suppression/ Resources' allocation stages:

- $\rightarrow \lambda_l = \sqrt{\xi_l}$  errors in singular values of H
- $\rightarrow~\sigma^2$  uncertain noise variance at the receiver side

#### Usually treated by traditional UQ techniques

A combined treatment using verified techniques is possible

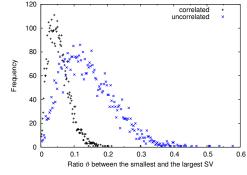


# Good and Poor Scattering Conditions: Uncorrelated and Correlated Channel Realizations

Weights  $\lambda_l$  are not equal

Proximity might make this stronger! Indicator:  $\vartheta = \frac{\text{the smallest }\lambda}{\text{the largest }\lambda}$ 

Illustration for a  $(4 \times 4)$  MIMO channel (5000 realizations each):



E. Auer, A. Ahrens Result Verification for MIMO Systems

| Introduction | Guaranteed BER Minimization | $(4 \times 4)$ MIMO | GMD | Conclusions |
|--------------|-----------------------------|---------------------|-----|-------------|
| 000000       | 0000000                     | 000                 | 0   | 0           |

Enclosing the BER for Uncertain Parameters

$$\mathsf{BER} \ P_b = \frac{2}{\sum\limits_{l=1}^{L} \log_2 M_l} \sum\limits_{l=1}^{L} \left( 1 - \frac{1}{\sqrt{M_l}} \right) \cdot \mathsf{erfc} \left( \frac{\lambda_l}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}} \right)$$

Task: Minimize the BER for uncertain  $\lambda_l \in [\underline{\lambda}_l, \overline{\lambda}_l]$ ,  $\sigma \in [\underline{\sigma}, \overline{\sigma}]$ 

 $\rightarrow$  Minimize the upper bound!

Bound: 
$$\frac{2}{\sum_{l=1}^{L} \log_2 M_l} \sum_{l=1}^{L} \left( 1 - \frac{1}{\sqrt{M_l}} \right) \cdot \operatorname{erfc}\left( \frac{\underline{\lambda}_l}{2\overline{\sigma}} \sqrt{\frac{3P_s}{L(M_l - 1)}} \right)$$

Minimize wrt.  $P_s^{(l)}$  ( $\rightsquigarrow$  power allocation) and  $L, M_l$  ( $\rightsquigarrow$  bit allocation) Power allocation: Largange multipliers + software with result verification Bit allocation: Non-linear mixed-integer programming problem + software with result verification + power allocation



| Introduction | Guaranteed BER Minimization | $(4 \times 4)$ MIMO | GMD | Conclusions |
|--------------|-----------------------------|---------------------|-----|-------------|
| 000000       | 0000000                     | 000                 | 0   | 0           |

## Power allocation: Problem Formulation

Idea: Assign more power to the layers with small weights! (L,  $M_l$  fixed)

$$\rightarrow P_s^{(l)} = \frac{P_s}{L}$$
 (equally distributed)  $\rightsquigarrow \pi_l^2 \cdot P_s^{(l)}$  so that  $\sum_{l=1}^L \pi_l^2 \cdot P_s^{(l)} = P_s$ 

Method: Constrained optimization with Lagrange multipliers

$$J(\pi_1 \dots \pi_L, \mu) = \frac{2}{\sum\limits_{l=1}^{L} \log_2 M_l} \sum\limits_{l=1}^{L} \left(1 - \frac{1}{\sqrt{M_l}}\right) \cdot \operatorname{erfc}\left(\frac{\pi_l \lambda_l}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}}\right) + \mu\left(\sum\limits_{l=1}^{L} \pi_l^2 - L\right) \xrightarrow[\pi_l, \mu]{} \min$$



## Power allocation: Verified Solution

Possibility 1 Mix analytical and numerical techniques Stationary points: From the nonlinear algebraic system

$$\begin{aligned} \frac{\partial J(\pi_1 \dots \pi_L, \mu)}{\partial \pi_l} &= -\frac{2k_l}{\sqrt{\pi}} \left( c_l \lambda_l e^{-c_l^2 \lambda_l^2 \pi_l^2} \right) + 2\mu \pi_l = 0, \quad \sum_{l=1}^L \pi_l^2 - L = 0 \\ \text{with } k_l &= \frac{2}{\sum\limits_{l=1}^L \log_2 M_l} \cdot \left( 1 - \frac{1}{\sqrt{M_l}} \right) > 0, \ c_l &= \frac{1}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}} > 0 \end{aligned}$$

Solve using software with result verification  $\rightsquigarrow$ 

C-XSC www2.math.uni-wuppertal.de/wrswt/xsc/cxsc.html

The (bordered) Hessian can be shown to be built in such a way that a stationary point is a local minimum!

