Design of Feedback Control for Discrete-Time Systems Based on Iterative LMIs Subject to Stochastic Noise

> Presented by:
> Robert Dehnert¹

Joint work with:
Michelle Rosik ${ }^{1}$, Sabine Lerch ${ }^{1}$, Andreas Rauh ${ }^{2}$, Bernd Tibken ${ }^{1}$
${ }^{1}$ Bergische Universität Wuppertal, Germany
${ }^{2}$ Carl von Ossietzky Universität Oldenburg, Germany
International Online Seminar on Interval Methods in Control
Engineering January 27, 2023

1. Problem statement

- Control system subject to stochastic noise
- Discrete-time observer-based state feedback

2. Fundamentals for the controller design

- Robust Lyapunov stability and D_{R} regions
- Generalization of the Lyapunov stability condition to stochastic noise

3. Developed LMI based algorithm

- Superposed iteration rule
- Optimization task

4. Example: Control of overhead traveling crane
5. Summary and Outlook

Control system subject to stochastic noise

w_{u}, w_{p}, w_{y} : stochastically independent standard normally distributed actuator noise, process noise and sensor noise
$G_{u, c}, G_{p, c}, G_{y}$: disturbance input matrices contain standard deviations

Objective: Design observer-based state feedback controller

Design observer based state feedback controller

1. Convert the nonlinear system to a quasilinear form, with

$$
\mathrm{x}[k]=\left(x_{1}[k], \ldots, x_{n}[k]\right)^{T}, \text { with } x_{i}[k]=\left[\underline{x}_{i}, \bar{x}_{i}\right], i=1, \ldots, n
$$

2. Discretization by first order explicit Euler approximation:

$$
A(\mathrm{x}[k])=A_{c}(\mathrm{x}[k]) T_{s}+I, \quad B(\mathrm{x}[k])=B_{c}(\mathrm{x}[k]) T_{S}, \ldots
$$

Design observer based state feedback controller

Augmented state space representation of the closed-loop $(r[k]=0)$:

Design observer based state feedback controller

Augmented state space representation of the closed-loop $(r[k]=0)$:
$z[k+1]=\underbrace{\left[\begin{array}{cc}A(x[k])-B(x[k]) K & B(x[k]) K \\ A(x[k])-A_{0}-\left(B(x[k])-B_{0}\right) K & A_{0}-H C-\left(B_{0}-B(x[k])\right) K\end{array}\right] z[k]}_{\mathcal{A}(x[k])}+\underbrace{\left[\begin{array}{ccc}B(x[k]) G_{u} & G_{p} & 0 \\ B(x[k]) G_{u} & G_{p} & -H G_{y}\end{array}\right]}_{\mathcal{G}(x[k])} w[k]$
with $z[k]=(x[k] \quad e[k])^{\mathrm{T}}$ where $e[k]=x[k]-\hat{x}[k]$ and $w[k]=\left(w_{u}[k] w_{p}[k] w_{y}[k]\right)^{\mathrm{T}}$
Objective: Determine observer gain H and controller gain K simultaneously

Quasilinear system:

$$
\begin{array}{rlrl}
z[k+1] & =\mathcal{A}(x[k]) z[k]+\mathcal{G}(x[k]) w[k] \quad \text { with } \quad x[k] & =\left(x_{1}[k], \ldots, x_{n}[k]\right)^{T} \\
y[k] & =\mathcal{C}_{z}[k] & x_{i}[k] & =\left[\underline{x}_{i}, \bar{x}_{i}\right], i=1, \ldots, n
\end{array}
$$

Idea: Polytopic representation of $\mathcal{A}(x[k])$ and $\mathcal{G}(x[k])$:
$[\mathcal{A}(x[k]), \mathcal{G}(x[k])] \in\left\{[\mathcal{A}(\xi), \mathcal{G}(\xi)]=\sum_{v=1}^{n_{v}} \xi_{v}\left[\mathcal{A}_{v}, \mathcal{G}_{v}\right] \mid \sum_{v=1}^{n_{v}} \xi_{v}=1, \xi_{v} \geq 0\right\}$

Quasilinear system:

$$
\begin{array}{rlrl}
z[k+1] & =\mathcal{A}(x[k]) z[k]+\mathcal{G}(x[k]) w[k] \quad \text { with } \quad x[k] & =\left(x_{1}[k], \ldots, x_{n}[k]\right)^{T} \\
y[k] & =\mathcal{C}_{z}[k] & x_{i}[k] & =\left[\underline{x}_{i}, \bar{x}_{i}\right], i=1, \ldots, n
\end{array}
$$

Idea: Polytopic representation of $\mathcal{A}(x[k])$ and $\mathcal{G}(x[k])$:

$$
[\mathcal{A}(x[k]), \mathcal{G}(x[k])] \in\left\{[\mathcal{A}(\xi), \mathcal{G}(\xi)]=\sum_{v=1}^{n_{v}} \xi_{v}\left[\mathcal{A}_{v}, \mathcal{G}_{v}\right] \mid \sum_{v=1}^{n_{v}} \xi_{v}=1, \xi_{v} \geq 0\right\}
$$

