Remainder-Form Mixed-Monotone Decomposition Functions

Mohammad Khajenejad

Department of Mechanical and Aerospace Engineering University of California, San Diego, USA

Email: mkhajenejad@ucsd.edu

International Online Seminar on Interval Methods in Control Engineering May 25, 2023

uncertainties \implies robustness

 $\mathsf{unsafe} \; \mathsf{regions} \; \Longrightarrow \; \mathsf{safety} \; \mathsf{critical}$

uncertainties \implies robustness

unsafe regions \implies safety critical

attacks \implies resiliency

unsafe regions \implies safety critical

attacks ⇒ resiliency

data protection \implies privacy

System Properties ⇒ Safe & Secure Autonomy

Research Question

Can we leverage dynamic systems' properties to obtain robust, resilient distributed & private autonomy?

System Properties ⇒ Safe & Secure Autonomy

Research Question

Can we leverage dynamic systems' properties to obtain robust, resilient, distributed & private autonomy?

Reachability Analysis & Resilient Estimation in Safe and Secure Autonomy

trajectories in swarm of drones

Monosaccharide propagation

Outline; from Mixed-Monotonicity to...

• remainder-form decomposition functions

- applications:
 - set-valued state estimation
 - ▶ interval observer design
 - (distributed) resiliency
- future visions

Outline; from Mixed-Monotonicity to...

• remainder-form decomposition functions

- applications
 - set-valued state estimation
 - interval observer design
 - ▶ (distributed) resiliency
- future visions

Set-Valued Robust Reachability Analysis

 Can be very challenging and computationally expensive for nonlinear systems

Set-Valued Robust Reachability Analysis

 Can be very challenging and computationally expensive for nonlinear systems

Set-Valued Robust Reachability Analysis

Can be very challenging and computationally expensive for nonlinear systems

Reachability via Inclusion/Decomposition Functions

$$\underline{f} \leq \min_{x \in \mathcal{X}} f(x) \leq f(x) \leq \max_{x \in \mathcal{X}} f(x) \leq \overline{f} \Rightarrow [f](\mathcal{X}) = [\underline{f}, \overline{f}] \leftarrow \begin{cases} \text{centered forms} \\ \text{mixed forms} \end{cases}$$

$$\exists \text{Taylor forms} \\ \vdots \\ \text{mixed-monotone forms} \end{cases}$$

Problem 1

Given f and \mathcal{X} , can we find a tight and tractable inclusion function [f]?

natural inclusions

Mixed-Monotonicity & Decomposition Functions

Definition 2 (DT Decomposition Functions (Yang.ea 2019))

- $ullet x_t^+ = f(x_t, w_t)$: a DT system, $f: \mathcal{Z} \to \mathbb{R}^n$
- $f_d: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}^n$: a DT-MMDF with respect to f, if
 - $f_d(z,z) = f(z)$
 - $\qquad \hat{z} \geq z \Rightarrow f_d(\hat{z}, z') \geq f_d(z, z')$
 - $\hat{z} \geq z \Rightarrow f_d(z', \hat{z}) \leq f_d(z', z)$

Definition 3 (CT Decomposition Functions (Abate.ea.2020))

- $x_t^+ = f(x_t, w_t)$: a CT system, $f: \mathbb{Z} \to \mathbb{R}^n$
- $f_d: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}^n$: a CT-MMDF with respect to f, if
 - $f_d(z,z) = f(z)$
 - $\hat{z} \ge z \land \hat{z}_i = z_i \Rightarrow f_{d,i}(\hat{z},z') \ge f_{d,i}(z,z')$ (only "off-diagonal" arguments)
 - $\hat{z} \geq z \Rightarrow f_d(z', \hat{z}) \leq f_d(z', z)$

Mixed-Monotonicity & Decomposition Functions

Definition 2 (DT Decomposition Functions (Yang.ea 2019))

- ullet $x_t^+ = f(x_t, w_t)$: a DT system, $f: \mathcal{Z} \to \mathbb{R}^n$
- $f_d: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}^n$: a DT-MMDF with respect to f, if
 - $f_d(z,z) = f(z)$
 - $\hat{z} \geq z \Rightarrow f_d(\hat{z}, z') \geq f_d(z, z')$
 - $\hat{z} \geq z \Rightarrow f_d(z', \hat{z}) \leq f_d(z', z)$

Definition 3 (CT Decomposition Functions (Abate.ea.2020))

