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1. Problem statement
- Control system subject to stochastic noise
- Discrete-time observer-based state feedback

2. Fundamentals for the controller design

- Robust Lyapunov stability and 𝐷R regions
- Generalization of the Lyapunov stability condition to stochastic noise

3. Developed LMI based algorithm

- Superposed iteration rule
- Optimization task

4. Example: Control of overhead traveling crane

5. Summary and Outlook

Overview
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Objective: Design observer-based state feedback controller

Problem statement

Saturated Control SystemControl system subject to stochastic noise

𝑤𝑢, 𝑤𝑝, 𝑤𝑦:      stochastically independent standard normally distributed

actuator noise, process noise and sensor noise

𝐺𝑢,𝑐 , 𝐺𝑝,𝑐 , 𝐺𝑦:  disturbance input matrices contain standard deviations
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Problem statement

Saturated Control SystemDesign observer based state feedback controller

1. Convert the nonlinear system to a quasilinear form, with 

x 𝑘 = 𝑥1 𝑘 , … , 𝑥𝑛 𝑘 𝑇, with 𝑥𝑖 𝑘 = 𝑥𝑖 , 𝑥𝑖 , 𝑖 = 1, … , 𝑛

2. Discretization by first order explicit Euler approximation:

𝐴 x 𝑘 = 𝐴𝑐 x 𝑘 𝑇𝑠 + 𝐼,        𝐵 x 𝑘 = 𝐵𝑐 x 𝑘 𝑇𝑠, …
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Problem statement

Saturated Control SystemDesign observer based state feedback controller

Augmented state space representation of the closed-loop (𝑟 𝑘 = 0):

with 𝑧 𝑘 = 𝑥 𝑘 𝑒 𝑘 T where 𝑒 𝑘 = 𝑥 𝑘 − ො𝑥 𝑘 and 𝑤 𝑘 = 𝑤𝑢 𝑘 𝑤𝑝 𝑘 𝑤𝑦 𝑘
T

𝑧 𝑘 + 1 =
𝐴 𝑥 𝑘 − 𝐵 𝑥 𝑘 𝐾 𝐵 𝑥 𝑘 𝐾

𝐴 𝑥 𝑘 − 𝐴0 − 𝐵 𝑥 𝑘 − 𝐵0 𝐾 𝐴0 − 𝐻𝐶 − 𝐵0 − 𝐵 𝑥 𝑘 𝐾
𝑧 𝑘 +

𝐵 𝑥 𝑘 𝐺𝑢 𝐺𝑝 0

𝐵 𝑥 𝑘 𝐺𝑢 𝐺𝑝 −𝐻𝐺𝑦
𝑤 𝑘

𝒜 𝑥 𝑘 𝒢 𝑥 𝑘
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Problem statement

Saturated Control SystemDesign observer based state feedback controller

Augmented state space representation of the closed-loop (𝑟 𝑘 = 0):

with 𝑧 𝑘 = 𝑥 𝑘 𝑒 𝑘 T where 𝑒 𝑘 = 𝑥 𝑘 − ො𝑥 𝑘 and 𝑤 𝑘 = 𝑤𝑢 𝑘 𝑤𝑝 𝑘 𝑤𝑦 𝑘
T

𝑧 𝑘 + 1 =
𝐴 𝑥 𝑘 − 𝐵 𝑥 𝑘 𝐾 𝐵 𝑥 𝑘 𝐾

𝐴 𝑥 𝑘 − 𝐴0 − 𝐵 𝑥 𝑘 − 𝐵0 𝐾 𝐴0 − 𝐻𝐶 − 𝐵0 − 𝐵 𝑥 𝑘 𝐾
𝑧 𝑘 +

𝐵 𝑥 𝑘 𝐺𝑢 𝐺𝑝 0

𝐵 𝑥 𝑘 𝐺𝑢 𝐺𝑝 −𝐻𝐺𝑦
𝑤 𝑘

𝒜 𝑥 𝑘 𝒢 𝑥 𝑘

Objective: Determine observer gain 𝐻 and controller gain 𝐾 simultaneously 
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Quasilinear system: 

𝑧 𝑘 + 1 = 𝒜 𝑥 𝑘 𝑧 𝑘 + 𝒢 𝑥 𝑘 𝑤 𝑘 with x 𝑘 = 𝑥1 𝑘 , … , 𝑥𝑛 𝑘 𝑇, 

𝑥𝑖 𝑘 = 𝑥𝑖 , 𝑥𝑖 , 𝑖 = 1,… , 𝑛

Fundamentals for the controller design

𝑦 𝑘 = 𝒞𝑧[𝑘]