Possibility 2 Use global optimization directly (e.g., in C-XSC)

Possibility 2 is usually more afflicted by overestimation!



| Introduction | Guaranteed BER Minimization | $(4 \times 4)$ MIMO | GMD | Conclusions |
|--------------|-----------------------------|---------------------|-----|-------------|
| 000000       | 0000000                     | 000                 | 0   | 0           |
|              |                             |                     |     |             |

Overestimation: A MIMO Link with Four Antennas, Four Active Layers (L = 4)

 $\begin{array}{ll} \mbox{MIMO: Frequency flat, $n_{\rm T}=n_{\rm R}=4$, $T=8$ bit/s/Hz, $P_s=1$ W} \\ \mbox{A data set with $\lambda_1\approx 1.903$, $\lambda_2\approx 0.624$, $\lambda_3\approx 0.212$, $\lambda_4\approx 0.0692$ \\ \mbox{Strong correlation: $\vartheta\approx 0.036$ \\ \mbox{Results for optimal $\pi_i^2$ at SNR of 10 dB ($\sigma\approx 0.2236$)$ \\ \mbox{Possibility 2: $\pi_1^2\in [0.5884, 0.5886]$, $\pi_2^2\in [1.9511, 1.9513]$, $$\pi_1^3\in [1.3002, 1.3005]$, $$\pi_4^2\in [0.15, 0.17]$ \\ \mbox{Possibility 1: $$\pi_1^2\in 0.588503196_1^9$, $$\pi_2^2\in 1.9511663_5^7$, } \end{array}$ 

 $\pi_1^3 \in 1.30033103_3^6, \pi_4^2 \in 0.159999408_8^9$ 



| Introduction | Guaranteed BER Minimization | $(4 \times 4)$ MIMO | GMD | Conclusions |
|--------------|-----------------------------|---------------------|-----|-------------|
| 000000       | 0000000                     | 000                 | 0   | 0           |

## The Bordered Hessian

$$\begin{pmatrix} 0 & 2\pi_1 & \cdots & 2\pi_L \\ 2\pi_1 & 2\mu + \frac{4k_1c_1^3\lambda_1^3}{\sqrt{\pi}}\pi_1 e^{-c_1^2\lambda_1^2\pi_1^2} & \cdots & 0 \\ 2\pi_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 2\pi_L & 0 & \cdots & 2\mu + \frac{4k_Lc_L^3\lambda_L^3}{\sqrt{\pi}}\pi_L e^{-c_L^2\lambda_L^2\pi_L^2} \end{pmatrix}$$
$$\frac{\partial^2 J}{\partial \pi_l \partial \pi_m} = 0 \text{ for } l \neq m, , \mu > 0 \text{ from } \frac{\partial J(\pi_1 \dots \pi_L, \mu)}{\partial \pi_l} = 0 \rightsquigarrow \frac{\partial^2 J}{\partial \pi_l^2} > 0 \\ (l+1) \times (l+1) : \qquad \begin{vmatrix} 0 & a_1 & \cdots & a_l \\ a_1 & d_1 & \cdots & 0 \\ \vdots & \ddots \\ a_l & 0 & \cdots & d_l \end{vmatrix} = -\sum_{i=1}^l \left( a_i^2 \prod_{k=1, k \neq i}^l d_k \right) < 0 \\ \\ \sim \text{ a local minimum in } (\pi_1 \dots \pi_L); \text{ unique solution } \sim \text{ globality}$$



| Introduction | Guaranteed BER Minimization | (4 	imes 4) MIMO | GMD | Conclusions |
|--------------|-----------------------------|------------------|-----|-------------|
| 000000       | 00000000                    | 000              | 0   | 0           |
|              |                             |                  |     |             |