- $x_t^+ = f(x_t, w_t)$: a CT system, $f: \mathcal{Z} \to \mathbb{R}^n$
- $f_d: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}^n$: a CT-MMDF with respect to f, if
 - $f_d(z,z) = f(z)$
 - $\hat{z} \ge z \land \hat{z}_i = z_i \Rightarrow f_{d,i}(\hat{z},z') \ge f_{d,i}(z,z')$ (only "off-diagonal" arguments)
 - $\hat{z} \geq z \Rightarrow f_d(z', \hat{z}) \leq f_d(z', z)$

Embedding Systems

Definition 4 (Embedding Systems)

- $x_t^+ = f(x_t, w_t)$: an *n*-dimensional DT/CT system
- ullet $x_0 \in [\underline{x}_0 \ \overline{x}_0], \ w_t \in [\underline{w} \ \overline{w}]$
- $f_d(\cdot,\cdot)$: any decomposition function of f
- 2*n*-dimensional embedding system:

$$\begin{bmatrix} \underline{\mathbf{X}}_{t}^{+} \\ \overline{\mathbf{x}}_{t}^{+} \end{bmatrix} = \begin{bmatrix} f_{d}([\underline{\mathbf{X}}_{t}^{\top} \ \underline{\mathbf{w}}^{\top}]^{\top}, [\overline{\mathbf{X}}_{t}^{\top} \ \overline{\mathbf{w}}^{\top}]^{\top}) \\ f_{d}([\overline{\mathbf{x}}_{t}^{\top} \ \overline{\mathbf{w}}^{\top}]^{\top}, [\underline{\mathbf{X}}_{t}^{\top} \ \underline{\mathbf{w}}^{\top}]^{\top}) \end{bmatrix}$$
(1)

Proposition:

$$\underline{x}_t \le x_t \le \overline{x}_t, \forall t \ge 0, \forall w \in \mathcal{W}$$

Embedding Systems

Definition 4 (Embedding Systems)

- $x_t^+ = f(x_t, w_t)$: an *n*-dimensional DT/CT system
- $x_0 \in [\underline{x}_0 \ \overline{x}_0], \ w_t \in [\underline{w} \ \overline{w}]$
- $f_d(\cdot,\cdot)$: any decomposition function of f
- 2*n*-dimensional embedding system:

$$\begin{bmatrix} \underline{\mathbf{x}}_t^+ \\ \overline{\mathbf{x}}_t^+ \end{bmatrix} = \begin{bmatrix} f_d([\underline{\mathbf{x}}_t^\top \ \underline{\mathbf{w}}^\top]^\top, [\overline{\mathbf{x}}_t^\top \ \overline{\mathbf{w}}^\top]^\top) \\ f_d([\overline{\mathbf{x}}_t^\top \ \overline{\mathbf{w}}^\top]^\top, [\underline{\mathbf{x}}_t^\top \ \underline{\mathbf{w}}^\top]^\top) \end{bmatrix}$$
(1)

Proposition 1

$$\underline{x}_t \leq x_t \leq \overline{x}_t, \forall t \geq 0, \forall w \in \mathcal{W}.$$

Existing Decomposition Functions

• "Optimal" (Abate.ea.2020):

$$f_{d,i}^{O}(z,\hat{z}) = \begin{cases} \min_{\zeta \in [z,\hat{z}]} f_i(\zeta) & \text{if } z \leq \hat{z}, \\ \max_{\zeta \in [\hat{z},z]} f_i(\zeta) & \text{if } \hat{z} \leq z. \end{cases}$$

• (Yang.ea.2019)

$$f_{d,i}^{L}(z,\hat{z}) = f_i(\zeta) + (\alpha_i - \beta_i)(z - \hat{z}),$$

$$\alpha_{ij} = \begin{cases} 0, & \mathsf{Cases}\,1, 3, 4, 5, \\ |a_{ij}|, \mathsf{Case}\,2, \end{cases}, \ \beta_{ij} = \begin{cases} 0, & \mathsf{Cases}\,1, 2, 4, 5, \\ -|b_{ij}|, \mathsf{Case}\,3, \end{cases}, \\ \zeta_j = \begin{cases} z_j, & \mathsf{Cases}\,1, 2, 5, \\ \hat{z}_j, & \mathsf{Cases}\,3, 4, \end{cases}$$

$$\mathsf{Case}\,1: a_{ii} > 0, \, \mathsf{Case}\,2: a_{ii} < 0, b_{ii} > 0, \, |a_{ij}| < |b_{ij}|, \, \mathsf{Case}\,3, \end{cases}$$