𝒜 𝑥 𝑘 , 𝒢(𝑥 𝑘 ) ∈ อ𝒜 𝜉 , 𝒢(𝜉) = ෍

𝑣=1

𝑛𝑣

𝜉𝑣 𝒜𝑣, 𝒢𝑣 ෍

𝑣=1

𝑛𝑣

𝜉𝑣 = 1, 𝜉𝑣 ≥ 0

Idea: Polytopic representation of 𝒜 𝑥 𝑘 and 𝒢 𝑥 𝑘 : 
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Quasilinear system: 

𝑧 𝑘 + 1 = 𝒜 𝑥 𝑘 𝑧 𝑘 + 𝒢 𝑥 𝑘 𝑤 𝑘 with x 𝑘 = 𝑥1 𝑘 , … , 𝑥𝑛 𝑘 𝑇, 

𝑥𝑖 𝑘 = 𝑥𝑖 , 𝑥𝑖 , 𝑖 = 1,… , 𝑛

Example: 

𝐴 𝑥 𝑘 =
𝑥2 1

0 0.5 + 𝑥2
2 =

𝑥2 1
0 𝛾

with 𝑥2 ∈ −0.2 0.8 and 𝛾 ∈ 0.5 1.14

𝐴 𝑥 𝑘 ∈

𝜉1
−0.2 1
0 0.5

+ 𝜉2
0.8 1
0 0.5

+

𝜉3
−0.2 1
0 1.14

+ 𝜉4
0.8 1
0 1.14

Fundamentals for the controller design

𝒜 𝑥 𝑘 , 𝒢(𝑥 𝑘 ) ∈ อ𝒜 𝜉 , 𝒢(𝜉) = ෍

𝑣=1

𝑛𝑣

𝜉𝑣 𝒜𝑣, 𝒢𝑣 ෍

𝑣=1

𝑛𝑣

𝜉𝑣 = 1, 𝜉𝑣 ≥ 0

Idea: Polytopic representation of 𝒜 𝑥 𝑘 and 𝒢 𝑥 𝑘 : 

𝑦 𝑘 = 𝒞𝑧[𝑘]
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Fundamentals for the controller design

𝐴 𝑥 𝑘 =
𝑥2 1

0 0.5 + 𝑥2
2

𝐴 𝑥 𝑘 ∈ 𝜉1
−0.2 1
0 0.54

+𝜉2
−0.1 1
0 0.5

+ 𝜉3
0.13 1
0 0.5

+ 𝜉4
0.53 1
0 0.7

+ 𝜉5
0.8 1
0 1.14
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Fundamentals for the controller design

Quadratic Lyapunov function candidate

𝑉 𝑧 𝑘 =
1

2
𝑧T 𝑘 𝑃 𝑧 𝑘 with 𝑃 = 𝑃𝑇 > 0

Is a free LMI-decision variable 

If the Lyapunov condition           𝒜 𝑥 𝑘 T 𝑃 𝒜 𝑥 𝑘 − 𝑃 < 0

with

𝒜 𝑥 𝑘 =
𝐴 𝑥 𝑘 − 𝐵 𝑥 𝑘 𝐾 𝐵 𝑥 𝑘 𝐾

𝐴 𝑥 𝑘 − 𝐴0 − 𝐵 𝑥 𝑘 − 𝐵0 𝐾 𝐴0 − 𝐻𝐶 − 𝐵0 − 𝐵 𝑥 𝑘 𝐾

is fulfilled: 

augmented closed-loop system quadratically stable for all 𝑥𝑖 𝑘 = 𝑥𝑖 , 𝑥𝑖

Polytopic representation: 

This is true, if 𝒜𝑣
T𝑃𝒜𝑣 − 𝑃 < 0 with  𝑣 = 1,… , 𝑛𝑣 are satisfied.

6/25

Robust Lyapunov stability and 𝐷R regions (without noise 𝑤 𝑘 = 0; deterministic system)



Fundamentals for the controller design

Extension to robust 𝐷R regions:

All eigenvalues of all extremal realizations

𝒜𝑣, 𝑣 = 1,… , 𝑛𝑣 are located within

a circle with the midpoint 𝛼 and radius 𝑟, if

𝒜𝑣 − 𝛼𝐼 T 𝑃 𝒜𝑣 − 𝛼𝐼 − 𝑟2𝑃 < 0

or equivalent

𝑃−1 𝒜𝑣 − 𝛼𝐼

(𝒜𝑣 − 𝛼𝐼)T 𝑟2𝑃
> 0,

with 𝛼 < 1 and 𝛼 + 𝑟 ≤ 1 are valid. 

