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Introduction



Remarks

e In applied mathematics, using time may help to overcome obsta-
cles

e Using an artificial delay: intentionally inserting a delay in the ob-
server design of a system, without the system having to rely on
past inputs or states

e \We will review two families of systems where using an artificial
delay can be useful for fixed-time observer design



Context and Goal

Context:

No appropriate knowledge of the initial conditions is known -+ no
monotonicity property



Context and Goal

Context:

No appropriate knowledge of the initial conditions is known 4+ no
monotonicity property

Goal:
e If known disturbances (=no disturbances) --- exact estimate after h
e If unknown disturbances --- interval estimate -.- Vk > fixed-time h

cf. Classical observers = Asymptotic estimate --- kK — o

cf. Interval observers = Two bounds Vk ---
- known bound of initial condition 4+ nonnegativity properties
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What are deadbit estimate & fixed-time interval estimate?

e Exact estimation after a fixed time which can be tuned in the
absence of disturbances

e Interval after a fixed time which can be tuned in the presence of
disturbances under assumptions of knowing bounds on uncertain

terms
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Use of past values of the input and the output of the studied system
(+ Frames of disturbances) = deadbit(— interval) estimate

R. Engel, G. Kreisselmeier, A Continuous-Time Observer Which Converges in
Finite Time. IEEE Trans. on Automatic Control, 47, pp. 1202-1204, 2002



Advantages of proposed interval technique

Classical designs Proposed technique
X No monotonicity property v
X No information on the v

bound of the initial conditions



Part I: Time-Invariant Discrete-Time Systems

*“T.N. Dinh, F. Mazenc, T. Raissi, " Finite-time guaranteed state estimation for
discrete-time systems with disturbances,” in Proceedings of the 4th conference on
Control and Fault-Tolerant Systems, Casablanca, Morocco, pp. 342-347, 2019



Notations & Lemmas:

Operators < must be understood componentwise

Q ER™™ QT =max{Q,0}, Q" =QT -Q, |Q|=QT +Q~

Let d € R™ be a vector such that d < d < d. If M € R™*" constant,
then MYtd—M-d< Md< MTd—M~d

For any nonlinear discrete-time system with disturbances x(k +

1) = Ax(k) + F(u(k),y(k)) +d(k), we can relate the state at time
m1 to the state at an earlier time m» as follows

mi—1

z(my) = A™M T M2p(my) + Y A™M T E(E), y(0) + d(0)]

=mo>
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Considered system

Consider the following discrete-time system

(S) { z(k + 1) = Az(k) + F(u(k),y(k)) + d(k)
) y(k) = Cz(k) + v(k)

Assumptions:
o d<d(k)<d, v<uv(k) <v — realistic
e The pair (A,C) is observable and A is invertible

(A,C) observable -3 L eRs.t. H= A+ LC admits a spectral radius
smaller than the modulus of any eigenvalue of A

= we can prove that there is an integer h > 0 such that the matrix
H—h _ g—h
—1
is invertible — we define E; = (H‘h — A—h>

A is not invertible — decompose Ax + F'(u,y) in an alternative way
so that the new matrix A is invertible



Key idea

H=A+LC, y=Cz+ v — two equivalent representations of (S)

z(k+ 1) = Azx(k) + F(u(k),y(k)) + d(k),
z(k+ 1) = Hx(k) + F(u(k),y(k)) — Ly(k) + d(k) + Lv(k)
Use of past values of the input and the output

11
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Key idea

H=A+4+LC, y=Czx+ v — two equivalent representations of (S)
r(k+ 1) = Az(k) + F(u(k),y(k)) + d(k),
r(k+ 1) = Hx(k) + F(u(k),y(k)) — Ly(k) + d(k) + Lv(k)
Use of past values of the input and the output

mi1—1
Recall z(mq) = AM~m2z(mp)+ > A" HE(u(0), y(£)) +d(0)]

f=my>

k—1
z(k) = Ahz(k —h) + 3 AFEHE(u(e),y(£)) + d(0)]
{=k—h

k—1
z(k) = H'z(k —h) + Y HFLHF((@),y(€)) — Ly(®) + d(£) + Lo(£)]
{=k—h
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Key idea