Case 1: $a_{ij} \ge 0$, Case 2: $a_{ij} \le 0$, $b_{ji} \ge 0$, $|a_{ij}| \le |b_{ij}|$, Case

Existing Decomposition Functions

• "Optimal" (Abate.ea.2020):

$$f_{d,i}^{O}(z,\hat{z}) = \begin{cases} \min_{\zeta \in [z,\hat{z}]} f_i(\zeta) & \text{if } z \leq \hat{z}, \\ \max_{\zeta \in [\hat{z},z]} f_i(\zeta) & \text{if } \hat{z} \leq z. \end{cases}$$

• (Yang.ea.2019)

$$f_{d,i}^{L}(z,\hat{z}) = f_i(\zeta) + (\alpha_i - \beta_i)(z - \hat{z}),$$

$$\alpha_{ij} = \begin{cases} 0, & \mathsf{Cases}\,1,3,4,5, \\ |a_{ij}|, \mathsf{Case}\,2, \end{cases}, \ \beta_{ij} = \begin{cases} 0, & \mathsf{Cases}\,1,2,4,5, \\ -|b_{ij}|, \mathsf{Case}\,3, \end{cases},$$

$$\zeta_j = \begin{cases} z_j, & \mathsf{Cases}\,1,2,5, \\ \hat{z}_j, & \mathsf{Cases}\,3,4, \end{cases}$$

$$\mathsf{Case}\,1: a_{ij} \geq 0, \, \mathsf{Case}\,2: a_{ij} \leq 0, b_{ji} \geq 0, |a_{ij}| \leq |b_{ij}|, \, \mathsf{Case}\,3, \end{cases}$$

Existing Decomposition Functions

• "Optimal" (Abate.ea.2020):

$$f_{d,i}^{O}(z,\hat{z}) = \begin{cases} \min_{\zeta \in [z,\hat{z}]} f_i(\zeta) & \text{if } z \leq \hat{z}, \\ \max_{\zeta \in [\hat{z},z]} f_i(\zeta) & \text{if } \hat{z} \leq z. \end{cases}$$

• (Yang.ea.2019)

$$f_{d,i}^{L}(z,\hat{z}) = f_{i}(\zeta) + (\alpha_{i} - \beta_{i})(z - \hat{z}),$$

$$\alpha_{ij} = \begin{cases} 0, & \mathsf{Cases}\,1,3,4,5, \\ |a_{ij}|, \mathsf{Case}\,2, \end{cases}, \ \beta_{ij} = \begin{cases} 0, & \mathsf{Cases}\,1,2,4,5, \\ -|b_{ij}|, \mathsf{Case}\,3, \end{cases},$$

$$\zeta_{j} = \begin{cases} z_{j}, & \mathsf{Cases}\,1,2,5, \\ \hat{z}_{j}, & \mathsf{Cases}\,3,4, \end{cases}$$

$$\mathsf{Case}\,1: a_{ij} \geq 0, \, \mathsf{Case}\,2: a_{ij} \leq 0, b_{ji} \geq 0, |a_{ij}| \leq |b_{ij}|, \, \mathsf{Case}\,3, \end{cases}$$

 $3: a_{ii} \le 0, b_{ii} \ge 0, |a_{ii}| \ge |b_{ii}|, \text{ Case } 4: b_{ii} \le 0, \text{ Case } 5: j = i$

Remainder-Form Mixed-Monotone Decompositions

Khajenejad, M. and Yong, S.Z. "Tight Remainder-Form Decomposition Functions with Applications to Constrained Reachability and Guaranteed State Estimation." *IEEE Transactions on Automatic Control*, 2023, accepted, (Impact Factor = 6.549).

$$f(x) = \underbrace{Hx}_{\text{linear remainder}} + \underbrace{g(x)}_{\text{JSS mapping}}, H_{i,j} = \overline{J}_{i,j}^f \vee H_{i,j} = \underline{J}_{i,j}^f$$

$$H^{\oplus}\underline{x} - H^{\ominus}\overline{x} \le Hx \le H^{\oplus}\overline{x} - H^{\ominus}\underline{x}$$
$$g(\underline{x}_c) \le g(x) \le g(\overline{x}_c)$$

$$\underbrace{H^{\oplus}\underline{x} - H^{\ominus}\overline{x} + g(\underline{x}_{c})}_{f_{d}(\underline{x},\overline{x})} \leq \underbrace{Hx + g(x)}_{f(x)} \leq \underbrace{H^{\oplus}\overline{x} - H^{\ominus}\underline{x} + g(\overline{x}_{c})}_{f_{d}(\overline{x},\underline{x})}$$