Example:
$A(x[k])=\left[\begin{array}{cc}x_{2} & 1 \\ 0 & 0.5+x_{2}^{2}\end{array}\right]=\left[\begin{array}{cc}x_{2} & 1 \\ 0 & \gamma\end{array}\right]$ with $x_{2} \in\left[\begin{array}{ll}-0.2 & 0.8\end{array}\right]$ and $\gamma \in\left[\begin{array}{ll}0.5 & 1.141\end{array}\right]$ $A(x[k]) \in$
$\xi_{1}\left[\begin{array}{cc}-0.2 & 1 \\ 0 & 0.5\end{array}\right]+\xi_{2}\left[\begin{array}{cc}0.8 & 1 \\ 0 & 0.5\end{array}\right]+$
$\xi_{3}\left[\begin{array}{cc}-0.2 & 1 \\ 0 & 1.14\end{array}\right]+\xi_{4}\left[\begin{array}{cc}0.8 & 1 \\ 0 & 1.14\end{array}\right]$

Quasilinear system:

$$
\begin{array}{rlrl}
z[k+1] & =\mathcal{A}(x[k]) z[k]+\mathcal{G}(x[k]) w[k] \quad \text { with } \quad x[k] & =\left(x_{1}[k], \ldots, x_{n}[k]\right)^{T}, \\
y[k] & =\mathcal{C} z[k] & x_{i}[k] & =\left[\underline{x}_{i}, \bar{x}_{i}\right], i=1, \ldots, n
\end{array}
$$

Idea: Polytopic representation of $\mathcal{A}(x[k])$ and $\mathcal{G}(x[k])$:

$$
[\mathcal{A}(x[k]), \mathcal{G}(x[k])] \in\left\{[\mathcal{A}(\xi), \mathcal{G}(\xi)]=\sum_{v=1}^{n_{v}} \xi_{v}\left[\mathcal{A}_{v}, \mathcal{G}_{v}\right] \mid \sum_{v=1}^{n_{v}} \xi_{v}=1, \xi_{v} \geq 0\right\}
$$

Example:

$$
A(x[k])=\left[\begin{array}{cc}
x_{2} & 1 \\
0 & 0.5+x_{2}^{2}
\end{array}\right]
$$

$$
A(x[k]) \in \xi_{1}\left[\begin{array}{cc}
-0.2 & 1 \\
0 & 0.54
\end{array}\right]
$$

$$
+\xi_{2}\left[\begin{array}{cc}
-0.1 & 1 \\
0 & 0.5
\end{array}\right]+\xi_{3}\left[\begin{array}{cc}
0.13 & 1 \\
0 & 0.5
\end{array}\right]
$$

$$
+\xi_{4}\left[\begin{array}{cc}
0.53 & 1 \\
0 & 0.7
\end{array}\right]+\xi_{5}\left[\begin{array}{cc}
0.8 & 1 \\
0 & 1.14
\end{array}\right]
$$

Robust Lyapunov stability and D_{R} regions (without noise $w[k]=0$; deterministic system)
Quadratic Lyapunov function candidate

$$
V(z[k])=\frac{1}{2} z^{\mathrm{T}}[k] P z[k] \quad \text { with } \quad P=P^{T}>0
$$

Is a free LMI-decision variable

If the Lyapunov condition

$$
\mathcal{A}(x[k])^{\mathrm{T}} P \mathcal{A}(x[k])-P<0
$$

with

$$
\mathcal{A}(x[k])=\left[\begin{array}{cc}
A(x[k])-B(x[k]) K & B(x[k]) K \\
A(x[k])-A_{0}-\left(B(x[k])-B_{0}\right) K & A_{0}-H C-\left(B_{0}-B(x[k])\right) K
\end{array}\right]
$$

is fulfilled:
augmented closed-loop system quadratically stable for all $x_{i}[k]=\left[\underline{x}_{i}, \bar{x}_{i}\right]$
Polytopic representation:
This is true, if $\mathcal{A}_{v}{ }^{\mathrm{T}} P \mathcal{A}_{v}-P<0$ with $v=1, \ldots, n_{v}$ are satisfied.

Robust Lyapunov stability and D_{R} regions (without noise $w[k]=0$; deterministic system)

Extension to robust D_{R} regions:

All eigenvalues of all extremal realizations
$\mathcal{A}_{v}, v=1, \ldots, n_{v}$ are located within
a circle with the midpoint α and radius r, if $\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} P\left(\mathcal{A}_{v}-\alpha I\right)-r^{2} P<0$ or equivalent

$$
\left[\begin{array}{cc}
P^{-1} & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

with $|\alpha|<1$ and $|\alpha|+r \leq 1$ are valid.