### Power Allocation: A Special Case (1)

Special case: L = 2 and  $M_1 = M_2 = M$   $(\lambda_1 > \lambda_2 \text{ as usual})$ The system:  $k = \frac{1}{\log_2 M} \cdot \left(1 - \frac{1}{\sqrt{M}}\right)$ ,  $c = \frac{1}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M-1)}}$   $\frac{\partial J}{\partial \pi_1} = \frac{2k}{\sqrt{\pi}} \left(-c\lambda_1 e^{-c^2\lambda_1^2 \pi_1^2}\right) + 2\mu\pi_1 = 0$   $\frac{\partial J}{\partial \pi_2} = \frac{2k}{\sqrt{\pi}} \left(-c\lambda_2 e^{-c^2\lambda_2^2 \pi_2^2}\right) + 2\mu\pi_2 = 0$  $\frac{\partial J}{\partial \mu} = \pi_1^2 + \pi_2^2 - 2 = 0$ 

can be reduced to 
$$\pi_1 = \frac{\lambda_1}{\lambda_2} e^{-c^2 \left(\pi_1^2 (\lambda_1^2 + \lambda_2^2) - 2\lambda_2^2\right)} \cdot \sqrt{2 - \pi_1^2}$$
  
Not optimal: Choosing  $\frac{\pi_1}{\pi_2} = \frac{\lambda_2}{\lambda_1} \left(\pi_1 = \lambda_2 \sqrt{\frac{2}{\lambda_1^2 + \lambda_2^2}}\right)$ 

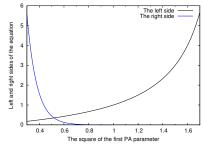


| Introduction | Guaranteed BER Minimization | $(4 \times 4)$ MIMO | GMD | Conclusions |
|--------------|-----------------------------|---------------------|-----|-------------|
| 000000       | 00000000                    | 000                 | 0   | 0           |
|              |                             |                     |     |             |

## Power Allocation: A Special Case (2)

The intersection of a hyperbola and an exponential function

$$-1 + \frac{2}{2-x} = \left(\frac{\lambda_1}{\lambda_2}\right)^2 \kappa_1 e^{-\kappa_2 x}$$
  
with  $\kappa_1 = e^{4c^2\lambda_2^2}$  and  $\kappa_2 = 2c^2(\lambda_1^2 + \lambda_2^2)$ .  
Solution:  $x \in (0, 2)$  (unique with e.g. Banach's theorem)  
Example:  $\lambda_1 = 4.341226$ ,  $\lambda_2 = 2.178729$ ,  $M = 16$ ,  $\pi_1^2 \approx 0.51$ 

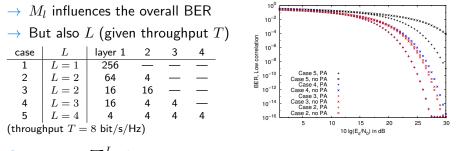




| Introduction | Guaranteed BER Minimization | $(4 \times 4)$ MIMO | GMD | Conclusions |
|--------------|-----------------------------|---------------------|-----|-------------|
| 000000       | 0000000                     | 000                 | 0   | 0           |

## Bit allocation

$$\mathsf{BER:} \ P_b = \frac{2}{\sum\limits_{l=1}^{L} \log_2 M_l} \sum\limits_{l=1}^{L} \left( 1 - \frac{1}{\sqrt{M_l}} \right) \cdot \mathsf{erfc}\left( \frac{\lambda_l}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}} \right)$$



Constraint:  $\sum_{l=1}^{L} \log_2 M_l = T$ Solution: Brute force for small T and  $\hat{H}$ 

n: Brute force for small T and  $\hat{L}$  possible (+ power allocation)!