H=A+4+LC, y=Czx+ v — two equivalent representations of (S)

z(k+ 1) = Az(k) + F(u(k),y(k)) + d(k),
r(k+ 1) = Hx(k) + F(u(k),y(k)) — Ly(k) + d(k) + Lv(k)
Use of past values of the input and the output

mi1—1

Recall z(m1) = A™~M2x(mp)+ > A™THF(u(0), y(0) +d(0)]

=m»

k—1
AT e(k) = a(k—h) + Y AFEINEW(0), y(0) + d())]
{=k—h

k—1
H k) =a(k-hr)+ Y H" 1N FE@@),y) — Ly@) + d€) + Lv(£)]

{=k—h
k—1 k—1
— (H—h - A_h> z(k) = Z Hk—ﬁ—l—h[. ] — Z Ak—f—l—h[_ ]
h ~ g {=k—h {=k—h

—1
Eh



Exact estimation when disturbances are known

Theorem 1. Let L € R"¥9 and h € N, h > 1 be such that the matrix
H="_— A=h js invertible. Then, for a given input u(k), any solution
x(k) of the system (S) which exists over N satisfies, for all k > h,

k—1
z(k) = —E, Y AR, y(6)

{=k—h
k—1
+E, Y HN'YELR@E), y(@) — Ly(0)]
{=k—h
k—1 k—1
—Ep, > ANl + B, Y BN + Lo(0)
{=k—h {=k—h

with By, = (H™h - A—h)_l

Drawback: The formula may contain many terms because h may
be large and thus many values have to be stored — an alternative

solution which is based on dynamic extensions

12



Deadbit estimate

Theorem 2. Consider the dynamic extensions

z(k+1) = Az(k) + F(u(k),y(k)) + d(k)
and

zx(k + 1) = Hzw(k) + F(u(k),y(k)) — Ly(k) + d(k) + Lv(k).
Consider a solution xz(k) of (S) defined over N. Then, for all k > h,
z(k) = B}, [H—ha:*(k) —zw(k—h) — A3 (k) + 2(k — h)]

Remark 1. Notice that x« is a classical observer for the system (S)
when disturbances are known

13



Approximate estimation when disturbances are unknown

Recall Mtd - M-d< Md< M+td—- M—d
Theorem 3. For all integer k > h,

z(k) < z(k) <z(k)
with

k—1
(k) =—E, Y AR, y(0)

{=k—h
k—1
+E, Y HNYMELHR@E), y(0) — Ly(0)]
{=k—h
h T h -
4 (Z LAY+ thﬂ) d — (Z LAY + GhH€> d
/=1 /=1

h + h -
+1G, Y H'L|] v— (G, Y HL| v
where F, = —E, A~ g, = g, H—(h+1)

14



Approximate estimation when disturbances are unknown

Recall MTd - Md< Md< MTd—- M—d
Theorem 3. For all integer k > h,

z(k) < z(k) < z(k)
with

k—1
z(k)=—E, > AR, y(0)

{=k—h
k—1
+E, Y HNMELHR@E),y(0) — Ly(0)]
{=k—h
h + h -
1 (Z A+ GhH£> d— (Z AL + GhH€> d
/=1 /=1

h + h -
+G, Y H'L| v—|G, Y H'L| w
where F,, = —E, A~ (vt g, = g, H—(h+1)

14



Interval estimate

Theorem 4. Let us introduce several dynamic extensions:

za(k 4+ 1) = Azq(k) + F(u(k),y(k)),
zp(k+ 1) = Hzp(k) + F(u(k),y(k)) — Ly(k),
Then, for all kK > h, the inequalities
T(Zy) < xz(k) <Y (Zy),

with Z = (zq,2p) and the bounds Y, Y are an estimated interval for
the system (S) given by