Robust Lyapunov stability and 𝐷R regions (without noise 𝑤 𝑘 = 0; deterministic system)
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Fundamentals for the controller design

Generalization of the Lyapunov stability condition to stochastic noise (with noise 𝑤 𝑘 ≠ 0)

8/25

Stochastic noise affects 𝑧 𝑘 + 1 = 𝒜𝑣𝑧 𝑘 + 𝒢𝑣𝑤 𝑘 , with

𝒜𝑣=
𝐴𝑣 − 𝐵𝑣𝐾 𝐵𝑣𝐾

𝐴𝑣 − 𝐴0 − 𝐵𝑣 − 𝐵0 𝐾 𝐴0 − 𝐻𝐶 − 𝐵0 − 𝐵 𝐾
, 𝒢𝑣 =

𝐵𝑣𝐺𝑢 𝐺𝑝 0

𝐵𝑣𝐺𝑢 𝐺𝑝 −𝐻𝐺𝑦

It follows the discrete-time version of the Itô differential operator:

𝐿𝐷 𝑉 =
1

2
𝑧T 𝑘 𝒜𝑣

T𝑃 𝒜𝑣 − 𝑃 𝑧 𝑘 + trace 𝒢𝑣
T𝑃𝒢𝑣

Derivable from the expectation value:

𝐸 ∆𝑉 = 𝐸 𝑉 𝑧 𝑘 + 1 − 𝑉 𝑧 𝑘

𝐸 ∆𝑉 = 𝐸
1

2
𝑧T 𝑘 𝒜𝑣

T + 𝑤T 𝑘 𝒢𝑣
T 𝑃 𝒜𝑣𝑧 𝑘 + 𝒢𝑣𝑤 𝑘 − 𝑧T 𝑘 𝑃𝑧 𝑘

Under assumptions:  𝑤 𝑘 and 𝑧 𝑘 stochastically independent; 𝑤 𝑘 is a zero mean process;

variance of each noise process equals one



Fundamentals for the controller design

Discrete- vs. continuous-time Lyapunov conditions

for state feedback controller: 𝑢 = −𝐾𝑥

Schur-complement:

Left/right multiplication with diag 𝐼, 𝑃−1 ,

change of variables Q = 𝑃−1, 𝑁 = 𝐾𝑃−1:

𝐴𝑣 − 𝐵𝑣𝐾
T𝑃 + 𝑃 𝐴𝑣 − 𝐵𝑣𝐾 < 0𝐴𝑣 − 𝐵𝑣𝐾

T𝑃 𝐴𝑣 − 𝐵𝑣𝐾 − 𝑃 < 0

𝑃−1 𝐴𝑣 − 𝐵𝑣𝐾

(𝐴𝑣 − 𝐵𝑣𝐾)
T 𝑃

> 0

𝑄 𝐴𝑣𝑄 − 𝐵𝑣𝑁

(𝐴𝑣𝑄 − 𝐵𝑣𝑁)
T 𝑄

> 0

𝐾 = 𝑁𝑄−1

𝐴𝑣𝑄 + 𝑄𝐴𝑣
T − 𝐵𝑣𝑁 − 𝑁T𝐵𝑣

T < 0

𝐾 = 𝑁𝑄−1

change of variables Q = 𝑃−1, 𝑁 = 𝐾𝑃−1:

Left/right multiplication with 𝑃−1 and

controller:controller:

Robust Lyapunov stability and 𝐷R regions (without noise 𝑤 𝑘 = 0; deterministic system)
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Discrete-time (option 1): Continuous-time:



Discrete- vs. continuous-time Lyapunov conditions

for state feedback controller: 𝑢 = −𝐾𝑥

Schur-complement:

Left/right multiplication with diag 𝐼, 𝑃−1 ,

change of variables Q = 𝑃−1, 𝑁 = 𝐾𝑃−1:

Due to 𝑃 = 𝑃T > 0 the quadratic form

is always valid for any matrix 𝐺. This yields:

𝐾 independent of 𝑃

Fundamentals for the controller design

𝐴𝑣 − 𝐵𝑣𝐾
T𝑃 𝐴𝑣 − 𝐵𝑣𝐾 − 𝑃 < 0

Discrete-time (option 1): Discrete-time (option 2):