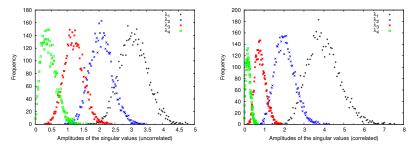


| Introduction | Guaranteed BER Minimization | $(4 \times 4)$ MIMO | GMD | Conclusions |
|--------------|-----------------------------|---------------------|-----|-------------|
| 000000       | 0000000                     | •00                 | 0   | 0           |

Example: A MIMO Link with Four Antennas

#### Simulation Settings

MIMO: Frequency flat,  $n_{\rm T} = n_{\rm R} = 4$ , T = 8 bit/s/Hz,  $P_s = 1 \text{ W}$ Two data sets with 5000 channel realizations each for correlated and uncorrelated case (simulated)



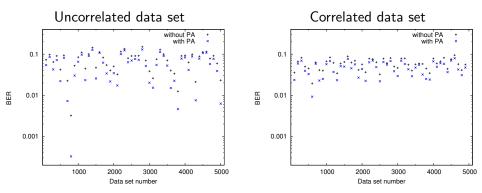
Results for the SNR 10 dB (corresponding to  $\sigma \approx 0.2236$ )



| Introduction | Guaranteed BER Minimization | $(4 \times 4)$ MIMO | GMD | Conclusions |
|--------------|-----------------------------|---------------------|-----|-------------|
| 000000       | 0000000                     | 000                 | 0   | 0           |
|              |                             |                     |     |             |

## Power Allocation for Four Active Layers (L = 4)

Case 
$$M_1 = 4$$
,  $M_2 = 4$ ,  $M_3 = 4$ ,  $M_4 = 4$ 



#### BER is reduced for each constellation of sigular values!



| oduction Guaran | teed BER Minimization ( | $(4 \times 4)$ MIMO | GMD | Conclusions |
|-----------------|-------------------------|---------------------|-----|-------------|
| 0000 0000       | 0000 <b>C</b>           | 00                  | 0   | 0           |

## Bit Allocation for a $(4 \times 4)$ MIMO System

### $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \lambda_4 \longrightarrow M_1 \ge M_2 \ge M_3 \ge M_4$

([lowest, highest] BER for 5000 channel realizations)

|                    | Layer                         | BER                           | BER-PA                       | BER                              | BER-PA                          |
|--------------------|-------------------------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|
|                    | $M_1$ , $M_2$ , $M_3$ , $M_4$ | (correlated)                  | (correlated)                 | (uncorrelated)                   | (uncorrelated)                  |
| One active layer   |                               |                               |                              |                                  |                                 |
| 1                  | 256, 0, 0, 0                  | [0.0023,0.1492]               | the same                     | [0.0240, 0.13423]                | the same                        |
|                    |                               |                               | Two active layers            |                                  |                                 |
| 2                  | 128, 2, 0, 0                  | [0.0022,0.1449]               | [0.0001,0.1220]              | [0.0232, 0.1304]                 | [0.0059, 0.1036]                |
| 3                  | 64, 4, 0, 0                   | [55·10 <sup>-6</sup> ,0.1103] | [4·10 <sup>-6</sup> ,0.0959] | [0.0044, 0.0928]                 | [0.0007, 0.0749]                |
| 4                  | 32, 8, 0, 0                   | $[10.10^{-7}, 0.0808]$        | [2·10 <sup>-7</sup> ,0.0773] | [0.0002, 0.0599]                 | [0.0001, 0.0556]                |
| 5                  | 16, 16, 0, 0                  | [40·10 <sup>-7</sup> ,0.1092] | [3·10 <sup>-7</sup> ,0.0981] | [1.4·10 <sup>-4</sup> , 0.06710] | [1.1·10 <sup>-4</sup> , 0.0589] |
|                    |                               |                               | Three active layers          |                                  |                                 |
| 6                  | 64, 2, 2, 0                   | [8·10 <sup>-4</sup> ,0.1279]  | [8·10 <sup>-6</sup> ,0.1002] | [0.0127, 0.1121]                 | [0.0009, 0.0771]                |
| 7                  | 32, 4, 2, 0                   | [12·10 <sup>—6</sup> ,0.0926] | [2·10 <sup>—6</sup> ,0.0775] | [0.0015, 0.0739]                 | [6·10 <sup>-5</sup> , 0.0533]   |
| 8                  | 16, 8, 2, 0                   | [11·10 <sup>-6</sup> ,0.1006] | [5·10 <sup>-6</sup> ,0.0936] | [0.0001, 0.06417]                | [2·10 <sup>-5</sup> , 0.0584]   |
| 9                  | 16, 4, 4, 0                   | [11·10 <sup>-5</sup> ,0.1015] | [1·10 <sup>-5</sup> ,0.0972] | [9·10 <sup>−5</sup> , 0.0850]    | [1·10 <sup>-5</sup> , 0.0785]   |
| 10                 | 8, 8, 4, 0                    | [0.0001,0.1429]               | [7·10 <sup>-5</sup> ,0.1282] | [2·10 <sup>-5</sup> , 0.1048]    | [1·10 <sup>-5</sup> , 0.0916]   |
| Four active layers |                               |                               |                              |                                  |                                 |
| 11                 | 32, 2, 2, 2                   | [0.0106,0.1532]               | [0.0032,0.1255]              | [0.0073, 0.1426]                 | [0.0005, 0.1129]                |
| 12                 | 16, 4, 2, 2                   | [0.0071,0.1252]               | [0.0023,0.1181]              | [0.0006, 0.1099]                 | [7·10 <sup>-5</sup> , 0.1010]   |
| 13                 | 8, 4, 4, 2                    | [0.0109,0.1665]               | [0.0038,0.1529]              | [7·10 <sup>-5</sup> , 0.1419]    | [4·10 <sup>-5</sup> , 0.1344]   |
| 14                 | 4, 4, 4, 4                    | [0.0414,0.2180]               | [0.0228,0.2028]              | [0.0014, 0.1909]                 | [0.0002, 0.1785]                |





