
Uses of Methods with Result Verification for Dealing with Uncertainty during MIMO Modeling and Simulation Process

Ekaterina Auer and Andreas Ahrens

University of Applied Sciences Wismar

July 1, 2022

Result Verification for MIMO Systems

Introduction	
00000	

Result Verification: Applications

Computer assisted proofs

 Smale's 14th: Do the properties of the Lorenz attractor exhibit that of a strange attractor?
 Answer: Yes, proved by W. Tucker in 2002 with intervals

Other application areas

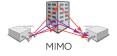
- \rightarrow Computer graphics [Luther,Stolfi]
- \rightarrow Finance/decision-making [Hu,Tsao]
- → Imprecise probability [Kreinovich, Ferson]

Main area: Engineering

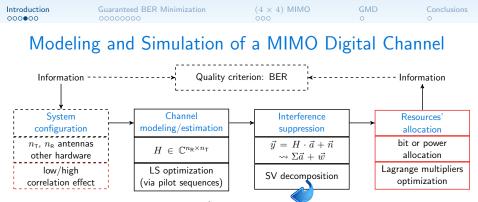
- → Robotics [Jaulin,Merlet]
- \rightarrow Chemical engineering [Stadtherr]
- → Particle accelerators [Makino,Berz]
- \rightarrow Control theory [Walter,Rauh]
- \rightarrow ... many more ...

And now: Wireless communications!

http://www.cs.utep.edu/interval-comp/



A positioner for the ESRF, Merlet


Introduction	Guaranteed BER Minimization	(4×4) MIMO	GMD	Conclusions
00000	0000000	000	0	0

Focus: MIMO (Multiple Input Multiple Output) Systems

Improve the channel capacity/integrity without increasing the channel bandwidth or the transmit power

Method:	Multiple data streams are transmitted on the same frequency band and at the same time
Separation:	Spatial, for example, multiple antennas at the transmitter and receiver side at different locations
Correlation effect:	Caused by the proximity of the multiple antennas; transmit-to-receive paths might become too similar!
Channel capacity:	The information theoretic limit on the bit ratio (BER)
BER:	The number of bits per second that can be transmitted through a physical channel error free

Interference suppression $\rightarrow \hat{L}$ independent, weighted SISO links (pre: $\vec{z} = V\vec{a}$, post: $\vec{u} := U^{\dagger}\vec{z} = U^{\dagger} (U\Sigma V^{\dagger}) V\vec{a} + U^{\dagger}\vec{n} = \Sigma\vec{a} + \vec{w}$) $u_l = \lambda_l a_l + w_l$ for $l = 1 \dots L$ (ideally non-interfering) Resources allocation: L number of activated layers, $P_s^{(l)}$ transmit power, M_l constellation size

Each stage might be affected by uncertainty and numerical errors!

Introduction	Guaranteed BER Minimization	(4 imes 4) MIMO	GMD	Conclusions
000000	0000000	000	0	0

Uncertainty

MIMO achieve high capacity gains under perfect channel state information

Imperfect knowledge might be due to

Channel estimation stage:

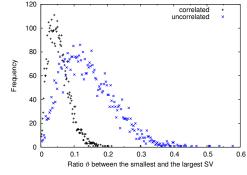
- $\rightarrow\,$ channel estimation error at the receiver
- \rightarrow limited feedback capability

Interference suppression/ Resources' allocation stages:

- $\rightarrow \lambda_l = \sqrt{\xi_l}$ errors in singular values of H
- $\rightarrow~\sigma^2$ uncertain noise variance at the receiver side

Usually treated by traditional UQ techniques

A combined treatment using verified techniques is possible



Good and Poor Scattering Conditions: Uncorrelated and Correlated Channel Realizations

Weights λ_l are not equal

Proximity might make this stronger! Indicator: $\vartheta = \frac{\text{the smallest }\lambda}{\text{the largest }\lambda}$

Illustration for a (4×4) MIMO channel (5000 realizations each):

E. Auer, A. Ahrens Result Verification for MIMO Systems

Introduction	Guaranteed BER Minimization	(4×4) MIMO	GMD	Conclusions
000000	0000000	000	0	0

Enclosing the BER for Uncertain Parameters

$$\mathsf{BER} \ P_b = \frac{2}{\sum\limits_{l=1}^{L} \log_2 M_l} \sum\limits_{l=1}^{L} \left(1 - \frac{1}{\sqrt{M_l}} \right) \cdot \mathsf{erfc} \left(\frac{\lambda_l}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}} \right)$$

Task: Minimize the BER for uncertain $\lambda_l \in [\underline{\lambda}_l, \overline{\lambda}_l]$, $\sigma \in [\underline{\sigma}, \overline{\sigma}]$

 \rightarrow Minimize the upper bound!

