

Set Separation and Exclusion Tendency-Based Design Framework for Active Fault Diagnosis

—— A Talk in Online Seminar on Interval Methods

Feng XU Assistant Professor

(xu.feng@sz.tsinghua.edu.cn)

Tsinghua Shenzhen International Graduate School

Tsinghua University

24/03/2023

Outline

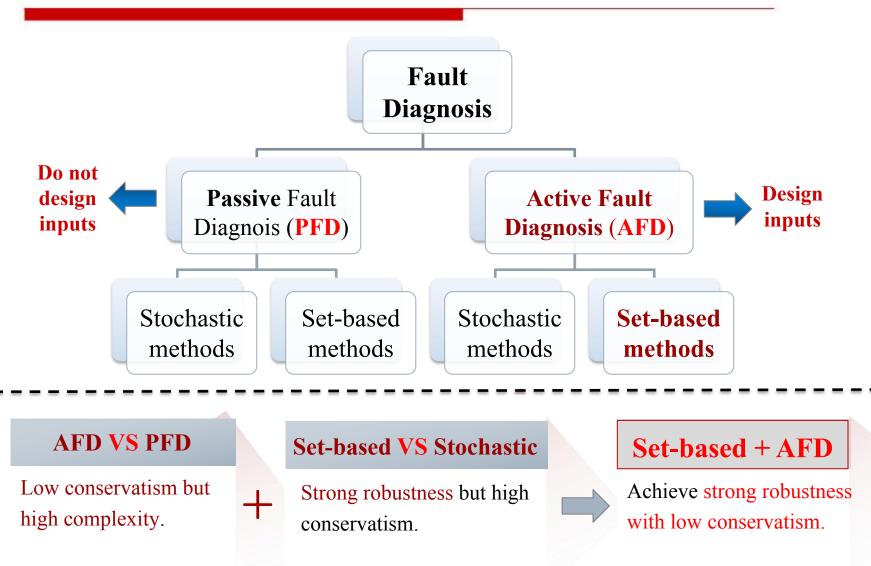
Part 1: Introduction to Active Fault Diagnosis- set separation-based active fault diagnosis

Part 2: Observer-Based Active Fault Diagnosis:- set separation tendency-based framework

Part 3: Conclusions and Future Work

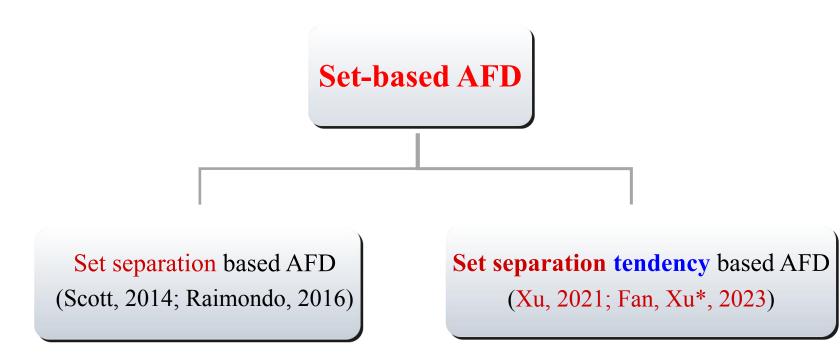
Part 1: Introduction to Active Fault Diagnosis - set separation-based active fault diagnosis

Fault Diagnosis



Y. M. Zhang and J. Jiang. Bibliographical review on reconfigurable fault-tolerant control systems, *Annual Reviews in Control*, 32, 229-252, 2008. T.A.N. Heirung and A. Mesbah, Input design for active fault diagnosis, *Annual Reviews in Control*, 47:35 – 50, 2019. **4**

Fault Diagnosis



Classical methods

Our methods

J.K. Scott and R. Findeisen and R.D. Braatz and D.M. Raimondo. Input design for guaranteed fault diagnosis using zonotopes, *Automatica*, 50(6), 1580 - 1589, 2014.

D.M. Raimondo, G.R. Marseglia, R.D. Braatz and J.K Scott. Closed-loop input design for guaranteed fault diagnosis using set-valued observers, *Automatica*, 74:107-117, 2016.

F. Xu. Observer-Based Asymptotic Active Fault Diagnosis: A Two-Layer Optimization Framework, Automatica, 125,109558, 2021.

System Models and Set-Wise Dynamics

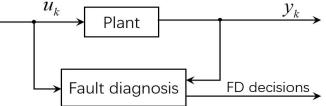
System models (healthy and faulty modes): used to model actuator faults $x_{k+1} = Ax_k + BG_i u_k + E\omega_k,$ $y_k = C x_k + F \eta_k.$ u_k Plant Set-wise models (healthy and faulty modes):

 $\hat{X}_{k+1}^{i} = A\hat{X}_{k}^{i} \oplus B\mathbf{G}_{i}u_{k} \oplus EW,$ $\hat{Y}_{k}^{i} = C\hat{X}_{k}^{i} \oplus FV, i \in \mathbb{I} = \{0, 1, 2, ..., n_{n}\}.$

Zonotopic sets of disturbances, noises and inputs:

$$\omega_{k} \in W = \left\langle \omega^{c}, H_{\omega} \right\rangle, \eta_{k} \in V = \left\langle \eta^{c}, H_{\eta} \right\rangle, u_{k} \in U.$$