T(Zk) = Eplza(k — h) — A2 (k) + H "2 (k) — 2,(k — R)]

h + h -
4 (Z LAY+ GhHe) d— (Z LA+ GhHE) d
/=1 /=1

+ (Gh zh: HEL)ij— (Gh zhj HEL)U

15



Interval estimate

Theorem 4. Let us introduce several dynamic extensions:

za(k 4+ 1) = Azq(k) + F(u(k),y(k)),
zp(k+ 1) = Hzp(k) + F(u(k),y(k)) — Ly(k),
Then, for all k > h, the inequalities
T(Zy) < xz(k) <Y (Zy),

with Z = (zq,2p) and the bounds Y, Y are an estimated interval for
the system (S) given by

Y(Z,) = Eplza(k — h) — A7 P20 (k) + H "2, (k) — 2;,(k — h)]

h + h -
4 (Z AL+ GhHe) d— (Z LA+ thﬁ) d
/=1 /=1

+ (Gh zh: HEL)ij— (Gh Eh: HﬁL)fu
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Numerical example

Consider the system
5 1 1
5’31(]{ + 1) — Z$1<k) + 332(k) + Zul(k) + §Sin(k)
3 1 1
ro(k+1) = —éxl(k) + §U2(k) + §Sin(k)

y(k) = 1.(k) + gsinu@)

. 3
3] givesH:A—l—LC:[ 8 1]

The choice L = [— 5 0
32

0|~
s

We can prove easily that H=" — A= is invertible for all h > 2 — All

assumptions are satisfied

16



Simulations
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Simulations
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Part II: Time-Varying Discrete-Time Systems

“T.N. Dinh, F. Mazenc, Z. Wang, T. Raissi, " On Fixed-Time Interval Estimation
of Discrete-Time Nonlinear Time-Varying Systems With Disturbances,” in Pro-
ceedings of the American Control Conference, Denver, CO, USA, pp. 2605-2610,
2020
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Lemma

Consider z(k+ 1) = A(k)x(k) + B(k,u(k),y(k)) +d(k). We can relate
the state at time m; to the state at an earlier time m»:

mi—1
z(my) = Pa(my,mp)z(ma) + > Pa(mi, €+ 1)[Bu(®),y(€)) + d(0)]

{=mo

where & 4(mq,mo) discrete-time state transition matrix:

A(my —1)A(mqp —2)--- A(mo), m1 >mo >0

P 4(m1, mp) = { I, my = mo

A(m1—1),A(mq — 2)..., A(m») invertible — ® 4(mq, mo) nonsingular

®(m1,mp) = & (ma,my) D a(my, D48, ma) = S 4(my,mo)



Considered system

Consider the following discrete-time system

(S,) : { p(k + 1) = Az (k) + Bk, u(k), y(k)) + d(k)
B y(k) = C(k)x(k) + v(k)

Assumptions:
(i) d<d(k) <d, v<wv(k) <v — realistic

(ii) Vk, the pair (A(k),C(k)) is observable and A(k) is invertible.
Furthermore, there exists L(k) such that the matrix

(ii)= we can prove that there exist matrices L(k),L(k—1)...,L(k—h)
and an integer hy € N s.t. Vh € N, h > hyx the matrix

dt(kyk—h) — dH(kk— R)
—1
is invertible — we define Ej, (k) = (cblgl(k,k —h) — d (k, k- h))

A(k) is not invertible — decompose A(k)x + B(k,u(k),y(k)) in an
alternative way so that the new matrix A(k) is invertible

20



Key idea

H(k) = A(k) + L(k)C(k), y(k) = C(k)x(k) + v(k) — two equivalent
representations of (S;)

r(k+1) = A(k)x(k) + B(k,u(k),y(k)) + d(k),

r(k+ 1) = H(k)x(k) + B(k,u(k),y(k)) — L(k)y(k) + d(k) + L(k)v(k)
Use of past values of the input and the output