Bound:
$$\frac{2}{\sum_{l=1}^{L} \log_2 M_l} \sum_{l=1}^{L} \left(1 - \frac{1}{\sqrt{M_l}} \right) \cdot \operatorname{erfc}\left(\frac{\underline{\lambda}_l}{2\overline{\sigma}} \sqrt{\frac{3P_s}{L(M_l - 1)}} \right)$$

Minimize wrt. $P_s^{(l)}$ (\rightsquigarrow power allocation) and L, M_l (\rightsquigarrow bit allocation) Power allocation: Largange multipliers + software with result verification Bit allocation: Non-linear mixed-integer programming problem + software with result verification + power allocation

Introduction	Guaranteed BER Minimization	(4×4) MIMO	GMD	Conclusions
000000	0000000	000	0	0

Power allocation: Problem Formulation

Idea: Assign more power to the layers with small weights! (L, M_l fixed)

$$\rightarrow P_s^{(l)} = \frac{P_s}{L}$$
 (equally distributed) $\rightsquigarrow \pi_l^2 \cdot P_s^{(l)}$ so that $\sum_{l=1}^L \pi_l^2 \cdot P_s^{(l)} = P_s$

Method: Constrained optimization with Lagrange multipliers

$$J(\pi_1 \dots \pi_L, \mu) = \frac{2}{\sum\limits_{l=1}^{L} \log_2 M_l} \sum\limits_{l=1}^{L} \left(1 - \frac{1}{\sqrt{M_l}}\right) \cdot \operatorname{erfc}\left(\frac{\pi_l \lambda_l}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}}\right) + \mu\left(\sum\limits_{l=1}^{L} \pi_l^2 - L\right) \xrightarrow[\pi_l, \mu]{} \min$$

Power allocation: Verified Solution

Possibility 1 Mix analytical and numerical techniques Stationary points: From the nonlinear algebraic system

$$\begin{aligned} \frac{\partial J(\pi_1 \dots \pi_L, \mu)}{\partial \pi_l} &= -\frac{2k_l}{\sqrt{\pi}} \left(c_l \lambda_l e^{-c_l^2 \lambda_l^2 \pi_l^2} \right) + 2\mu \pi_l = 0, \quad \sum_{l=1}^L \pi_l^2 - L = 0 \\ \text{with } k_l &= \frac{2}{\sum\limits_{l=1}^L \log_2 M_l} \cdot \left(1 - \frac{1}{\sqrt{M_l}} \right) > 0, \ c_l &= \frac{1}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}} > 0 \end{aligned}$$

Solve using software with result verification \rightsquigarrow

C-XSC www2.math.uni-wuppertal.de/wrswt/xsc/cxsc.html

The (bordered) Hessian can be shown to be built in such a way that a stationary point is a local minimum!

Possibility 2 Use global optimization directly (e.g., in C-XSC)

Possibility 2 is usually more afflicted by overestimation!

Introduction	Guaranteed BER Minimization	(4×4) MIMO	GMD	Conclusions
000000	0000000	000	0	0

Overestimation: A MIMO Link with Four Antennas, Four Active Layers (L = 4)

 $\begin{array}{ll} \mbox{MIMO: Frequency flat, $n_{\rm T}=n_{\rm R}=4$, $T=8$ bit/s/Hz, $P_s=1$ W} \\ \mbox{A data set with $\lambda_1\approx 1.903$, $\lambda_2\approx 0.624$, $\lambda_3\approx 0.212$, $\lambda_4\approx 0.0692$ \\ \mbox{Strong correlation: $\vartheta\approx 0.036$ \\ \mbox{Results for optimal π_i^2 at SNR of 10 dB ($\sigma\approx 0.2236$)$ \\ \mbox{Possibility 2: $\pi_1^2\in [0.5884, 0.5886]$, $\pi_2^2\in [1.9511, 1.9513]$, $$\pi_1^3\in [1.3002, 1.3005]$, $$\pi_4^2\in [0.15, 0.17]$ \\ \mbox{Possibility 1: $$\pi_1^2\in 0.588503196_1^9$, $$\pi_2^2\in 1.9511663_5^7$, } \end{array}$