Fault interval in the i-th actuator: $G_i \in \mathbf{G}_i$

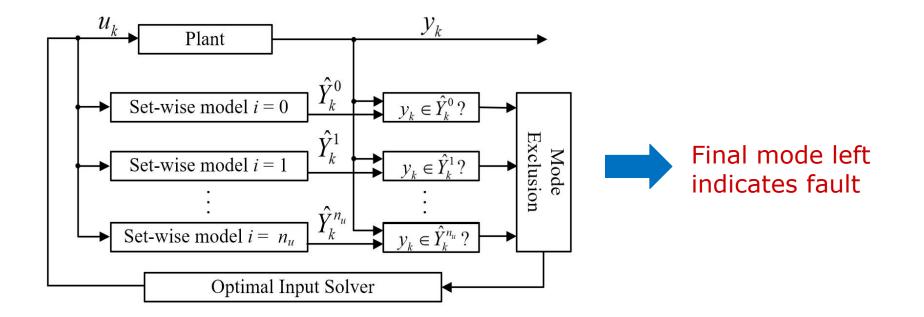


General scheme of fault diagnosis

Zonotope: $Z = g \oplus H \mathbb{B}^m = \langle g, H \rangle$

J.K. Scott and R. Findeisen and R.D. Braatz and D.M. Raimondo. Input design for guaranteed fault diagnosis using zonotopes, Automatica, 50(6), 1580 - 1589, 2014. D.M. Raimondo, G.R. Marseglia, R.D. Braatz and J.K Scott. Closed-loop input design for guaranteed fault diagnosis using set-valued observers, Automatica, 74:107 -117, 2016.

Scheme of Set Separation-Based Active Fault Diagnosis (AFD)

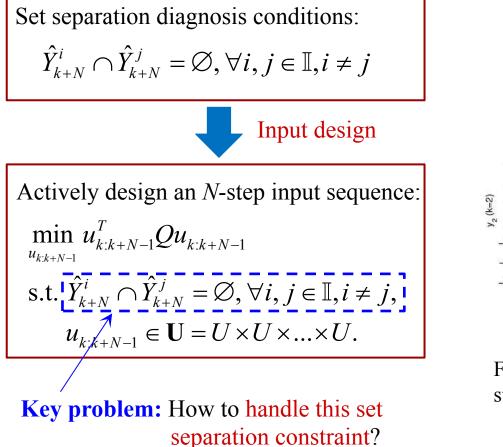


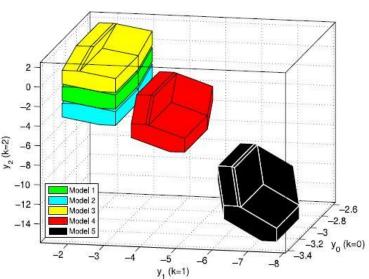
Active fault diagnosis criterion:

$$y_k \in \hat{Y}_{k+N}^{j}, \, y_k \not\in \hat{Y}_{k+N}^{i} \forall i \in \mathbb{I}, i \neq j$$

J.K. Scott and R. Findeisen and R.D. Braatz and D.M. Raimondo. Input design for guaranteed fault diagnosis using zonotopes, *Automatica*, 50(6), 1580 - 1589, 2014. D.M. Raimondo, G.R. Marseglia, R.D. Braatz and J.K Scott. Closed-loop input design for guaranteed fault diagnosis using set-valued observers, *Automatica*, 74:107 -117, 2016.

Guaranteed Fault Diagnosis Conditions for AFD Input Design

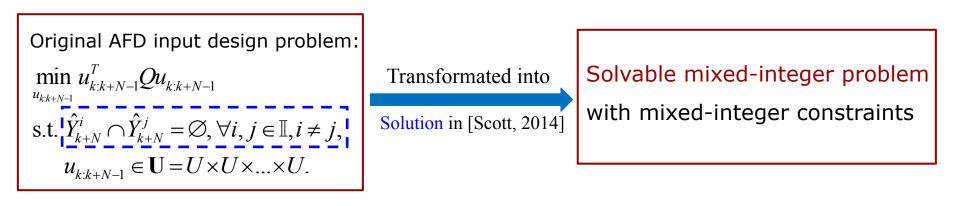


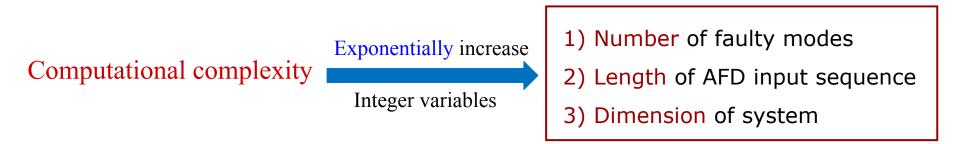


Five (healthy and faulty) modes and a twostep separating input sequence [Scott, 2014]

J.K. Scott and R. Findeisen and R.D. Braatz and D.M. Raimondo. Input design for guaranteed fault diagnosis using zonotopes, *Automatica*, 50(6), 1580 - 1589, 2014. D.M. Raimondo, G.R. Marseglia, R.D. Braatz and J.K Scott. Closed-loop input design for guaranteed fault diagnosis using set-valued observers, *Automatica*, 74:107 -117, 2016.