Remainder-Form Mixed-Monotone Decompositions

Khajenejad, M. and Yong, S.Z. "Tight Remainder-Form Decomposition Functions with Applications to Constrained Reachability and Guaranteed State Estimation." *IEEE Transactions on Automatic Control*, 2023, accepted, (Impact Factor = 6.549).

$$f(x) = \underbrace{Hx}_{\text{linear remainder}} + \underbrace{g(x)}_{\text{JSS mapping}}, H_{i,j} = \overline{J}_{i,j}^{f} \lor H_{i,j} = \underline{J}_{i,j}^{f}$$

$$H^{\oplus}\underline{x} - H^{\ominus}\overline{x} \le Hx \le H^{\oplus}\overline{x} - H^{\ominus}\underline{x}$$

$$g(\underline{x}_{c}) \le g(x) \le g(\overline{x}_{c})$$

$$g \uparrow$$

$$\underline{x}$$

$$g \downarrow$$

$$\underline{x}$$

$$\underline{x}$$

$$g \downarrow$$

$$\underline{x}$$

Remainder-Form Mixed-Monotone Decompositions

Khajenejad, M. and Yong, S.Z. "Tight Remainder-Form Decomposition Functions with Applications to Constrained Reachability and Guaranteed State Estimation." *IEEE Transactions on Automatic Control*, 2023, accepted, (Impact Factor = 6.549).

$$f(x) = \underbrace{Hx}_{\text{linear remainder}} + \underbrace{g(x)}_{\text{JSS mapping}}, H_{i,j} = \overline{J}_{i,j}^{f} \vee H_{i,j} = \underline{J}_{i,j}^{f}$$

$$H^{\oplus}\underline{x} - H^{\ominus}\overline{x} \leq Hx \leq H^{\oplus}\overline{x} - H^{\ominus}\underline{x}$$

$$g(\underline{x}_{c}) \leq g(x) \leq g(\overline{x}_{c})$$

$$g \uparrow \underline{x}$$

$$\underline{x}$$

$$\underline{y} \leftarrow \underline{x}$$

$$g \downarrow \underline{x}$$

$$g \downarrow \underline{x}$$

$$\underline{x}$$

$$\underline{y} \leftarrow \underline{x}$$

$$\underline{x}$$

$$\underline{y} \leftarrow \underline{x}$$

$$\underline{y} \leftarrow \underline{y}$$

$$\underline{y} \leftarrow$$

• no remainder outperforms all linear remainders

ullet tractable computations; a countable finite set of slopes ${\cal H}$

$$\underbrace{\max_{H \in \mathcal{H}} H^{\oplus} \underline{x} - H^{\ominus} \overline{x} + g(\underline{x}_c)}_{\underline{f}_d(\underline{x}, \overline{x})} \le f(x) \le \underbrace{\min_{H \in \mathcal{H}} H^{\oplus} \overline{x} - H^{\ominus} \underline{x} + g(\overline{x}_c)}_{\overline{f}_d(\overline{x}, \underline{x})}$$

one-sided bounded Jacobians

• no remainder outperforms all linear remainders

ullet tractable computations; a countable finite set of slopes ${\cal H}$

$$\underbrace{\max_{H \in \mathcal{H}} H^{\oplus} \underline{x} - H^{\ominus} \overline{x} + g(\underline{x}_c)}_{\underline{f_d}(\underline{x}, \overline{x})} \leq f(x) \leq \underbrace{\min_{H \in \mathcal{H}} H^{\oplus} \overline{x} - H^{\ominus} \underline{x} + g(\overline{x}_c)}_{\overline{f_d}(\overline{x}, \underline{x})}$$

one-sided bounded Jacobians

• no remainder outperforms all linear remainders

ullet tractable computations; a countable finite set of slopes ${\cal H}$

$$\underbrace{\max_{H \in \mathcal{H}} H^{\oplus} \underline{x} - H^{\ominus} \overline{x} + g(\underline{x}_c)}_{\underline{f}_d(\underline{x}, \overline{x})} \le f(x) \le \underbrace{\min_{H \in \mathcal{H}} H^{\oplus} \overline{x} - H^{\ominus} \underline{x} + g(\overline{x}_c)}_{\overline{f}_d(\overline{x}, \underline{x})}$$

one-sided bounded Jacobians

• nonsmooth systems; generalized Clarke derivatives

discontinuous vector fields with finite jumps

outperforms [Yang.ea.2019]

