## Co

## Principe:

Set of initial states $\mathcal{S}_{0} \subset \mathbb{R}^{n}$
Nonlinear mapping $\boldsymbol{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ Enclosing Set $\mathcal{S}_{\text {out }} \subset \mathbb{R}^{n}$ such that $\boldsymbol{g}\left(\mathcal{S}_{0}\right) \subseteq \mathcal{S}_{\text {out }}$


Figure 1: Set representation

## Interest:

- guaranteed prediction algorithm
- a tool for mathematical proofs

Limitations:

- wrapping effect
- computational complexity


## Common shapes of sets

- boxes
- zonotopes
- ellipsoids


## 

## Definition

A non-degenerated ellipsoid is a subset of $\mathbb{R}^{n}$ described by the quadratic form

$$
\begin{equation*}
\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\Gamma})=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Gamma}^{-T} \boldsymbol{\Gamma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \leq 1\right\} \tag{1}
\end{equation*}
$$

with $\Gamma \in \mathbb{R}^{n \times n}$, the center $\mu \in \mathbb{R}^{n}$ and the positive definite matrix $\Gamma \Gamma^{\top}$.

An ellipsoid is an affine transformation of the unit sphere:

$$
\begin{align*}
\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\Gamma}) & =\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \exists \boldsymbol{e} \in \mathbb{R}^{n}, \boldsymbol{x}=\boldsymbol{\mu}+\boldsymbol{\Gamma} \cdot \boldsymbol{e},\|\boldsymbol{e}\|_{2} \leq 1\right\} \\
& =\boldsymbol{\mu}+\boldsymbol{\Gamma} \cdot \mathcal{E}\left(0, \boldsymbol{I}_{n}\right) \tag{2}
\end{align*}
$$



## ENSTA <br> Existing method - Linearisation

Propagation by extended Kalman filter


Figure 3: Estimation by linearisation

Propagation by linearisation at the point $\mu$ :

$$
\begin{align*}
\boldsymbol{\mu}_{l} & =\boldsymbol{g}(\boldsymbol{\mu})  \tag{3}\\
\Gamma_{l} & =\boldsymbol{A} \cdot \boldsymbol{\Gamma}  \tag{4}\\
\boldsymbol{A} & =\frac{\partial \boldsymbol{g}}{\partial \boldsymbol{x}}(\boldsymbol{\mu})
\end{align*}
$$

$$
\begin{align*}
\hat{\boldsymbol{x}}_{k+1} & =\boldsymbol{g}\left(\hat{\boldsymbol{x}}_{k}\right)  \tag{6}\\
\boldsymbol{G}_{k+1} & =\boldsymbol{A}_{k} \cdot \boldsymbol{G}_{k} \cdot \boldsymbol{A}_{k}^{T}+\boldsymbol{G}_{\alpha}  \tag{7}\\
\boldsymbol{A}_{k} & =\frac{\partial \boldsymbol{g}}{\partial \boldsymbol{x}}\left(\hat{\boldsymbol{x}}_{k}\right) \tag{8}
\end{align*}
$$

## Resemblance

$$
\begin{align*}
\boldsymbol{\mu} & \leftrightarrow \hat{\boldsymbol{x}}_{k}  \tag{9}\\
\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{T} & \boldsymbol{G}_{k} \tag{10}
\end{align*}
$$

## Co

## Theorem - Rauh et al. 2022 [1]

Consider the ellipsoid $\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\Gamma})$ and the nonlinear mapping $\boldsymbol{g}$. The matrix $\boldsymbol{A}=\frac{\partial \boldsymbol{g}}{\partial \boldsymbol{x}}(\boldsymbol{\mu})$ is supposed invertible. A set enclosing $\boldsymbol{g}(\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\Gamma}))$ and written $\mathcal{E}\left(\boldsymbol{\mu}_{\text {out }}, \boldsymbol{\Gamma}_{\text {out }}\right)$ is given by

$$
\begin{align*}
\boldsymbol{\Gamma}_{\text {out }} & =(1+\rho) \cdot \boldsymbol{A} \cdot \boldsymbol{\Gamma}  \tag{11}\\
\boldsymbol{\mu}_{\mathrm{out}} & =\boldsymbol{g}(\boldsymbol{\mu}) \tag{12}
\end{align*}
$$

where

$$
\begin{align*}
\rho & =\max _{\|\tilde{\boldsymbol{x}}\| \leq 1}\|\tilde{\boldsymbol{b}}(\tilde{\boldsymbol{x}})\|  \tag{13}\\
\tilde{\boldsymbol{b}}(\tilde{\boldsymbol{x}}) & =\boldsymbol{\Gamma}^{-1} \cdot \boldsymbol{A}^{-1}(\boldsymbol{g}(\boldsymbol{\Gamma} \cdot \tilde{\boldsymbol{x}}+\boldsymbol{\mu})-\boldsymbol{g}(\boldsymbol{\mu}))-\tilde{\boldsymbol{x}} \tag{14}
\end{align*}
$$