The Origin of Computational Complexity

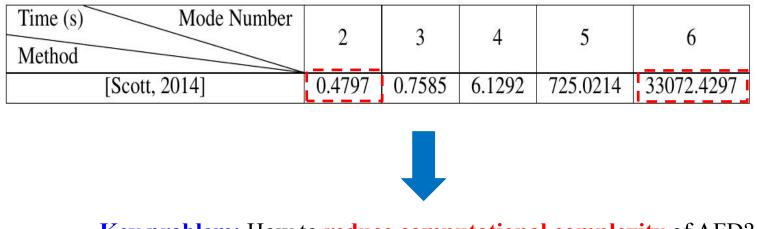




J.K. Scott and R. Findeisen and R.D. Braatz and D.M. Raimondo. Input design for guaranteed fault diagnosis using zonotopes, *Automatica*, 50(6), 1580 - 1589, 2014. D.M. Raimondo, G.R. Marseglia, R.D. Braatz and J.K Scott. Closed-loop input design for guaranteed fault diagnosis using set-valued observers, *Automatica*, 74:107 -117, 2016.

Illustration of Computational Complexity

A rough illustration on **computational complexity** of set separation-based methods (a two-input, two-state and two-output example):



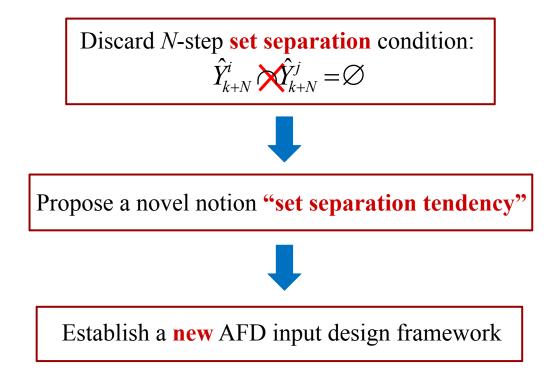
Key problem: How to **reduce computational complexity** of AFD?

J.K. Scott and R. Findeisen and R.D. Braatz and D.M. Raimondo. Input design for guaranteed fault diagnosis using zonotopes, *Automatica*, 50(6), 1580 - 1589, 2014. D.M. Raimondo, G.R. Marseglia, R.D. Braatz and J.K Scott. Closed-loop input design for guaranteed fault diagnosis using set-valued observers, *Automatica*, 74:107 **10** -117, 2016.

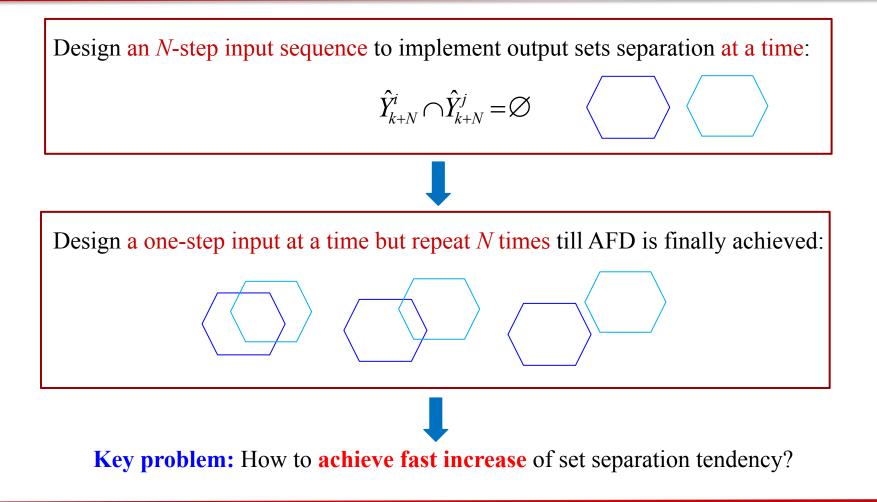
Part 2: Observer-Based Active Fault Diagnosis: - set separation tendency-based framework

1. Observer-Based Active Fault Diagnosis Framework

The proposed idea of overcoming the computational complexity problem:

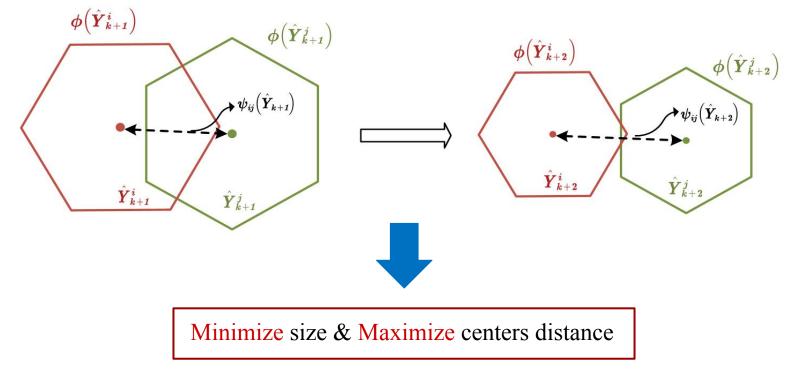


1. Observer-Based Active Fault Diagnosis Framework



1. Observer-Based Active Fault Diagnosis Framework

The proposed idea to achieve fast increase of set separation tendency:



Key problem: only have one design variable u_k but two objectives.