Generalization of the Lyapunov stability condition to stochastic noise (with noise $w[k] \neq 0$)

Stochastic noise affects $z[k+1]=\mathcal{A}_{v} z[k]+\mathcal{G}_{v} w[k]$, with

$$
\mathcal{A}_{v}=\left[\begin{array}{cc}
A_{v}-B_{v} K & B_{v} K \\
A_{v}-A_{0}-\left(B_{v}-B_{0}\right) K & A_{0}-H C-\left(B_{0}-B\right) K
\end{array}\right], \mathcal{G}_{v}=\left[\begin{array}{ccc}
B_{v} G_{u} & G_{p} & 0 \\
B_{v} G_{u} & G_{p} & -H G_{y}
\end{array}\right]
$$

It follows the discrete-time version of the Itô differential operator:

$$
L_{D}(V)=\frac{1}{2}\left(z^{\mathrm{T}}[k]\left(\mathcal{A}_{v}^{\mathrm{T}} P \mathcal{A}_{v}-P\right) z[k]+\operatorname{trace}\left(\mathcal{G}_{v}^{\mathrm{T}} P \mathcal{G}_{v}\right)\right)
$$

Derivable from the expectation value:

$$
\begin{aligned}
& E(\Delta V)=E\{V(z[k+1])-V(z[k])\} \\
& E(\Delta V)=E\left\{\frac{1}{2}\left(\left(z^{\mathrm{T}}[k] \mathcal{A}_{v}^{\mathrm{T}}+w^{\mathrm{T}}[k] \mathcal{G}_{v}^{\mathrm{T}}\right) P\left(\mathcal{A}_{v} z[k]+\mathcal{G}_{v} w[k]\right)-z^{\mathrm{T}}[k] P z[k]\right)\right\}
\end{aligned}
$$

Under assumptions: $w[k]$ and $z[k]$ stochastically independent; $w[k]$ is a zero mean process; variance of each noise process equals one

Robust Lyapunov stability and D_{R} regions (without noise $w[k]=0$; deterministic system)
Discrete- vs. continuous-time Lyapunov conditions for state feedback controller: $u=-K x$

Discrete-time (option 1):

$$
\left(A_{v}-B_{v} K\right)^{\mathrm{T}} P\left(A_{v}-B_{v} K\right)-P<0
$$

Schur-complement:

$$
\left[\begin{array}{cc}
P^{-1} & A_{v}-B_{v} K \\
\left(A_{v}-B_{v} K\right)^{\mathrm{T}} & P
\end{array}\right]>0
$$

Left/right multiplication with $\operatorname{diag}\left(I, P^{-1}\right)$, change of variables $\mathrm{Q}=P^{-1}, N=K P^{-1}$:

$$
\left[\begin{array}{cc}
Q & A_{v} Q-B_{v} N \\
\left(A_{v} Q-B_{v} N\right)^{\mathrm{T}} & Q
\end{array}\right]>0
$$

controller: $K=N Q^{-1}$

Continuous-time:

$$
\left(A_{v}-B_{v} K\right)^{\mathrm{T}} P+P\left(A_{v}-B_{v} K\right)<0
$$

Left/right multiplication with P^{-1} and change of variables $\mathrm{Q}=P^{-1}, N=K P^{-1}$:

$$
A_{v} Q+Q A_{v}^{\mathrm{T}}-B_{v} N-N^{\mathrm{T}} B_{v}^{\mathrm{T}}<0
$$

controller: $K=N Q^{-1}$

Robust Lyapunov stability and D_{R} regions (without noise $w[k]=0$; deterministic system)

Discrete- vs. continuous-time Lyapunov conditions for state feedback controller: $u=-K x$

Discrete-time (option 1):

$$
\left(A_{v}-B_{v} K\right)^{\mathrm{T}} P\left(A_{v}-B_{v} K\right)-P<0
$$

Schur-complement:

$$
\left[\begin{array}{cc}
P^{-1} & A_{v}-B_{v} K \\
\left(A_{v}-B_{v} K\right)^{\mathrm{T}} & P
\end{array}\right]>0
$$

Left/right multiplication with $\operatorname{diag}\left(I, P^{-1}\right)$, change of variables $\mathrm{Q}=P^{-1}, N=K P^{-1}$:

$$
\left[\begin{array}{cc}
Q & A_{v} Q-B_{v} N \\
\left(A_{v} Q-B_{v} N\right)^{\mathrm{T}} & Q
\end{array}\right]>0
$$

controller: $K=N Q^{-1}$

Discrete-time (option 2):

$$
\left[\begin{array}{cc}
P^{-1} & A_{v}-B_{v} K \\
\left(A_{v}-B_{v} K\right)^{\mathrm{T}} & P
\end{array}\right]>0
$$

Due to $P=P^{\mathrm{T}}>0$ the quadratic form

$$
\begin{aligned}
& (P-G)^{\mathrm{T}} P^{-1}(P-G) \geq 0 \\
& G^{\mathrm{T}} P^{-1} G \geq G+G^{\mathrm{T}}-P
\end{aligned}
$$

is always valid for any matrix G. This yields:

$$
\left[\begin{array}{cc}
P & A_{v} G-B_{v} N \\
\left(A_{v} G-B_{v} N\right)^{\mathrm{T}} & G+G^{\mathrm{T}}-P
\end{array}\right]>0
$$

controller: $K=N G^{-1}$

- K independent of P
- requires change of variables

Developed algorithm

Superposed iteration rule

$$
\left[\begin{array}{cc}
P^{-1} & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Consider the quadratic form

$$
(P-G)^{\mathrm{T}} P^{-1}(P-G) \geq 0
$$

Replace G by $\hat{P}=\hat{P}^{T}>0$ results in:

$$
\hat{P} P^{-1} \hat{P} \geq 2 \hat{P}-P
$$

Left/right multiplication with \hat{P}^{-1} yields:

$$
P^{-1} \geq 2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}=L \quad \square \quad\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Developed algorithm