## C Evicir dinc Existing method-Illustration



Figure 4: Theorem illustration

## Co

When $\boldsymbol{A} \boldsymbol{\Gamma}$ is not invertible:

- The ellipsoid $\mathcal{E}\left(\mu_{\text {out }}, \boldsymbol{A} \boldsymbol{\Gamma}\right)$ is degenerated
- Inflating the ellipsoid won't guaranty the enclosure $\boldsymbol{g}(\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\Gamma}))$
Common Examples:
- Projections
- Fluid damping (quadratic)


Figure 5: Singularity example

## Ci Esia minc Singularity - Degenerated ellipsoid

No quadratic form, $\Gamma$ not invertible but there is an affine transformation:

$$
\begin{equation*}
\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\Gamma})=\boldsymbol{\mu}+\boldsymbol{\Gamma} \cdot \mathcal{E}\left(0, \boldsymbol{I}_{n}\right) \tag{15}
\end{equation*}
$$



Figure 6: Degenerated example

## Ci

Start from $\mathcal{E}\left(\boldsymbol{\mu}_{\text {out }}, \boldsymbol{A} \boldsymbol{\Gamma}\right)$ to find an ellipsoid $\mathcal{E}\left(\mu_{\text {out }}, \boldsymbol{\Gamma}_{s}\right)$ similar to $\boldsymbol{g}(\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\Gamma}))$


Figure 7: Find lost dimensions

Particular case, planar projection: one can keep the degenerated ellipsoid $\mathcal{E}\left(\boldsymbol{\mu}_{\text {out }}, \boldsymbol{A} \boldsymbol{\Gamma}\right)$


Figure 8: Projection example

## C) Evicia lin Singularity - Singular Value Decomposition

Singular value decomposition

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{\Gamma}=\boldsymbol{U} \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{V}^{T} \tag{16}
\end{equation*}
$$

with $\boldsymbol{U} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{V} \in \mathbb{R}^{n \times n}$ orthonormals and $\boldsymbol{\Sigma} \in \mathbb{R}^{n \times n}$ diagonal.

The diagonal elements of $\Sigma$ are the singular values $\sigma_{i} \geq 0$.


Figure 9: Example in 2 dimensions

## C) ENsTA Man Singularity - Adding singular values



Figure 10: Meet the shape of the set

## ف

$\mathcal{E}\left(\boldsymbol{\mu}_{\text {out }}, \boldsymbol{\Gamma}_{\text {out }}\right)$ is given by

$$
\begin{align*}
& \boldsymbol{\Gamma}_{\text {out }}=(1+\rho) \cdot \boldsymbol{\Gamma}_{s}  \tag{17}\\
& \boldsymbol{\mu}_{\mathrm{out}}=\boldsymbol{g}(\boldsymbol{\mu}) \tag{18}
\end{align*}
$$

where

$$
\begin{aligned}
\rho & =\max _{\|\tilde{\tilde{x}}\| \leq 1}\|\tilde{\boldsymbol{b}}(\tilde{\boldsymbol{x}})\| \\
\tilde{\boldsymbol{b}}(\tilde{\boldsymbol{x}}) & =\boldsymbol{W}(\boldsymbol{g}(\boldsymbol{\Gamma} \cdot \boldsymbol{e}+\boldsymbol{\mu})-\boldsymbol{g}(\boldsymbol{\mu}))-\boldsymbol{Z} \tilde{\boldsymbol{x}}
\end{aligned}
$$

and where the matrices $\boldsymbol{\Gamma}_{s}$, $\boldsymbol{W}$ and $\boldsymbol{Z}$ from $\mathbb{R}^{n \times n}$ are given by:

- (General case), if $\boldsymbol{A} \boldsymbol{\Gamma}$ is invertible, then

$$
\begin{align*}
\boldsymbol{\Gamma}_{\boldsymbol{s}} & =\boldsymbol{A} \boldsymbol{\Gamma}  \tag{21}\\
\boldsymbol{W} & =\boldsymbol{\Gamma}_{\boldsymbol{s}}^{-1}  \tag{22}\\
\boldsymbol{Z} & =\boldsymbol{I}_{n} \tag{23}
\end{align*}
$$