1. Observer-Based Active Fault Diagnosis Framework

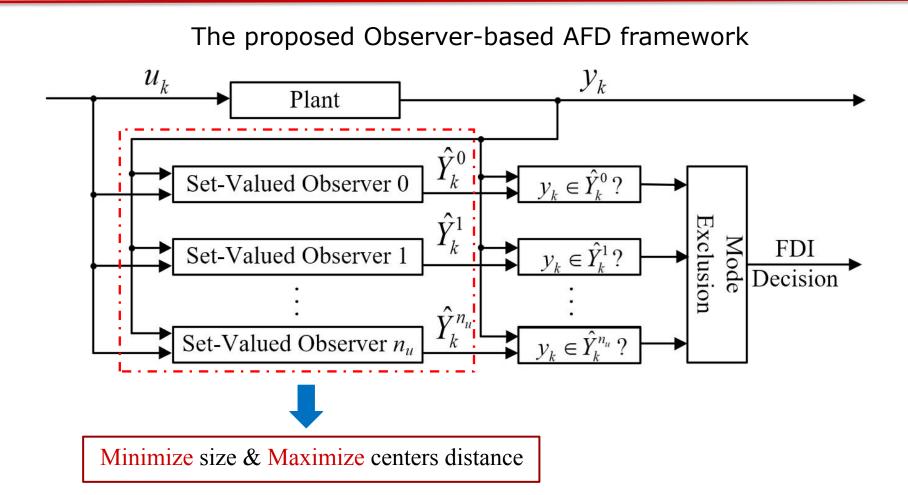
[Scott, 2014] uses set-wise system models:

$$\hat{X}_{k+1}^{i} = A\hat{X}_{k}^{i} \oplus B\mathbf{G}_{i} \underbrace{\boldsymbol{\mu}_{k}}{\boldsymbol{\mu}_{k}} \oplus EW$$
$$\hat{Y}_{k}^{i} = C\hat{X}_{k}^{i} \oplus FV, \ i \in \mathbb{I}.$$

[Xu, 2021] proposes to use set-valued observers:

$$\hat{X}_{k+1}^{i} = (A - \underbrace{L^{i}}_{k}) \hat{X}_{k}^{i} \oplus B\mathbf{G}_{i} \underbrace{u_{k}}_{k} \oplus L^{i} y_{k} \oplus (-LF) V \oplus EW$$
$$\hat{Y}_{k}^{i} = C \hat{X}_{k}^{i} \oplus FV, i \in \mathbb{I}.$$
Observer gain L
Two design parameters L and u are obtained.

1. Observer-Based Active Fault Diagnosis Framework



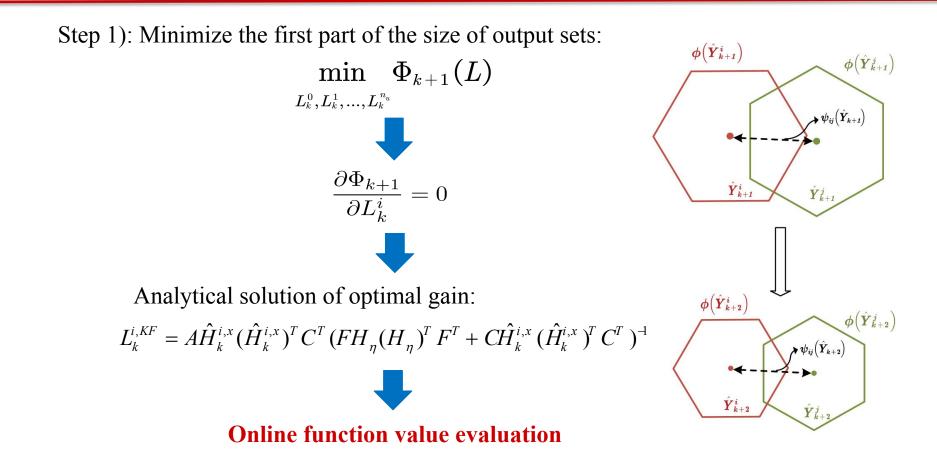
1. Observer-Based Active Fault Diagnosis Framework

Compute the centers distance of all output sets:

$$\Psi_{k+1}(L,u) = \sum_{i=0}^{n_u-1} \sum_{j=i-1}^{n_u} \psi\left(\hat{Y}_{k+1}^{ij}
ight) = \sum_{i=0}^{n_u-1} \sum_{j=i+1}^{n_u} \left\|\hat{y}_{k+1}^{i,c} - \hat{y}_{k+1}^{j,c}
ight\|_2^2$$

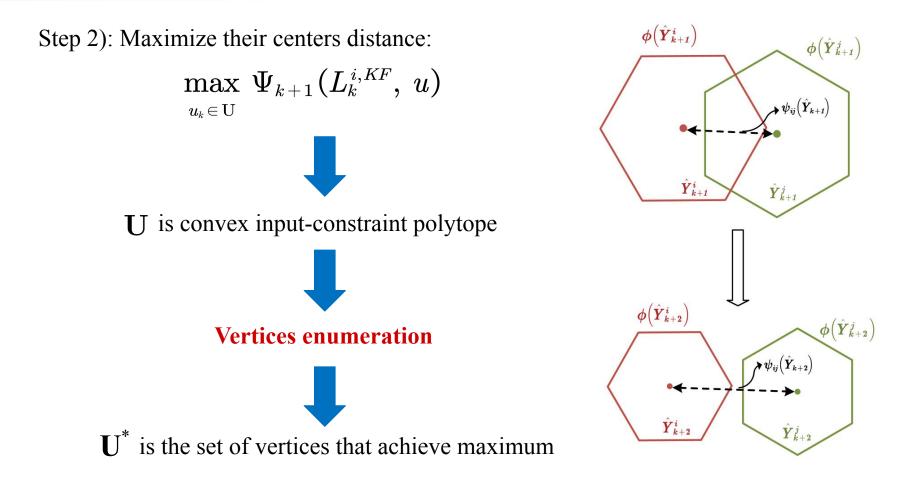
Define the *F*-norm size of all output sets:

1. Observer-Based Active Fault Diagnosis Framework



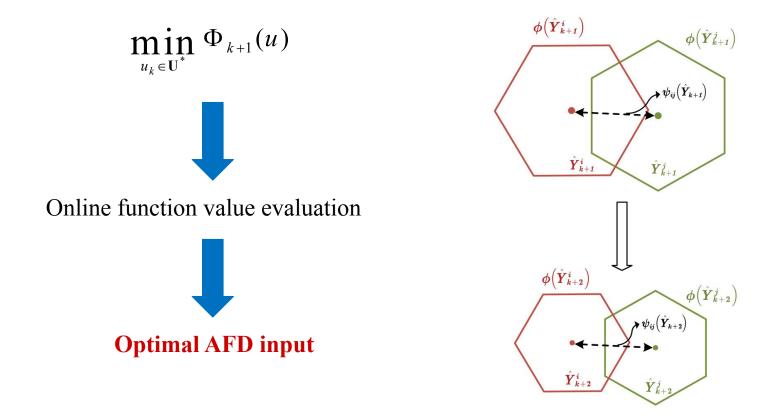
F. Xu. Observer-Based Asymptotic Active Fault Diagnosis: A Two- Layer Optimization Framework, *Automatica*, 125,109558, 2021. C. Combastel. Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence, *Automatica*, 55:265-273, 2015.

1. Observer-Based Active Fault Diagnosis Framework

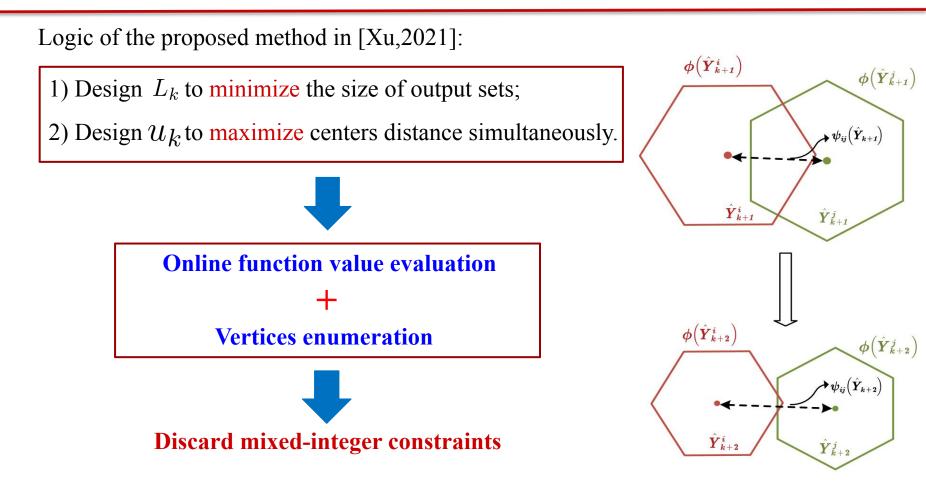


1. Observer-Based Active Fault Diagnosis Framework

Step 3): Further minimize the second part of the size of output sets:



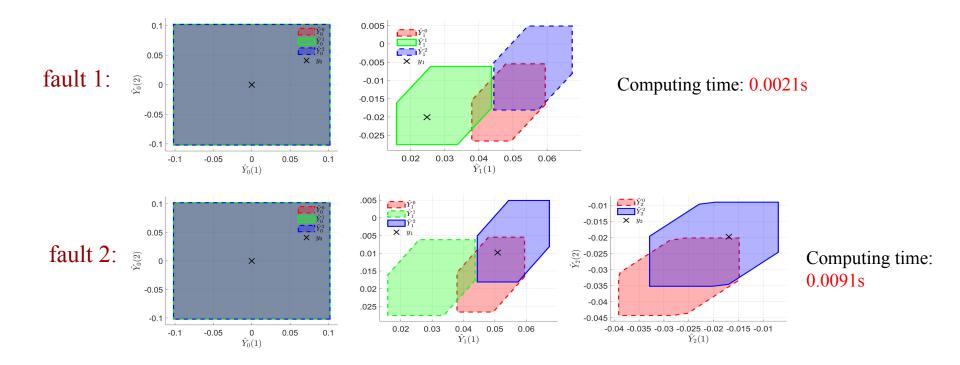
1. Observer-Based Active Fault Diagnosis Framework



1. Observer-Based Active Fault Diagnosis Framework

Illustration of [Xu, 2021]:

(A two-input, four-state and two-output system with three actuator modes (healthy + two faulty modes)



1. Observer-Based Active Fault Diagnosis Framework

A rough comparison of computing time between [Xu, 2021] and [Scott, 2014]: [Xu, 2021]:

1) Successful diagnosis of fault 1: 0.0021s;

2) Successful diagnosis of fault 2: 0.0091s

[Scott, 2014]:

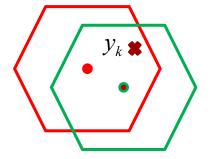
1) Find a feasible separating input sequence: 0.71s;

2) Design optimal input sequece by solving mixed-integer quadratic problem: >2000s (unsolvable)

2. Exclusion Tendency-Based Design for Optimal Observer Gain

Motivation: Minimal size of output sets does not mean the optimal fault diagnosis performance.
Idea: Deform output estimation set (OES) to optimize observer gains.
Objective: Further improve the performance of fault diagnosis.