𝑃−1 𝐴𝑣 − 𝐵𝑣𝐾

(𝐴𝑣 − 𝐵𝑣𝐾)
T 𝑃

> 0

𝑄 𝐴𝑣𝑄 − 𝐵𝑣𝑁

(𝐴𝑣𝑄 − 𝐵𝑣𝑁)
T 𝑄

> 0

𝐾 = 𝑁𝑄−1

𝐾 = 𝑁𝐺−1controller:

controller:

𝑃−1 𝐴𝑣 − 𝐵𝑣𝐾

(𝐴𝑣 − 𝐵𝑣𝐾)
T 𝑃

> 0

𝑃 − 𝐺 T𝑃−1 𝑃 − 𝐺 ≥ 0

𝐺T𝑃−1𝐺 ≥ 𝐺 + 𝐺T − 𝑃

𝑃 𝐴𝑣𝐺 − 𝐵𝑣𝑁

(𝐴𝑣𝐺 − 𝐵𝑣𝑁)
T 𝐺 + 𝐺T − 𝑃

> 0

requires change of variables 10/25

Robust Lyapunov stability and 𝐷R regions (without noise 𝑤 𝑘 = 0; deterministic system)



𝑃−1 𝒜𝑣 − 𝛼𝐼

(𝒜𝑣 − 𝛼𝐼)T 𝑟2𝑃
> 0

Consider the quadratic form

𝑃 − 𝐺 T𝑃−1 𝑃 − 𝐺 ≥ 0

Replace 𝐺 by ෠𝑃 = ෠𝑃T > 0 results in:

෠𝑃𝑃−1 ෠𝑃 ≥ 2 ෠𝑃 − 𝑃

Left/right multiplication with ෠𝑃−1 yields:

𝑃−1 ≥ 2 ෠𝑃−1 − ෠𝑃−1𝑃 ෠𝑃−1 = 𝐿
𝐿 𝒜𝑣 − 𝛼𝐼

(𝒜𝑣 − 𝛼𝐼)T 𝑟2𝑃
> 0

𝑃−1, 𝐿 ෠𝑃1
−1 = 𝑃0

−1

𝑃𝑃0

Superposed iteration rule

Developed algorithm
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𝑃−1 𝒜𝑣 − 𝛼𝐼

(𝒜𝑣 − 𝛼𝐼)T 𝑟2𝑃
> 0

Consider the quadratic form

𝑃 − 𝐺 T𝑃−1 𝑃 − 𝐺 ≥ 0

Replace 𝐺 by ෠𝑃 = ෠𝑃T > 0 results in:

෠𝑃𝑃−1 ෠𝑃 ≥ 2 ෠𝑃 − 𝑃

Left/right multiplication with ෠𝑃−1 yields:

𝑃−1 ≥ 2 ෠𝑃−1 − ෠𝑃−1𝑃 ෠𝑃−1 = 𝐿
𝐿 𝒜𝑣 − 𝛼𝐼

(𝒜𝑣 − 𝛼𝐼)T 𝑟2𝑃
> 0

Solution: update rule                                                        Aim: Convergence of 𝐿 vs. 𝑃−1, such that

෠𝑃−1 = 𝑃𝑗−1
−1

𝑃−1 − 𝐿 ≈ 0

𝑃−1, 𝐿 ෠𝑃1
−1 = 𝑃0

−1

𝑃𝑃0

Superposed iteration rule

Developed algorithm

Question: How to select ෠𝑃 for a unknown decision variables 𝑃, such that 𝑃 − ෠𝑃 is small?
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𝑃−1 𝒜𝑣 − 𝛼𝐼
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> 0
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෠𝑃−1 = 𝑃𝑗−1
−1

𝑃−1 − 𝐿 ≈ 0

𝑃−1, 𝐿 ෠𝑃1
−1 = 𝑃0

−1 𝐿1, 𝑃1

𝑃𝑃0𝑃1

Superposed iteration rule

Developed algorithm

11/25

Question: How to select ෠𝑃 for a unknown decision variables 𝑃, such that 𝑃 − ෠𝑃 is small?
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෠𝑃−1 = 𝑃𝑗−1
−1

𝑃−1 − 𝐿 ≈ 0

𝑃−1, 𝐿 ෠𝑃1
−1 = 𝑃0

−1 𝐿1, 𝑃1
෠𝑃2
−1 = 𝑃1

−1

𝑃𝑃0𝑃1

Superposed iteration rule

Developed algorithm
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Question: How to select ෠𝑃 for a unknown decision variables 𝑃, such that 𝑃 − ෠𝑃 is small?