Superposed iteration rule

$$
\left[\begin{array}{cc}
P^{-1} & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Consider the quadratic form

$$
(P-G)^{\mathrm{T}} P^{-1}(P-G) \geq 0
$$

Replace G by $\hat{P}=\hat{P}^{T}>0$ results in:

$$
\hat{P} P^{-1} \hat{P} \geq 2 \hat{P}-P
$$

Left/right multiplication with \hat{P}^{-1} yields:

$$
P^{-1} \geq 2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}=L \quad \square \quad\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Question: How to select \hat{P} for a unknown decision variables P, such that $P-\hat{P}$ is small?

Solution: update rule

$$
\hat{P}^{-1}=\left(P_{j-1}\right)^{-1}
$$

Aim: Convergence of L vs. P^{-1}, such that

$$
P^{-1}-L \approx 0
$$

Developed algorithm

Superposed iteration rule

$$
\left[\begin{array}{cc}
P^{-1} & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Consider the quadratic form

$$
(P-G)^{\mathrm{T}} P^{-1}(P-G) \geq 0
$$

Replace G by $\hat{P}=\hat{P}^{T}>0$ results in:

$$
\hat{P} P^{-1} \hat{P} \geq 2 \hat{P}-P
$$

Left/right multiplication with \hat{P}^{-1} yields:

$$
P^{-1} \geq 2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}=L \quad \square \quad\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Question: How to select \hat{P} for a unknown decision variables P, such that $P-\hat{P}$ is small?

Solution: update rule

$$
\hat{P}^{-1}=\left(P_{j-1}\right)^{-1}
$$

Aim: Convergence of L vs. P^{-1}, such that

$$
P^{-1}-L \approx 0
$$

Developed algorithm

Superposed iteration rule

$$
\left[\begin{array}{cc}
P^{-1} & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Consider the quadratic form

$$
(P-G)^{\mathrm{T}} P^{-1}(P-G) \geq 0
$$

Replace G by $\hat{P}=\hat{P}^{T}>0$ results in:

$$
\hat{P} P^{-1} \hat{P} \geq 2 \hat{P}-P
$$

Left/right multiplication with \hat{P}^{-1} yields:

$$
P^{-1} \geq 2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}=L \quad \square \quad\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Question: How to select \hat{P} for a unknown decision variables P, such that $P-\hat{P}$ is small?

Solution: update rule

$$
\hat{P}^{-1}=\left(P_{j-1}\right)^{-1}
$$

Aim: Convergence of L vs. P^{-1}, such that

$$
P^{-1}-L \approx 0
$$

Developed algorithm

Superposed iteration rule

$$
\left[\begin{array}{cc}
P^{-1} & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Consider the quadratic form

$$
(P-G)^{\mathrm{T}} P^{-1}(P-G) \geq 0
$$

Replace G by $\hat{P}=\hat{P}^{T}>0$ results in:

$$
\hat{P} P^{-1} \hat{P} \geq 2 \hat{P}-P
$$

Left/right multiplication with \hat{P}^{-1} yields:

$$
P^{-1} \geq 2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}=L \quad \square \quad\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Question: How to select \hat{P} for a unknown decision variables P, such that $P-\hat{P}$ is small?

Solution: update rule

$$
\hat{P}^{-1}=\left(P_{j-1}\right)^{-1}
$$

Aim: Convergence of L vs. P^{-1}, such that

$$
P^{-1}-L \approx 0
$$

Developed algorithm

Superposed iteration rule

$$
\left[\begin{array}{cc}
P^{-1} & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Consider the quadratic form

$$
(P-G)^{\mathrm{T}} P^{-1}(P-G) \geq 0
$$

Replace G by $\hat{P}=\hat{P}^{T}>0$ results in:

$$
\hat{P} P^{-1} \hat{P} \geq 2 \hat{P}-P
$$

Left/right multiplication with \hat{P}^{-1} yields:

$$
P^{-1} \geq 2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}=L \quad \square \quad\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Question: How to select \hat{P} for a unknown decision variables P, such that $P-\hat{P}$ is small?

Solution: update rule

$$
\hat{P}^{-1}=\left(P_{j-1}\right)^{-1}
$$

Aim: Convergence of L vs. P^{-1}, such that

$$
P^{-1}-L \approx 0
$$

Developed algorithm

Superposed iteration rule

$$
\left[\begin{array}{cc}
P^{-1} & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Consider the quadratic form

$$
(P-G)^{\mathrm{T}} P^{-1}(P-G) \geq 0
$$

Replace G by $\hat{P}=\hat{P}^{T}>0$ results in:

$$
\hat{P} P^{-1} \hat{P} \geq 2 \hat{P}-P
$$

Left/right multiplication with \hat{P}^{-1} yields:

$$
P^{-1} \geq 2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}=L \quad \square \quad\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Question: How to select \hat{P} for a unknown decision variables P, such that $P-\hat{P}$ is small?