After establishing observer-based AFD framework

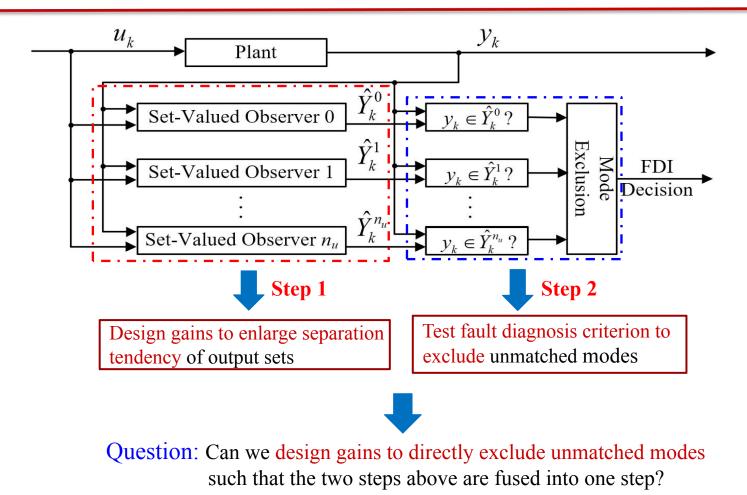


Optimize observer gains for fault diagnosis

Further improve fault diagnosis performance

What we need to do next?

2. Exclusion Tendency-Based Design for Optimal Observer Gain



2. Exclusion Tendency-Based Design for Optimal Observer Gain

How to determine if the output is inconsistent with a certain model?

Fault diagnosis criterion: $y_{k+1} \notin \hat{Y}_{k+1}^i, i \in \mathbb{I}$

Solve an LP problem [Scott, 2014]:

How to determine if the output is not in a set?

$$\begin{split} \hat{\delta}_{k+1}^{i} &:= \min_{\delta_{k+1}^{i}, \xi} \delta_{k+1}^{i}, \\ \text{s.t. } y_{k+1} &= \hat{y}_{k+1}^{i, c} + \hat{H}_{k+1}^{i, y} \xi, \\ \|\xi\|_{\infty} &\leq \delta_{k+1}^{i}. \end{split}$$

Zonotopic representation: $\hat{Y}_{k+1}^i = \langle \hat{y}_{k+1}^{i,c}, \hat{H}_{k+1}^{i,y} \rangle$

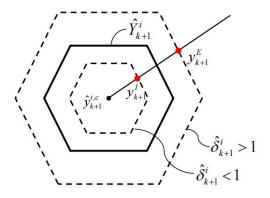
2. Exclusion Tendency-Based Design for Optimal Observer Gain

The value $\hat{\delta}_{k+1}^i$ is the scaling factor of \hat{Y}_{k+1}^i around its center $\hat{y}_{k+1}^{i,c}$:

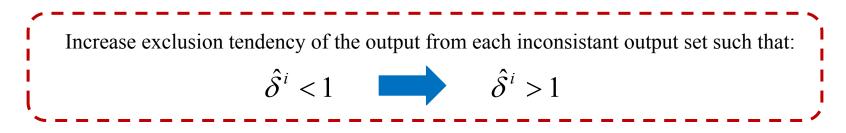
 $\begin{cases} \text{if } \hat{\delta}_{k+1}^i > 1 & \text{then } y_{k+1} \notin \hat{Y}_{k+1}^i \\ \text{if } \hat{\delta}_{k+1}^i \le 1 & \text{then } y_{k+1} \in \hat{Y}_{k+1}^i \end{cases}$

 $\hat{\delta}_{k+1}^{i} = 1$ serves as a boundary between inclusion and exclusion;

Define $\hat{\delta}_{k+1}^i$ as the exclusion tendency of \mathcal{Y}_{k+1} from \hat{Y}_{k+1}^i .