 $\pi_1^3 \in 1.30033103_3^6, \pi_4^2 \in 0.159999408_8^9$

Introduction	Guaranteed BER Minimization	(4×4) MIMO	GMD	Conclusions
000000	0000000	000	0	0

The Bordered Hessian

$$\begin{pmatrix} 0 & 2\pi_1 & \cdots & 2\pi_L \\ 2\pi_1 & 2\mu + \frac{4k_1c_1^3\lambda_1^3}{\sqrt{\pi}}\pi_1 e^{-c_1^2\lambda_1^2\pi_1^2} & \cdots & 0 \\ 2\pi_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 2\pi_L & 0 & \cdots & 2\mu + \frac{4k_Lc_L^3\lambda_L^3}{\sqrt{\pi}}\pi_L e^{-c_L^2\lambda_L^2\pi_L^2} \end{pmatrix}$$
$$\frac{\partial^2 J}{\partial \pi_l \partial \pi_m} = 0 \text{ for } l \neq m, , \mu > 0 \text{ from } \frac{\partial J(\pi_1 \dots \pi_L, \mu)}{\partial \pi_l} = 0 \rightsquigarrow \frac{\partial^2 J}{\partial \pi_l^2} > 0 \\ (l+1) \times (l+1) : \qquad \begin{vmatrix} 0 & a_1 & \cdots & a_l \\ a_1 & d_1 & \cdots & 0 \\ \vdots & \ddots \\ a_l & 0 & \cdots & d_l \end{vmatrix} = -\sum_{i=1}^l \left(a_i^2 \prod_{k=1, k \neq i}^l d_k \right) < 0 \\ \\ \sim \text{ a local minimum in } (\pi_1 \dots \pi_L); \text{ unique solution } \sim \text{ globality}$$

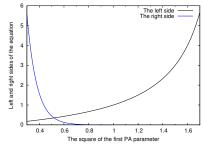
Introduction	Guaranteed BER Minimization	(4 imes 4) MIMO	GMD	Conclusions
000000	00000000	000	0	0

Power Allocation: A Special Case (1)

Special case: L = 2 and $M_1 = M_2 = M$ $(\lambda_1 > \lambda_2 \text{ as usual})$ The system: $k = \frac{1}{\log_2 M} \cdot \left(1 - \frac{1}{\sqrt{M}}\right)$, $c = \frac{1}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M-1)}}$ $\frac{\partial J}{\partial \pi_1} = \frac{2k}{\sqrt{\pi}} \left(-c\lambda_1 e^{-c^2\lambda_1^2 \pi_1^2}\right) + 2\mu\pi_1 = 0$ $\frac{\partial J}{\partial \pi_2} = \frac{2k}{\sqrt{\pi}} \left(-c\lambda_2 e^{-c^2\lambda_2^2 \pi_2^2}\right) + 2\mu\pi_2 = 0$ $\frac{\partial J}{\partial \mu} = \pi_1^2 + \pi_2^2 - 2 = 0$

can be reduced to
$$\pi_1 = \frac{\lambda_1}{\lambda_2} e^{-c^2 \left(\pi_1^2 (\lambda_1^2 + \lambda_2^2) - 2\lambda_2^2\right)} \cdot \sqrt{2 - \pi_1^2}$$

Not optimal: Choosing $\frac{\pi_1}{\pi_2} = \frac{\lambda_2}{\lambda_1} \left(\pi_1 = \lambda_2 \sqrt{\frac{2}{\lambda_1^2 + \lambda_2^2}}\right)$



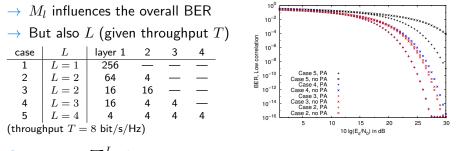
Introduction	Guaranteed BER Minimization	(4×4) MIMO	GMD	Conclusions
000000	00000000	000	0	0