Solution: update rule

$$
\hat{P}^{-1}=\left(P_{j-1}\right)^{-1}
$$

Aim: Convergence of L vs. P^{-1}, such that

$$
P^{-1}-L \approx 0
$$

Developed algorithm

Superposed iteration rule

$$
\left[\begin{array}{cc}
P^{-1} & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Consider the quadratic form

$$
(P-G)^{\mathrm{T}} P^{-1}(P-G) \geq 0
$$

Replace G by $\hat{P}=\hat{P}^{T}>0$ results in:

$$
\hat{P} P^{-1} \hat{P} \geq 2 \hat{P}-P
$$

Left/right multiplication with \hat{P}^{-1} yields:

$$
P^{-1} \geq 2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}=L \quad \square \quad\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Question: How to select \hat{P} for a unknown decision variables P, such that $P-\hat{P}$ is small?

Solution: update rule

$$
\hat{P}^{-1}=\left(P_{j-1}\right)^{-1}
$$

Aim: Convergence of L vs. P^{-1}, such that

$$
P^{-1}-L \approx 0
$$

Developed algorithm

Superposed iteration rule

$$
\left[\begin{array}{cc}
P^{-1} & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Consider the quadratic form

$$
(P-G)^{\mathrm{T}} P^{-1}(P-G) \geq 0
$$

Replace G by $\hat{P}=\hat{P}^{T}>0$ results in:

$$
\hat{P} P^{-1} \hat{P} \geq 2 \hat{P}-P
$$

Left/right multiplication with \hat{P}^{-1} yields:

$$
P^{-1} \geq 2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}=L \quad \square \quad\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

Question: How to select \hat{P} for a unknown decision variables P, such that $P-\hat{P}$ is small?

Solution: update rule

$$
\hat{P}^{-1}=\left(P_{j-1}\right)^{-1}
$$

Aim: Convergence of L vs. P^{-1}, such that

$$
P^{-1}-L \approx 0
$$

Superposed iteration rule (Stage 1)

Solution:

- Select constant α and $P_{0}=I$
- Select $|\alpha|+r>1$ in the first iteration
- Solve

$$
\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

with

$$
\begin{aligned}
& L=2 \widehat{P}^{-1}-\hat{P}^{-1} P \widehat{P}^{-1} \\
& \hat{P}^{-1}=\left(P_{j-1}\right)^{-1} \quad(j: \text { current iteration })
\end{aligned}
$$

$|\alpha|+r>1$: Closed-loop instable

Superposed iteration rule (Stage 1)

Solution:

- Select constant α and $P_{0}=I$
- Select $|\alpha|+r>1$ in the first iteration
- Solve

$$
\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

with

$$
\begin{aligned}
& L=2 \widehat{P}^{-1}-\widehat{P}^{-1} P \widehat{P}^{-1} \\
& \hat{P}^{-1}=\left(P_{j-1}\right)^{-1} \quad(j: \text { current iteration })
\end{aligned}
$$

$|\alpha|+r>1$: Closed-loop instable

Superposed iteration rule (Stage 1)

Solution:

- Select constant α and $P_{0}=I$
- Select $|\alpha|+r>1$ in the first iteration
- Solve

$$
\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

with

$$
\begin{aligned}
& L=2 \widehat{P}^{-1}-\widehat{P}^{-1} P \widehat{P}^{-1} \\
& \hat{P}^{-1}=\left(P_{j-1}\right)^{-1} \quad(j: \text { current iteration })
\end{aligned}
$$

$|\alpha|+r>1$: Closed-loop instable
$|\alpha|+r=1$: Closed-loop robust stable and all eigenvalues of \mathcal{A}_{v} are located in the circular D_{R} region

Superposed iteration rule (Stage 1)

Solution:

- Select constant α and $P_{0}=I$
- Select $|\alpha|+r>1$ in the first iteration
- Solve

$$
\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

with

$$
\begin{aligned}
& L=2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1} \\
& \hat{P}^{-1}=\left(P_{j-1}\right)^{-1} \quad(j: \text { current iteration })
\end{aligned}
$$

$|\alpha|+r>1$: Closed-loop instable
$|\alpha|+r=1$: Closed-loop robust stable and all eigenvalues of \mathcal{A}_{v} are located in the circular D_{R} region
$|\alpha|+r<1$: increased distance to stability margin

Realizable objectives:

- Convergence of the linearization
- Stabilization of the closed loop
- Tuning control behavior

Optimization task (Stage 2)

Discrete-time Itô differential operator:

$$
L_{D}(V)=\frac{1}{2}\left(z^{\mathrm{T}}[k]\left(\mathcal{A}_{v}^{\mathrm{T}} P \mathcal{A}_{v}-P\right) z[k]+\operatorname{trace}\left(\mathcal{G}_{v}^{\mathrm{T}} P \mathcal{G}_{v}\right)\right)
$$

If stochastic noise affects the closed-loop $z[k+1]=\mathcal{A}_{v} z[k]+\mathcal{G}_{v} w[k]$ (\mathcal{G}_{v} : non-zero)