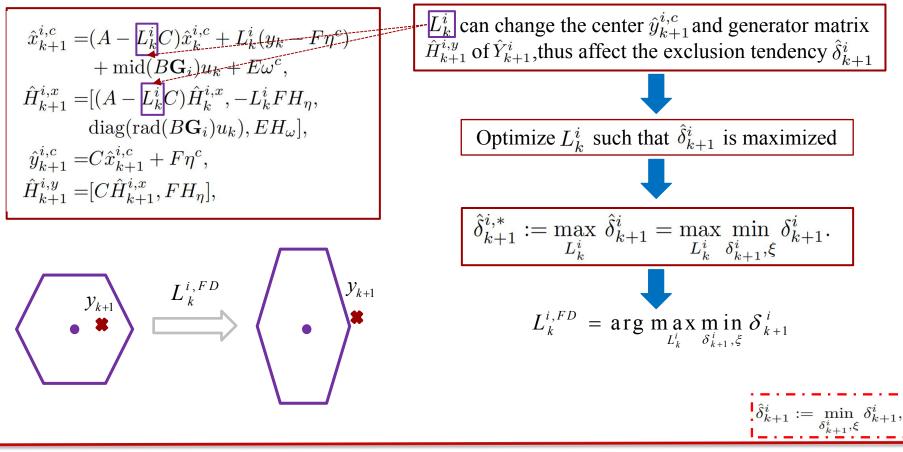


The proposed idea to design optimal observer gains for fault diagnosis:



2. Exclusion Tendency-Based Design for Optimal Observer Gain

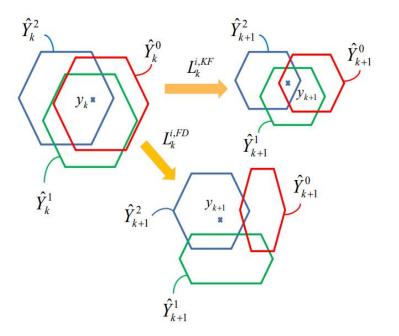
The proposed idea of designing optimal gains:



2. Exclusion Tendency-Based Design for Optimal Observer Gain

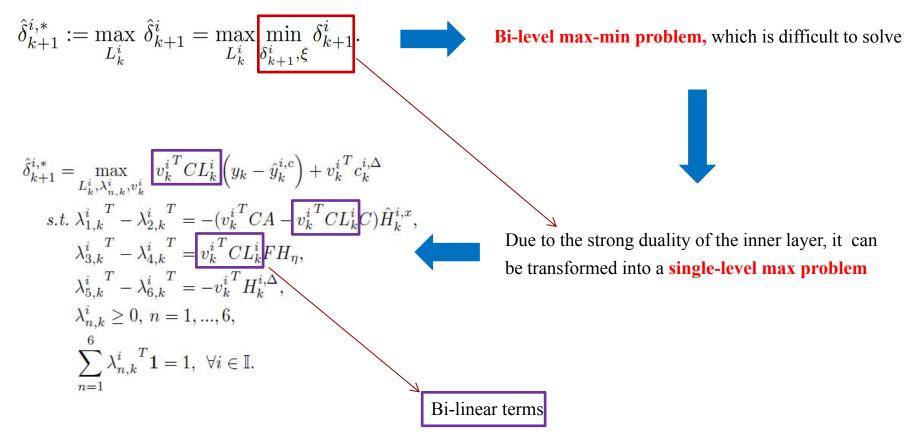
An illustration of the significance of $L_k^{i,FD}$ compared with $L_k^{i,KF}$:

- $L_k^{i,FD}$ that maximizes $\hat{\delta}_{k+1}^i$ boosts the exclusion y_{k+1} of from \hat{Y}_{k+1}^i
- Compared with $L_k^{i,FD}$, the size of each obtained from $L_k^{i,KF}$ is minimized, \hat{Y}_{k+1}^i is still included in the intersection re y_{k+1}



2. Exclusion Tendency-Based Design for Optimal Observer Gain

Dual transformation of the optimization problem:



2. Exclusion Tendency-Based Design for Optimal Observer Gain

Based on a transformation $(\gamma_k^i)^T = (v_k^i)^T C L_k^i$, we obtain the following linear problem:

$$\overline{\delta_{k+1}^{i,*}} := \max_{\substack{\gamma_k, \lambda_{n,k}^i, v_k^i}} \underbrace{\gamma_k^{i,T}}_{k} (y_k - \hat{y}_k^{i,c}) + v_k^{i,T} c_k^{i,\Delta}}_{k}$$

$$\text{s.t. } \lambda_{1,k}^{i,T} - \lambda_{2,k}^{i,T} = -v_k^{i,T} CA\hat{H}_k^{i,*} + \underbrace{\gamma_k^{i,T}}_{k} C\hat{H}_k^{i,*},$$

$$\lambda_{3,k}^{i,T} - \lambda_{4,k}^{i,T} = \underbrace{\gamma_k^{i,T}}_{k} FH_{\eta},$$

$$\lambda_{5,k}^{i,T} - \lambda_{6,k}^{i,T} = -v_k^{i,T} H_k^{i,\Delta},$$

$$\lambda_{n,k}^i \ge 0, n = 1, \dots, 6,$$

$$\sum_{n=1}^{6} \lambda_{n,k}^{i,T} \mathbf{1} = 1, \forall i \in \mathbb{I}.$$

$$\text{The observer gain } L_k^{i,FD} \text{ has the form:}$$

$$\text{The observer gain } L_k^{i,FD} \text{ has the form:}$$

$$\text{Where } L_k^{i,FD} = L_k^{i,0} + L_k^{i,1} R_k^i$$

$$U_k^{i,*} TCL_k^i = (\gamma_k^{i,*})^T$$

$$L_k^{i,0} = \frac{C^T v_k^{i,*} \gamma_k^{i,*T}}{v_k^{i,*T} CC^T v_k^{i,*}},$$

$$L_k^{i,1} = I_{n_x} - \frac{C^T v_k^{i,*} v_k^{i,*T} CC^T v_k^{i,*}}{v_k^{i,*T} CC^T v_k^{i,*}}$$

$$R_k^i \text{ is a free variable which can be further optimized to improve performance.}$$