Power Allocation: A Special Case (2)

The intersection of a hyperbola and an exponential function

$$-1 + \frac{2}{2-x} = \left(\frac{\lambda_1}{\lambda_2}\right)^2 \kappa_1 e^{-\kappa_2 x}$$

with $\kappa_1 = e^{4c^2\lambda_2^2}$ and $\kappa_2 = 2c^2(\lambda_1^2 + \lambda_2^2)$.
Solution: $x \in (0, 2)$ (unique with e.g. Banach's theorem)
Example: $\lambda_1 = 4.341226$, $\lambda_2 = 2.178729$, $M = 16$, $\pi_1^2 \approx 0.51$



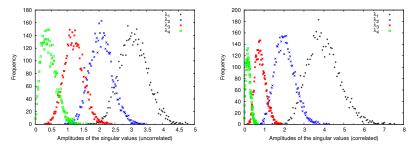
Introduction	Guaranteed BER Minimization	(4×4) MIMO	GMD	Conclusions
000000	0000000	000	0	0

Bit allocation

$$\mathsf{BER:} \ P_b = \frac{2}{\sum\limits_{l=1}^{L} \log_2 M_l} \sum\limits_{l=1}^{L} \left(1 - \frac{1}{\sqrt{M_l}} \right) \cdot \mathsf{erfc}\left(\frac{\lambda_l}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}} \right)$$

Constraint: $\sum_{l=1}^{L} \log_2 M_l = T$ Solution: Brute force for small T and \hat{H}

n: Brute force for small T and \hat{L} possible (+ power allocation)!

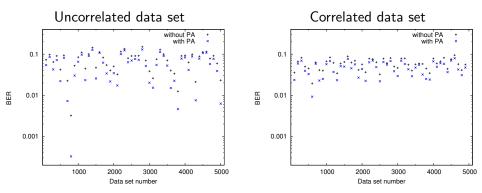


Introduction	Guaranteed BER Minimization	(4×4) MIMO	GMD	Conclusions
000000	0000000	•00	0	0

Example: A MIMO Link with Four Antennas

Simulation Settings

MIMO: Frequency flat, $n_{\rm T} = n_{\rm R} = 4$, T = 8 bit/s/Hz, $P_s = 1 \text{ W}$ Two data sets with 5000 channel realizations each for correlated and uncorrelated case (simulated)


Results for the SNR 10 dB (corresponding to $\sigma \approx 0.2236$)

Introduction	Guaranteed BER Minimization	(4×4) MIMO	GMD	Conclusions
000000	0000000	000	0	0

Power Allocation for Four Active Layers (L = 4)

Case
$$M_1 = 4$$
, $M_2 = 4$, $M_3 = 4$, $M_4 = 4$

BER is reduced for each constellation of sigular values!

oduction Guaran	teed BER Minimization ((4×4) MIMO	GMD	Conclusions
0000 0000	0000 C	00	0	0

Bit Allocation for a (4×4) MIMO System

$\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \lambda_4 \longrightarrow M_1 \ge M_2 \ge M_3 \ge M_4$

([lowest, highest] BER for 5000 channel realizations)