- Maybe: $L_{D}(V) \geq 0$ in a neighborhood of $z[k]=0$
- Non-provable stability region with boundary $L_{D}(V)=0$
is the interior of the ellipsoids:

$$
z^{\mathrm{T}}[k]\left(\frac{-M_{v}}{\operatorname{trace}\left(\mathcal{G}_{v}^{\mathrm{T}} P \mathcal{G}_{v}\right)}\right) z[k]-1=0 \quad \text { with } \quad M_{v}=\mathcal{A}_{v}^{\mathrm{T}} P \mathcal{A}_{v}-P
$$

Decrease the non-provable stability region by minimizing the interior of the ellipsoids:

$$
J=\sum_{v=1}^{n_{v}} \frac{\operatorname{trace}\left(\mathcal{G}_{v}^{\mathrm{T}} P \mathcal{G}_{v}\right)}{\operatorname{det}\left(-M_{v}\right)}
$$

Optimization task (Stage 2)

Integration into superposed iteration rule:

$$
\min J=\sum_{v=1}^{n_{v}} \frac{\operatorname{trace}\left(\mathcal{G}_{v}^{\mathrm{T}} P \mathcal{G}_{v}\right)}{\operatorname{det}\left(-M_{v}\right)}
$$

subject to

$$
P>0,
$$

$$
\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0,
$$

$$
\min J=\sum_{v=1}^{n_{v}} \frac{\operatorname{trace}(N)}{\operatorname{det}\left(-\widehat{M}_{v}\right)}
$$

subject to

$$
\text { with } L=2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}
$$

$$
\begin{array}{r}
P>0, \\
N>0, \\
N>\mathcal{G}_{v}^{\mathrm{T}} P \mathcal{G}_{v}, \\
{\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0,} \\
\text { with } L=2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}, \\
\widehat{M}_{v}=\hat{\mathcal{A}}_{v}^{\mathrm{T}} \hat{P} \hat{\mathcal{A}}_{v}-\hat{P}
\end{array}
$$

Optimization task (Stage 2)

Integration into superposed iteration rule:

$$
\min J=\sum_{v=1}^{n_{v}} \frac{\operatorname{trace}\left(\mathcal{G}_{v}^{\mathrm{T}} P \mathcal{G}_{v}\right)}{\operatorname{det}\left(-M_{v}\right)}
$$

subject to

$$
P>0
$$

$$
\min J=\sum_{v=1}^{n_{v}} \frac{\operatorname{trace}(N)}{\operatorname{det}\left(-\widehat{M}_{v}\right)}
$$

subject to

$$
\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

$$
\text { with } L=2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}
$$

$$
\begin{array}{r}
P>0 \\
N>0 \\
{\left[\begin{array}{cc}
P^{-1} & \mathcal{G}_{v} \\
\mathcal{G}_{v}^{\mathrm{T}} & P
\end{array}\right] \geq\left[\begin{array}{cc}
L & \mathcal{G}_{v} \\
\mathcal{G}_{v}^{\mathrm{T}} & P
\end{array}\right]>0} \\
{\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0} \\
\text { with } L=2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}, \\
\hat{M}_{v}=\hat{\mathcal{A}}_{v}^{\mathrm{T}} \hat{P} \hat{\mathcal{A}}_{v}-\hat{P}
\end{array}
$$

Optimization task (Stage 2)

Integration into superposed iteration rule:

$$
\min J=\sum_{v=1}^{n_{v}} \frac{\operatorname{trace}\left(\mathcal{G}_{v}^{\mathrm{T}} P \mathcal{G}_{v}\right)}{\operatorname{det}\left(-M_{v}\right)}
$$

subject to

$$
P>0
$$

$$
\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

$$
\text { with } L=2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}
$$

Realizable objectives:

- Optimality of the observer and controller gain
- Closed loop insensitive against noise

convex optimization:

$$
\min J=\sum_{v=1}^{n_{v}} \frac{\operatorname{trace}(N)}{\operatorname{det}\left(-\widehat{M}_{v}\right)}
$$

subject to

$$
\begin{aligned}
& P>0 \\
& N>0
\end{aligned}
$$

$$
\left[\begin{array}{cc}
L & \mathcal{G}_{v} \\
\mathcal{G}_{v}^{T} & P
\end{array}\right]>0
$$

$$
\left[\begin{array}{cc}
L & \mathcal{A}_{v}-\alpha I \\
\left(\mathcal{A}_{v}-\alpha I\right)^{\mathrm{T}} & r^{2} P
\end{array}\right]>0
$$

$$
\text { with } L=2 \hat{P}^{-1}-\hat{P}^{-1} P \hat{P}^{-1}
$$

$$
\widehat{M}_{v}=\hat{\mathcal{A}}_{v}^{\mathrm{T}} \hat{P} \hat{\mathcal{A}}_{v}-\hat{P}
$$