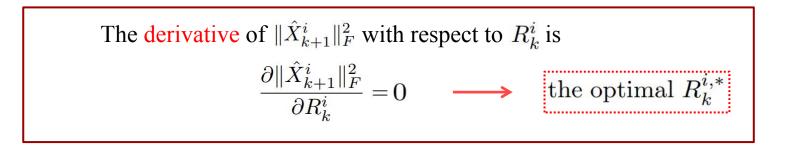
2. Exclusion Tendency-Based Design for Optimal Observer Gain

Further improvements of observer performance:

(I) Minimization of F-radius:

Minimize the F-radius of the state estimation set for more accurate results:

$$\min_{R_{k}^{i}} \| \hat{X}_{k+1}^{i} \|_{F}^{2} = \operatorname{tr} \left(\hat{H}_{k+1}^{i,x} \hat{H}_{k+1}^{i,x} \right), \forall i \in \mathbb{I}.$$



2. Exclusion Tendency-Based Design for Optimal Observer Gain

(II) Suppress divergence of observer dynamics:

The observer gain is designed to suppress the divergence of estimation error. Consider the Lyapunov stability to ensure the stable dynamics:

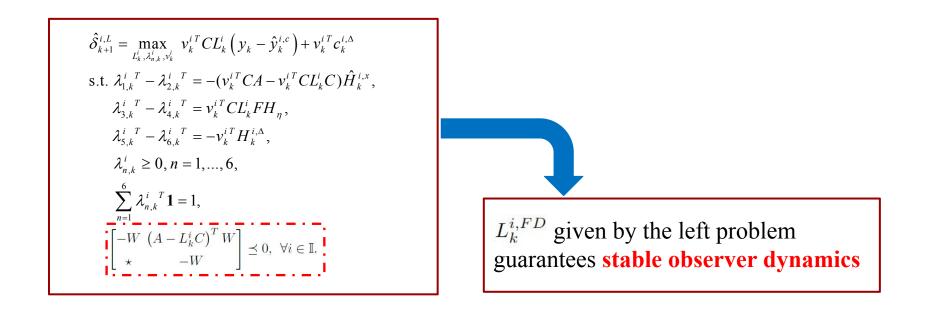
The dynamics of *SVO* is stable at the *k*-*th* step if the optimal solution

 $\alpha^* < 0$

2. Exclusion Tendency-Based Design for Optimal Observer Gain

(III) Stability guarantee:

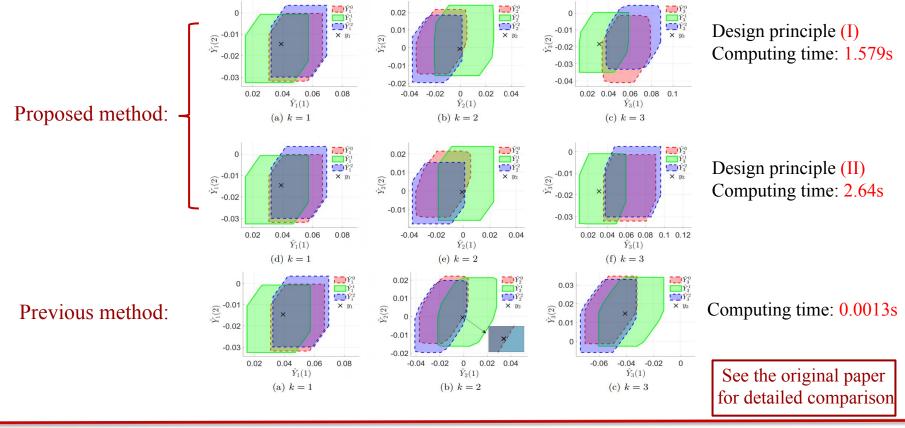
The stability-guaranteeing approach is to add the Lyapunov stability condition into the optimization problem:



2. Exclusion Tendency-Based Design for Optimal Observer Gain

Illustrative example :

A two-input, four-state and two-output system with three actuator modes (healthy and two faulty modes)



Part 3: Conclusions and Future Work

Conclusions and Future Work

Conclusions:

- Propose a separation tendency-based observer AFD framework that has lower complexity than classical methods using set separation condition.
 Propose an exclusion tendency-based framework to design optimal observer gains to improve fault diagnosis performance.
- 3) Separation tendency-based methods may loss some AFD performance compared with set separation-based methods.

Future Work:

Make a detailed comparison of AFD performance between set separation tendency-based methods and set separation-based methods.

Acknowledgements

(1) Collaborators on active fault diagnosis

Sorin Olaru (CentraleSupélec)

Maria Seron (UNewcastle)

Bin Liang (Tsinghua)

东省

Xueqian Wang (Tsinghua)

(2) Supervised students on active fault diagnosis

Junbo TAN (Postdoc & PhD & ME,2015-2022)

Songlin YANG Yushuai WANG (ME,2017-2020) (ME,2019-2022)

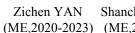
委员会

Yidian FAN (ME,2020-2023)

Department of Science and Technology of Guangdong Province

技术厅

Haohao QIU (ME,2020-2023)



Zhangqi HE Shanchuan CHEN (ME,2021-2024) (ME,2022-2025)

Thanks for your attention!