	Layer	BER	BER-PA	BER	BER-PA
	M_1 , M_2 , M_3 , M_4	(correlated)	(correlated)	(uncorrelated)	(uncorrelated)
One active layer					
1	256, 0, 0, 0	[0.0023,0.1492]	the same	[0.0240, 0.13423]	the same
			Two active layers		
2	128, 2, 0, 0	[0.0022,0.1449]	[0.0001,0.1220]	[0.0232, 0.1304]	[0.0059, 0.1036]
3	64, 4, 0, 0	[55·10 ⁻⁶ ,0.1103]	[4·10 ⁻⁶ ,0.0959]	[0.0044, 0.0928]	[0.0007, 0.0749]
4	32, 8, 0, 0	$[10.10^{-7}, 0.0808]$	[2·10 ⁻⁷ ,0.0773]	[0.0002, 0.0599]	[0.0001, 0.0556]
5	16, 16, 0, 0	[40·10 ⁻⁷ ,0.1092]	[3·10 ⁻⁷ ,0.0981]	[1.4·10 ⁻⁴ , 0.06710]	[1.1·10 ⁻⁴ , 0.0589]
			Three active layers		
6	64, 2, 2, 0	[8·10 ⁻⁴ ,0.1279]	[8·10 ⁻⁶ ,0.1002]	[0.0127, 0.1121]	[0.0009, 0.0771]
7	32, 4, 2, 0	[12·10 ^{—6} ,0.0926]	[2·10 ^{—6} ,0.0775]	[0.0015, 0.0739]	[6·10 ⁻⁵ , 0.0533]
8	16, 8, 2, 0	[11·10 ⁻⁶ ,0.1006]	[5·10 ⁻⁶ ,0.0936]	[0.0001, 0.06417]	[2·10 ⁻⁵ , 0.0584]
9	16, 4, 4, 0	[11·10 ⁻⁵ ,0.1015]	[1·10 ⁻⁵ ,0.0972]	[9·10 ^{−5} , 0.0850]	[1·10 ⁻⁵ , 0.0785]
10	8, 8, 4, 0	[0.0001,0.1429]	[7·10 ⁻⁵ ,0.1282]	[2·10 ⁻⁵ , 0.1048]	[1·10 ⁻⁵ , 0.0916]
Four active layers					
11	32, 2, 2, 2	[0.0106,0.1532]	[0.0032,0.1255]	[0.0073, 0.1426]	[0.0005, 0.1129]
12	16, 4, 2, 2	[0.0071,0.1252]	[0.0023,0.1181]	[0.0006, 0.1099]	[7·10 ⁻⁵ , 0.1010]
13	8, 4, 4, 2	[0.0109,0.1665]	[0.0038,0.1529]	[7·10 ⁻⁵ , 0.1419]	[4·10 ⁻⁵ , 0.1344]
14	4, 4, 4, 4	[0.0414,0.2180]	[0.0228,0.2028]	[0.0014, 0.1909]	[0.0002, 0.1785]

E. Auer, A. Ahrens

Result Verification for MIMO Systems

Introduction	Guaranteed BER Minimization	(4×4) MIMO	GMD	Conclusions
000000	00000000	000	•	0

Interference Suppression – Another Approach

- received signal $ec{y}$
- $\begin{array}{ccc} & \rightarrow & \vec{a} & \text{transmitted signal} \\ \hline \vec{y} = H \cdot \vec{a} + \vec{n} & \rightarrow & \vec{n} & \text{noise} \end{array}$

 $\rightarrow h_{ii}$ the fading coefficient between *i*th rec. / *i*th trans. antenna

Until now SVD: $\Sigma \vec{a} + \vec{w}$ with $\Sigma = diag(\sqrt{\xi_1}, \dots, \sqrt{\xi_{\hat{t}}})$

Pre-/Postprocessing: $\vec{z} = V\vec{a}, \ \vec{u} := U^{\dagger}\vec{z} = U^{\dagger} (U\Sigma V^{\dagger}) V\vec{a} + U^{\dagger}\vec{n} = \Sigma\vec{a} + \vec{w}$

 $\rightarrow u_l = \lambda_l a_l + w_l$, \hat{L} independent SISO links with (unequal) $\lambda_l = \sqrt{\xi_l}$ Another possibility: GMD Decompose into \hat{L} identical subchannels!

$$ightarrow \hat{u}_l = \hat{\lambda}_l a_l + \hat{w}_l$$
 with $\hat{\lambda}_l = \sqrt[L]{\left(\prod_{i=1}^L \lambda_l
ight)}$, $L=?$

 \rightarrow Asymptotically optimal for high SNR (channel throughput, BER) \rightarrow Supposedly no trade-off between the capacity and BER E. Auer, A. Ahrens

Introduction	Guaranteed BER Minimization	(4 imes 4) MIMO	GMD	Conclusions
000000	0000000	000	0	•

Conclusions

Results:

- $\rightarrow\,$ Problem solved by a mixed analytical/numerical technique with result verification
- $\rightarrow\,$ At least the weakest layer should be switched off
- $\rightarrow\,$ For correlated systems, resource allocation plays an especially important role
- ightarrow Best performance for two active layers

Future work:

- \rightarrow Analyse the influence of the noise (σ)
- $\rightarrow\,$ Use GMD instead of SVD for obtaining equal weights does the performance improve?

Thank you for your attention!