E. Auer, A. Ahrens

Result Verification for MIMO Systems

| Introduction | Guaranteed BER Minimization | $(4 \times 4)$ MIMO | GMD | Conclusions |
|--------------|-----------------------------|---------------------|-----|-------------|
| 000000       | 00000000                    | 000                 | •   | 0           |
|              |                             |                     |     |             |

## Interference Suppression – Another Approach

- received signal  $ec{y}$
- $\begin{array}{ccc} & \rightarrow & \vec{a} & \text{transmitted signal} \\ \hline \vec{y} = H \cdot \vec{a} + \vec{n} & \rightarrow & \vec{n} & \text{noise} \end{array}$



 $\rightarrow h_{ii}$  the fading coefficient between *i*th rec. / *i*th trans. antenna

Until now SVD:  $\Sigma \vec{a} + \vec{w}$  with  $\Sigma = diag(\sqrt{\xi_1}, \dots, \sqrt{\xi_{\hat{t}}})$ 

Pre-/Postprocessing:  $\vec{z} = V\vec{a}, \ \vec{u} := U^{\dagger}\vec{z} = U^{\dagger} (U\Sigma V^{\dagger}) V\vec{a} + U^{\dagger}\vec{n} = \Sigma\vec{a} + \vec{w}$ 

 $\rightarrow u_l = \lambda_l a_l + w_l$ ,  $\hat{L}$  independent SISO links with (unequal)  $\lambda_l = \sqrt{\xi_l}$ Another possibility: GMD Decompose into  $\hat{L}$  identical subchannels!

$$ightarrow \hat{u}_l = \hat{\lambda}_l a_l + \hat{w}_l$$
 with  $\hat{\lambda}_l = \sqrt[L]{\left(\prod_{i=1}^L \lambda_l
ight)}$  ,  $L=?$ 

 $\rightarrow$  Asymptotically optimal for high SNR (channel throughput, BER)  $\rightarrow$  Supposedly no trade-off between the capacity and BER E. Auer, A. Ahrens

| Introduction | Guaranteed BER Minimization | (4 	imes 4) MIMO | GMD | Conclusions |
|--------------|-----------------------------|------------------|-----|-------------|
| 000000       | 0000000                     | 000              | 0   | •           |

# Conclusions

### Results:

- $\rightarrow\,$  Problem solved by a mixed analytical/numerical technique with result verification
- $\rightarrow\,$  At least the weakest layer should be switched off
- $\rightarrow\,$  For correlated systems, resource allocation plays an especially important role
- ightarrow Best performance for two active layers

### Future work:

- $\rightarrow$  Analyse the influence of the noise ( $\sigma$ )
- $\rightarrow\,$  Use GMD instead of SVD for obtaining equal weights does the performance improve?

### Thank you for your attention!