𝑃−1 𝒜𝑣 − 𝛼𝐼

(𝒜𝑣 − 𝛼𝐼)T 𝑟2𝑃
> 0

Consider the quadratic form

𝑃 − 𝐺 T𝑃−1 𝑃 − 𝐺 ≥ 0

Replace 𝐺 by ෠𝑃 = ෠𝑃T > 0 results in:

෠𝑃𝑃−1 ෠𝑃 ≥ 2 ෠𝑃 − 𝑃

Left/right multiplication with ෠𝑃−1 yields:

𝑃−1 ≥ 2 ෠𝑃−1 − ෠𝑃−1𝑃 ෠𝑃−1 = 𝐿
𝐿 𝒜𝑣 − 𝛼𝐼

(𝒜𝑣 − 𝛼𝐼)T 𝑟2𝑃
> 0

Solution: update rule                                                        Aim: Convergence of 𝐿 vs. 𝑃−1, such that
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Solution:

- Select constant 𝛼 and 𝑃0 = 𝐼

- Select 𝛼 + 𝑟 > 1 in the first iteration

- Solve

𝐿 𝒜𝑣 − 𝛼𝐼

(𝒜𝑣 − 𝛼𝐼)T 𝑟2𝑃
> 0

with

𝐿 = 2 ෠𝑃−1 − ෠𝑃−1𝑃 ෠𝑃−1

෠𝑃−1 = 𝑃𝑗−1
−1

(𝑗: current iteration)

𝛼 + 𝑟 > 1: Closed-loop instable

Superposed iteration rule (Stage 1)

Developed algorithm

𝛼
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(𝑗: current iteration)

𝛼 + 𝑟 > 1: Closed-loop instable

𝛼 + 𝑟 = 1: Closed-loop robust stable and

all eigenvalues of 𝒜𝑣 are located 

in the circular  𝐷𝑅 region

𝛼 + 𝑟 < 1: increased distance to stability margin 
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𝑟
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Superposed iteration rule (Stage 1)

Developed algorithm

Realizable objectives:

- Convergence of the linearization

- Stabilization of the closed loop

- Tuning control behavior
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Optimization task (Stage 2)

Developed algorithm

𝐽 = ෍

𝑣=1

𝑛𝑣
trace 𝒢𝑣

T𝑃𝒢𝑣
det(−𝑀𝑣)

Non-convex cost function

13/25

Discrete-time Itô differential operator:

𝐿𝐷 𝑉 =
1

2
𝑧T 𝑘 𝒜𝑣

T𝑃𝒜𝑣 − 𝑃 𝑧 𝑘 + trace 𝒢𝑣
T𝑃𝒢𝑣

If stochastic noise affects the closed-loop  𝑧 𝑘 + 1 = 𝒜𝑣𝑧 𝑘 + 𝒢𝑣𝑤 𝑘 (𝒢𝑣: non-zero)

- Maybe: 𝐿𝐷 𝑉 ≥ 0 in a neighborhood  of 𝑧 𝑘 = 0

- Non-provable stability region with boundary 𝐿𝐷 𝑉 = 0

is the interior of the ellipsoids:

𝑧T 𝑘
−𝑀𝑣

trace 𝒢𝑣
T𝑃𝒢𝑣

𝑧 𝑘 − 1 = 0 with       𝑀𝑣 = 𝒜𝑣
T𝑃𝒜𝑣 − 𝑃

Decrease the non-provable stability region by minimizing the interior of 

the ellipsoids:        



Optimization task (Stage 2)

Developed algorithm

Integration into superposed iteration rule:

min 𝐽 = ෍

𝑣=1

𝑛𝑣
trace 𝑁

det(− ෡𝑀𝑣)
min 𝐽 = ෍

𝑣=1

𝑛𝑣
trace 𝒢𝑣

T𝑃𝒢𝑣
det(−𝑀𝑣)

𝑃 > 0,

𝑁 > 0,

subject to
𝑃 > 0,

𝐿 𝒜𝑣 − 𝛼𝐼

(𝒜𝑣 − 𝛼𝐼)T 𝑟2𝑃
> 0,

with 𝐿 = 2 ෠𝑃−1 − ෠𝑃−1𝑃 ෠𝑃−1

subject to

𝑁 > 𝒢𝑣
T𝑃𝒢𝑣,

𝐿 𝒜𝑣 − 𝛼𝐼

(𝒜𝑣 − 𝛼𝐼)T 𝑟2𝑃
> 0,

with 𝐿 = 2 ෠𝑃−1 − ෠𝑃−1𝑃 ෠𝑃−1,

෡𝑀𝑣 = መ𝒜𝑣
T ෠𝑃 መ𝒜𝑣 − ෠𝑃
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T 𝑃
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Optimization task (Stage 2)