21
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Key idea

H(k) = A(k) + L(k)C(k), y(k) = C(k)x(k) + v(k) — two equivalent
representations of (Si)

z(k+ 1) = A(k)z(k) + B(k,u(k),y(k)) + d(k),
x(k 4+ 1) = H(k)z(k) + B(k,u(k),y(k)) — L(k)y(k) 4 d(k) + L(k)v(k)

Use of past values of the input and the output

mi—1

Recall z(m1) = ®4(m1, m2)z(m2) + Z P (m1, L+ 1)[BU,u(l),y(€)) + d(£)]

f=my

k—1
2(k) = Pa(k,k —R)z(k—h) + Y ®alk, £+ 1)[BL u(0),y(€)) + d(0)]
{=k—h
k—1
2(k) = ®p(k,k—h)a(k—h)+ Y  ®pk, L+ 1)[Bu(@),y(0) — L(Oy(L) + d(€) + L(£)v (L))

{=k—h
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Key idea

H(k) = A(k) + L(k)C(k), y(k) = C(k)x(k) + v(k) — two equivalent
representations of (Si)

z(k+ 1) = A(k)z(k) + B(k,u(k),y(k)) + d(k),

z(k+ 1) = H(k)x(k) + B8(k,u(k),y(k)) — L(k)y(k) + d(k) + L(k)v(k)
Use of past values of the input and the output

Recall ®4(m1,mz2) = P (m2,m1)  Pa(m1, )P 4L, m2) = Pa(m1, m2)

k—1
Oy (ke k—h)z(k) =a(k—h) + Y ®a(k-h, £+ 1)[BLu(l),y(0)) + d(£)]

{=k—h

k—1
Stk k—h)a(k) =z(k—h)+ > Dyu(k-h 0+ 1B (L), y(€)) — Ly (L) + d(0)

{=k—h

+L(0)v(0)]

k—1 k—1
= (cb;Il(k,k; —h) - (k k- h)) z(k) = Z du(k-h, ¢4+ D[] = Z ®4(k-h, 0+ 1)[ -]
) E(K) g t=k—h (=h—h
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Exact estimation when disturbances are known

Theorem 5. Let L(k) € R"*9 and h € N, h > 1 be such that the
matrix 3t (k,k — h) — &1 (k,k — h) is invertible for all k € N. Then,
for all k > h,

k—1

2(k) = —Exp(k) Y ®alk—h, L+ 1)B(¢,u(L),y(0))

{=k—h

k—1
+ Bu(k) Y ®u(k—h, 0+ 1)[BLu0),y(€)) — L()y(L)]

{=k—h

with Ey(k) = (@51 (k,k —h) — d 1 (k,k —R))

Drawback: The formula may contain many terms because h may
be large and thus many values have to be stored — an alternative
solution which is based on dynamic extensions
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Deadbit estimate

Theorem 6. Consider the dynamic extensions

z(k 4+ 1) = A(k)z(k) 4+ B(k,u(k),y(k)) + d(k)

and

zx(k + 1) = H(k)z«(k) + B(k,u(k),y(k)) — L(k)y(k) + d(k) + L(k)v(k)
Consider a solution x(k) of (S;) defined over N. Then, for all k > h,
z(k) = Ey (k) [d)l_{l(k:, k—h)a(k) — zs(k — h) — D3 (k, k — h)@(k) + Z(k — h)}

Remark 2. Notice that z« is a classical observer for the system (S;)
when disturbances are known



Approximate estimation when disturbances are unknown

Recall Mtd— Md< Md< M+td— M—d
Theorem 7. For all integer k> h, z(k) < xz(k) <z(k) with

k—1
Z(k) = —En(k) Y ®alk—h, L4+ 1B ul),y(0))
{=k—h
k—1

+ En(k) Y Pu(k—h, L+ 1)L u(0),y(0)) — L(O)y(L)]

{=k—h

where Fy(k) = —Ep(k)® ' (k,k—h), Gr(k) = Ep(k)® (k, k — h)

24



Approximate estimation when disturbances are unknown

Recall MYd— Md< Md< M+td— M-d
Theorem 7. For all integer k > h, z(k) < z(k) <=m(k) with

k—1
z(k) = —Ep(k) Y ®alk—h, L4+ 1B ul),y(0))