Example: Control of overhead traveling crane

Modelling: Lagrange's equations of motion

Measurable outputs: $q=\left(\begin{array}{lll}x & \psi & l\end{array}\right)^{\mathrm{T}}$
Lagrange function:

$$
\Rightarrow \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=Q_{j}
$$

where
$Q_{j}=\left(\begin{array}{lll}F_{x}-F_{\mathrm{fc}} \dot{x} & -F_{\mathrm{fp}} \dot{\psi} & F_{l}-F_{\mathrm{fr}} \dot{l}\end{array}\right)^{\mathrm{T}}$

$L=E_{\text {kin }}-E_{\text {pot }}$
with
$E_{\mathrm{kin}}=\frac{1}{2} \dot{x}^{2}\left(m_{1}+m_{2}\right)+\frac{1}{2} \dot{l}^{2} m_{2}+\frac{1}{2} \dot{\psi}^{2} l^{2} m_{2}+\dot{x} \dot{l} m_{2} \sin (\psi)+\dot{x} \psi l m_{2} \cos (\psi)+\frac{1}{2} \theta \frac{\dot{l}^{2}}{R_{\mathrm{T}}^{2}}$
$E_{\mathrm{pot}}=-m_{2} \mathrm{~g} l \cos (\psi)$

System of differential equations

Modelling: Quasilinear representation

1. Simplifications for small angles:

$$
\sin (\psi)=\psi, \quad \cos (\psi)=1, \quad \dot{\psi}^{2}=0
$$

2. Introduce the state vector:

$$
x=\left(\begin{array}{llllll}
x & \dot{x} & \psi & \dot{\psi} & l & i
\end{array}\right)^{\mathrm{T}}
$$

3. Quasilinear form:

$$
\dot{x}=A_{c}(x) x+B_{c}(x) u
$$

$$
\text { with } A_{c}(x)=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -p_{1} & p_{2} & \frac{p_{3}}{x_{5}} & 0 & p_{4} x_{3} \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{p_{1}}{x_{5}} & \frac{p_{5}}{x_{5}} & \frac{p_{6}}{x_{5}^{2}} & 0 & -p_{4} \frac{x_{3}}{x_{5}}-2 \frac{x_{4}}{x_{5}} \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & p_{7} x_{3} & -p_{8} \frac{x_{4}}{x_{5}} & 0 & \frac{p_{9}}{x_{5}} & -p_{10}
\end{array}\right) \quad B_{c}(x)=\left(\begin{array}{cc}
0 & 0 \\
p_{11} & -p_{12} x_{3} \\
0 & 0 \\
-\frac{p_{11}}{x_{5}} & \frac{p_{12} x_{3}}{x_{5}} \\
0 & 0 \\
-p_{12} x_{3} & p_{13}
\end{array}\right)
$$

Modelling: Polytopic representation

4. States are constrained:

$$
x_{i}=\left[\underline{x}_{i}, \bar{x}_{i}\right], i=1, \ldots, 6
$$

5. Introduce independent parameters:
$\delta_{j}=\left[\underline{\delta}_{j}, \quad \bar{\delta}_{j}\right], \quad j=1, \ldots, 5$
for each nonlinear function yields
 the polytopic representation:

$$
\begin{aligned}
& {\left[A_{c}(\delta), B_{c}(\delta)\right] \in\left\{\left[A_{c}(\zeta), B_{c}(\zeta)\right]=\sum_{v=1}^{n_{v}} \zeta_{v} \cdot\left[A_{v}, B_{v}\right] ; \sum_{v=1}^{n_{v}} \zeta_{v}=1 ; \zeta_{v} \geq 0\right\}} \\
& \text { with } \\
& A_{c}(\delta)=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -p_{1} & p_{2} & p_{3} \delta_{1} & 0 & p_{4} \delta_{2} \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & p_{1} \delta_{1} & p_{5} \delta_{1} & p_{6} \delta_{3} & 0 & -\left(p_{4} \delta_{4}+2 \delta_{5}\right) \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & p_{7} \delta_{2} & -p_{8} \delta_{5} & 0 & p_{9} \delta_{1} & -p_{10}
\end{array}\right) \quad B_{c}(\delta)=\left(\begin{array}{cc}
0 & 0 \\
p_{11} & -p_{12} \delta_{2} \\
0 & 0 \\
-p_{11} \delta_{1} & p_{12} \delta_{4} \\
0 & 0 \\
-p_{12} \delta_{2} & p_{13}
\end{array}\right)
\end{aligned}
$$

6. Discretization by first order Euler approximation: $A(\delta)=A_{c}(\delta) T_{\mathrm{s}}+I, B(\delta)=B_{c}(\delta) T_{\mathrm{s}}$

Example: Control of overhead traveling crane

Simulation setup 1

disturbance input matrices:

$$
\begin{aligned}
G_{u} & =\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
G_{p} & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0.01 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0.01 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0.01
\end{array}\right) \\
G_{y} & =\left(\begin{array}{ccc}
0.01 & 0 & 0 \\
0 & 0.01 & 0 \\
0 & 0 & 0.01
\end{array}\right)
\end{aligned}
$$

Compared to LQG control: Filter and controller designed separately for the linearized system

Observer (filter) parameterization:
$E\left[w_{p}(k) w_{p}^{\mathrm{T}}(k)\right]=Q_{o}$
$E\left[w_{y}(k) w_{y}^{\mathrm{T}}(k)\right]=R_{o}$
H