Developed algorithm
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Realizable objectives:
- Optimality of the observer and controller gain
- Closed loop insensitive against noise



Measurable outputs: 

Lagrange function:

where

with

System of differential equations

Example: Control of overhead traveling crane

Modelling: Lagrange’s equations of motion

Idea: Transform differential equation to state space representation
15/25



Example: Control of overhead traveling crane

Modelling: Quasilinear representation

1. Simplifications for small angles:

2. Introduce the state vector:

3. Quasilinear form:

with

Idea: Convex enclosure of nonlinearities
16/25



4. States are constrained:

5. Introduce independent parameters: 

for each nonlinear function yields

the polytopic representation:                  

with

6. Discretization by first order Euler approximation:

Example: Control of overhead traveling crane

Modelling: Polytopic representation
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Observer (filter) parameterization:                          LQR applied to estimated states ො𝑥 𝑘 :

Example: Control of overhead traveling crane

Simulation setup 1

disturbance input matrices:

Compared to LQG control: Filter and controller designed separately for the linearized system

Disadvantages: Parameter tuning is semi-empirical; no proof of stability 

𝐻 𝐾
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Example: Control of overhead traveling crane

Tuning the LMI controller: using robust 𝐷R regions (circular sub-regions of the unit circle) 
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Example: Control of overhead traveling crane

Idea: Select design settings with comparable control behaviors for both controller
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Cost function:

RMSE-Values

of the observer error

𝑁 = 30𝑠/𝑇S=2000

Evaluation:

Example: Control of overhead traveling crane

Comparison 1 

Improvement: Reduced observer error

Non-measurable states ∆𝑥2,𝑂 ∆𝑥4,𝑂 ∆𝑥6,𝑂

LQG 0.0176 0.0679 0.0125

LMI 0.0107 0.0327 0.0106

Improvement 39 % 52 % 15 % 21/25



Example: Control of overhead traveling crane

Simulation setup 2

deterministic, noise free closed loop:

stochastic, noise affected closed loop:

Cost function

RMSE-Values:

21/25



Cost function:

RMSE-Values

from all estimates ො𝑥𝑖

to ideal noise-free estimates ො𝑥𝑖,𝑓

Evaluation:

Example: Control of overhead traveling crane

Measurable states ∆ො𝑥1,𝑓 ∆ො𝑥3,𝑓 ∆ො𝑥5,𝑓

LQG 0.0035 0.0048 0.0023

LMI 0.0029 0.0034 0.0015

Improvement 17 % 29 % 33 %

Comparison 2: Measurable states

ො𝑥
1
−
ො𝑥 1
,𝑓

ො𝑥
3
−
ො𝑥
3
,𝑓

ො𝑥
5
−
ො𝑥
5
,𝑓
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Example: Control of overhead traveling crane

Comparison 2: Non-measurable states

Cost function:

RMSE-Values

from all estimates ො𝑥𝑖

to ideal noise-free estimates ො𝑥𝑖,𝑓

Evaluation:

Non-measurable states ∆ො𝑥2,𝑓 ∆ො𝑥4,𝑓 ∆ො𝑥6,𝑓

LQG 0.0124 0.0333 0.0046

LMI 0.0046 0.0133 0.0016

Improvement 63 % 60 % 65 %

Significant improvements in 
noise reduction compared 

to the LQG controller 

ො𝑥
2
−
ො𝑥
2
,𝑓

ො𝑥
4
−
ො𝑥
4
,𝑓

ො𝑥
6
−
ො𝑥
6
,𝑓
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Summary and Outlook

• Iterative LMI design method for observer-based state feedback controller 
subject to stochastic noise 

• Advantages of the method:

- Closed-loop less sensitive to noise compared to LQG 

- Provides control parameters and a proof of stability (for deterministic part) 

- Consideration of uncertainties and non-linearities by polytopic representations

- Various control structures with identical LMI conditions possible

• Further work: 

- Controller design for real mechatronic systems 

- Dealing with the non-unique nature of the quasilinear form 

and the polytopic representation
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Thank you for your attention
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