{=k—h

k—1
+ Bu(k) Y ®u(k—h, 0+ 1)[BLu(0),y(€)) — L()y(L)]

{=k—h

where F,(k) = —Ep(k)® ' (k,k —h), Gr(k) = En(k)d; (k,k — h)

24
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Interval estimate

Theorem 8. Let us introduce several dynamic extensions:

za(k + 1) = A(k)za(k) + B(k,u(k),y(k))
zp(k+ 1) = H(k)zp(k) + B(k,u(k),y(k)) — L(k)y(k)
Then, for all kK > h, the inequalities
T(Z) <x(k) <Y (Zy),

<
with Z = (za,2,) and the bounds Y, Y are an estimated interval for
the system (Si) given by

T(Z1) = Ep(k)[2a(k — h) — ® 1 (k, k — h) 2o (k) + @5 (k, k — h)zp(k) — zn(k — h)]
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Interval estimate

Theorem 8. Let us introduce several dynamic extensions:

za(k + 1) = A(k)za(k) + B(k,u(k),y(k))
zp(k+ 1) = H(k)zp (k) + B8(k,u(k),y(k)) — L(k)y(k)
Then, for all k > h, the inequalities
T(Z) <x(k) <T(Zy),

with Z = (zq,2p) and the bounds Y, Y are an estimated interval for
the system (Si) given by

Y (Zk) = En(k)[za(k — h) — d (K k — h)zo(k) + D (K, k — h)zn (k) — 21, (k — h)]



26
Numerical example

Consider the system borrowed from [Zhong et al., 2010] with

027160 06 O (0.25in(0.2k)

Ak) = 0 0.5 sin(k) | »Bu(k),y(k)) = | 1.8sin(0.2k) |,
0 0 07 | 0.3sin(0.2k) |

i %sin(Qk) ]
d(k) = | Zzsin(2k) | and (k) = 0.3 cos(k)

| Zsin(2k) |

-
Choose L(k) = [% 0 O} We can prove easily that A(k), H(k) =

A(k)+L(k)C(k) and Ep(k) = &5 (k, k—h)—® 1 (k, k—h) are invertible
for Vk € N, h = {3,4} — All assumptions are satisfied

M. Zhong, D. Zhou, S.X. Ding, On Designing H,, Fault Detection Filter for
Linear Discrete Time-Varying Systems, IEEE Transactions on Automatic Con-
trol, 55, pp. 1689-1695, 2010



Simulations
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Application to Switched Linear DT Systems

“L. Dadi, T.N. Dinh, T. Raissi, H. Ethabet, M. Aoun, "New Finite-Time Observers
design for a Discrete-Time Switched Linear System,” in Proceedings of the 1st
IFAC Workshop on Control of Complex Systems , Bologna, Italy, pp. 73-78, 2022



Problem statement

Consider the following discrete-time switched linear system

(S0 { (k4 1) = Agz(k) + Byu(k) + d(k)
0 y(k) = Cqz(k) + v(k)

Assumptions:
e Minimal dwell time: 3 known 7, s.t. Vg € 1,N,tq —t,—1 > Ta
o d<d(k)<d, v<uv(k) <v — realistic
e Vg€ 1,N, the pair (Ay, Cy) is observable and Ay is invertible
e Jh > 0 and such that the matrix

—h —h
Hq - Aq
is invertible

29
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Simulations
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Simulations
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Conclusion and Perspectives



Conclusion and Perspectives

The key idea relies on the use of past values of the input and the
output of the studied system

Neither information on the bound of the initial conditions nor
monotonicity property is needed in our development

Providing exact values of the solutions in the absence of distur-
bances and a lower and upper bounds when the disturbances are
present after a fixed time which can be tuned

Future work:

— Extension to more general families of nonlinear discrete-time
systems can be considered

— Adding unknown input
— Observer-based feedback is also expected

32



Thank you for your attention ©!