## ف

- (Singular case), if $\boldsymbol{A} \boldsymbol{\Gamma}$ is not invertible, then

$$
\begin{aligned}
\Gamma_{\boldsymbol{s}} & =\boldsymbol{U} \boldsymbol{S} \\
\boldsymbol{W} & =\boldsymbol{S}^{*} \boldsymbol{U}^{T} \\
\boldsymbol{Z} & =\boldsymbol{S}^{*} \boldsymbol{S}^{\top}
\end{aligned}
$$

with the diagonal matrices

$$
\begin{align*}
\boldsymbol{S} & =\operatorname{diag}\left(s_{1}, \boldsymbol{s}_{2}, \ldots, \boldsymbol{s}_{n}\right)  \tag{27}\\
\boldsymbol{S}^{*} & =\operatorname{diag}\left(s_{1}^{*}, s_{2}^{*}, \ldots, s_{n}^{*}\right) \tag{28}
\end{align*}
$$

where

## Geviri dinc Singularity - Proposed Solution



Figure 11: New theorem illustration

## Concie mixil Application-Consensus

Continuous system with three robots and periodic position measurement:

$$
\begin{align*}
\dot{x}_{i} & =v_{i},  \tag{30}\\
\dot{v}_{i} & =u_{i},  \tag{31}\\
y_{i, k} & =x_{i}\left(t_{k}\right),  \tag{32}\\
t_{k} & =k \cdot \delta_{t} \tag{33}
\end{align*}
$$

with $i \in \mathcal{I}_{3}, \mathcal{I}_{3}=\{1,2,3\}, k \in \mathbb{N}, x_{i} \in \mathbb{R}$, $v_{i} \in \mathbb{R}, u_{i} \in \mathbb{R}$ and the period between the measurements $\delta_{t}>0$

## Concie mixic Application-Consensus

The robots must find a consensus

$$
\begin{aligned}
\lim _{t \rightarrow \infty}\left\|x_{i}(t)-x_{j}(t)\right\| & =0 \\
\lim _{t \rightarrow \infty}\left\|v_{i}(t)-v_{j}(t)\right\| & =0
\end{aligned}
$$

for all $i, j \in \mathcal{I}_{3}$

Consensus protocol [Zheng et al.] [2]:
$\dot{u}_{i}(t)=\sum_{j \neq i}\left(y_{j, k}-x_{i}(t)\right)-c \cdot v_{i}(t), t \in\left(t_{k}, t_{k}+1\right]$
with the feedback gain $c>0$.

## Co Ewicie firicc Application - Propagation



Figure 13: Propagation process

## C

## State vector

$$
\begin{align*}
\boldsymbol{z} & =\left[z_{i}\right]_{i \in[1,9]},  \tag{37}\\
z_{1}(t) & =x_{2}(t)-x_{1}(t),  \tag{38}\\
z_{2}(t) & =v_{2}(t)-v_{1}(t),  \tag{39}\\
z_{3}(t) & =x_{3}(t)-x_{1}(t),  \tag{40}\\
z_{4}(t) & =v_{3}(t)-v_{1}(t),  \tag{41}\\
z_{5}(t) & =x_{3}(t)-x_{2}(t),  \tag{42}\\
z_{6}(t) & =v_{3}(t)-v_{2}(t),  \tag{43}\\
z_{7, k} & =y_{2, k}-y_{1, k},  \tag{44}\\
z_{8, k} & =y_{3, k}-y_{1, k},  \tag{45}\\
z_{9, k} & =y_{3, k}-y_{2, k} . \tag{46}
\end{align*}
$$

## Initial set of state

$$
\begin{align*}
\|z(0)\| & <e  \tag{47}\\
z_{6+j, 0} & =z_{j}(0), \text { for } j \in[1: 3] \tag{48}
\end{align*}
$$

with $e>0$, equivalent to $\boldsymbol{z}(0) \in \mathcal{E}\left(0, \Gamma_{0}\right)$ with the singular matrix

$$
\begin{equation*}
\boldsymbol{\Gamma}_{0}=\boldsymbol{e} \cdot\left[\right] \tag{49}
\end{equation*}
$$

## G

Cause of the singularity:

- The initial state is a degenerated ellipsoid
- The measurements are linear projections
By the propagation of the degenerated ellipsoid, on can find a matrix $\Gamma_{t_{\text {end }}}$ such that

$$
\begin{equation*}
z\left(t_{\text {end }}\right) \in \mathcal{E}\left(0, \Gamma_{t_{\text {end }}}\right) \tag{50}
\end{equation*}
$$

with $t_{\text {end }}>0$

One can then verify that the system is contracting

$$
\begin{equation*}
t_{\text {end }}>0, \mathcal{E}\left(0, \Gamma_{t_{\text {end }}}\right) \subseteq \mathcal{E}\left(0, \Gamma_{0}\right) \tag{51}
\end{equation*}
$$

## To

The proposed solution in the singular case can be used to

- consider degenerated ellipsoids
- study systems with projections or other singular mappings

This tool is being tested for the stability analysis of $n$-dimensional non-linear hybrid systems

## Ci

固 Andreas Rauh and Luc Jaulin.
A computationally inexpensive algorithm for determining outer and inner enclosures of nonlinear mappings of ellipsoidal domains.
International Journal of Applied Mathematics and Computer Science, 31 (3):399-415, 2021.
: Yuanshi Zheng, Qi Zhao, Jingying Ma, and Long Wang. Second-order consensus of hybrid multi-agent systems. Systems \& Control Letters, 125:51-58, March 2019.