LQR applied to estimated states $\hat{x}[k]$:
$Q_{c}=\operatorname{diag}\left(\mu_{x, i} \frac{1}{x_{\text {max }, i}^{2}}\right)$
$R_{c}=\operatorname{diag}\left(\mu_{u, j} \frac{1}{u_{\text {max }, j}^{2}}\right)$
K

Disadvantages: Parameter tuning is semi-empirical; no proof of stability

Tuning the LMI controller: using robust D_{R} regions (circular sub-regions of the unit circle)

Case 1: $r=0.993, \alpha=0$,
before optimization

after optimization

Case 3: $r=0.6, \alpha=0.393$,
before optimization
after optimization

Case 2: $r=0.8, \alpha=0.193$, before optimization
after optimization

Case 4: $r=0.4, \alpha=0.593$
before optimization after optimization

Example: Control of overhead traveling crane

Idea: Select design settings with comparable control behaviors for both controller

Example: Control of overhead traveling crane

Comparison 1

Cost function:

RMSE-Values

$\Delta x_{j, O}=\sqrt{\frac{1}{N} \sum_{k=1}^{N}\left(x_{j}[k]-\hat{x}_{j}[k]\right)^{2}}$
of the observer error

$N=30 s / T_{\mathrm{S}}=2000$

Evaluation:

Non-measurable states	$\Delta x_{2,0}$	$\Delta x_{4,0}$	$\Delta x_{6,0}$
LQG	0.0176	0.0679	0.0125
LMI	0.0107	0.0327	0.0106
Improvement	$\mathbf{3 9} \%$	$\mathbf{5 2} \%$	$\mathbf{1 5} \%$

Example: Control of overhead traveling crane

Simulation setup 2

stochastic, noise affected closed loop:

Cost function

RMSE-Values:
$\Delta \hat{x}_{i, f}=\sqrt{\frac{1}{N} \sum_{k=1}^{N}\left(\hat{x}_{i}[k]-\hat{x}_{i, f}[k]\right)^{2}}$

Example: Control of overhead traveling crane

Measurable states	$\Delta \hat{x}_{1, f}$	$\Delta \hat{x}_{3, f}$	$\Delta \hat{x}_{5, f}$
LQG	0.0035	0.0048	0.0023
LMI	0.0029	0.0034	0.0015
Improvement	$\mathbf{1 7} \%$	$\mathbf{2 9} \%$	$\mathbf{3 3} \%$

Example: Control of overhead traveling crane

Cost function:

RMSE-Values

Evaluation:

Non-measurable states	$\Delta \hat{x}_{2, f}$	$\Delta \hat{x}_{4, f}$	$\Delta \hat{x}_{6, f}$
LQG	0.0124	0.0333	0.0046
LMI	0.0046	0.0133	0.0016
Improvement	$\mathbf{6 3 \%}$	$\mathbf{6 0} \%$	$\mathbf{6 5} \%$

Significant improvements in noise reduction compared to the LQG controller

- Iterative LMI design method for observer-based state feedback controller subject to stochastic noise
- Advantages of the method:
- Closed-loop less sensitive to noise compared to LQG
- Provides control parameters and a proof of stability (for deterministic part)
- Consideration of uncertainties and non-linearities by polytopic representations
- Various control structures with identical LMI conditions possible
- Further work:
- Controller design for real mechatronic systems
- Dealing with the non-unique nature of the quasilinear form and the polytopic representation

Thank you for your attention

Results published in:

1 R. Dehnert, M. Damaszek, S. Lerch, A. Rauh and B. Tibken, "Robust Feedback Control for Discrete-Time Systems Based on Iterative LMIs with Polytopic Uncertainty Representations subject to Stochastic Noise", in Frontiers in Control Engineering, Vol. 2, 2022.
Selection of preliminary work:
2 Rauh, A.; Romig S.; Aschemann H. When Is Naive Low-Pass Filtering of Noisy Measurements Counter-Productive for the Dynamics of Controlled Systems?, in 2018 23rd International Conference on Methods Models in Automation Robotics (MMAR), Miedzyzdroje, Poland, August 27-30, 2018, 809-814.

3 Rauh, A.; Romig, S. Linear Matrix Inequalities for an Iterative Solution for the Robust Output Feedback Control of Systems with Bounded and Stochastic Uncertainty. Sensors 2021, 21, 3285. https://doi.org/10.3390/s21093285
4 Rauh, A.; Dehnert, R.; Romig, S.; Lerch, S.; Tibken, B. Iterative Solution of Linear Matrix Inequalities for the Combined Control and Observer Design of Systems with Polytopic Parameter Uncertainty and Stochastic Noise. Algorithms 2021, 14, 205. https:// doi.org/10.3390/a14070205

5 R. Dehnert, S. Lerch, T. Grunert, M. Damaszek and B. Tibken, "A Less Conservative Iterative LMI approach for Output Feedback Controller Synthesis for Saturated Discrete-Time Linear Systems", Proceedings of the 25th International Conference on System Theory, Control and Computing, Iasi, Romania, October 20-23, 2021