• nonsmooth systems; generalized Clarke derivatives

discontinuous vector fields with finite jumps

• outperforms [Yang.ea.2019]

• nonsmooth systems; generalized Clarke derivatives

discontinuous vector fields with finite jumps

• outperforms [Yang.ea.2019]

Outline; from Mixed-Monotonicity to...

remainder-form decomposition functions

- applications:
 - set-valued state estimation
 - interval observer design
 - (distributed) resiliency
- future visions

Embedding Systems; Unconstrained Reachability

$$\underbrace{x^{+} = f(x, w)}_{\text{original } \text{ } \text{n-dimensional } \text{ system}} = \underbrace{\left[\frac{\underline{f}}{\underline{f}}_{d}([\underline{x}^{\top} \ \underline{w}^{\top}]^{\top}, [\overline{x}^{\top} \ \overline{w}^{\top}]^{\top})\right]}_{\text{lifted } 2\text{n-dimensional } \text{ embedding } \text{ system}}$$

Proposition 2 (State Framer Property [Khajenejad.Yong.2021])

$$\underline{\mathbf{x}}_{t} \leq \mathbf{x}_{t} \leq \overline{\mathbf{x}}_{t}, \forall t \geq 0, \forall w \in \mathcal{W}$$

Van Der Pol System

$$\begin{array}{l} x_{1,k+1} = x_{1,k} + \delta_t x_{2,k}, \\ x_{2,k+1} = x_{2,k} + \delta_t ((1 - x_{1,k}^2) x_{2,k} - x_{1,k}) \end{array}$$

Embedding Systems; Unconstrained Reachability

$$\underbrace{x^{+} = f(x, w)}_{\text{original } \text{ } \text{n-dimensional } \text{ system}} = \underbrace{\left[\frac{\underline{f}_{d}([\underline{x}^{\top} \ \underline{w}^{\top}]^{\top}, [\overline{x}^{\top} \ \overline{w}^{\top}]^{\top})}{[\underline{f}_{d}([\overline{x}^{\top} \ \overline{w}^{\top}]^{\top}, [\underline{x}^{\top} \ \underline{w}^{\top}]^{\top})]}\right]}_{\text{lifted } \underbrace{2\text{n-dimensional } \text{ embedding } \text{ system}}$$

Proposition 2 (State Framer Property [Khajenejad.Yong.2021])

$$\underline{\mathbf{x}}_{t} \leq x_{t} \leq \overline{\mathbf{x}}_{t}, \forall t \geq 0, \forall w \in \mathcal{W}.$$

Van Der Pol System
$$x_{1,k+1} = x_{1,k} + \delta_t x_{2,k},$$

$$x_{2,k+1} = x_{2,k} + \delta_t ((1 - x_{1,k}^2) x_{2,k} - x_{1,k})$$

Embedding Systems; Unconstrained Reachability

$$\underbrace{x^{+} = f(x, w)}_{\text{original } \text{ } \text{n-dimensional } \text{ system}} = \underbrace{\begin{bmatrix} \underline{f}_{d}([\underline{x}^{\top} \ \underline{w}^{\top}]^{\top}, [\overline{x}^{\top} \ \overline{w}^{\top}]^{\top}) \\ \overline{f}_{d}([\overline{x}^{\top} \ \overline{w}^{\top}]^{\top}, [\underline{x}^{\top} \ \underline{w}^{\top}]^{\top}) \end{bmatrix}}_{\text{lifted } 2\text{n-dimensional } \text{ embedding } \text{ system}}$$

Proposition 2 (State Framer Property [Khajenejad.Yong.2021])

$$\underline{\mathbf{x}_t} \leq x_t \leq \overline{\mathbf{x}_t}, \forall t \geq 0, \forall w \in \mathcal{W}.$$

Van Der Pol System

$$\begin{array}{l} x_{1,k+1} = x_{1,k} + \delta_t x_{2,k}, \\ x_{2,k+1} = x_{2,k} + \delta_t ((1 - x_{1,k}^2) x_{2,k} - x_{1,k}) \end{array}$$

- --: natural, o: centered form,
- mixed-centered form inclusions
- □: [Yang.ea.2019], *: remainder-form,
- --: the best of all, +: optimal

$$x^{+} = f(x, w)$$
$$h(x) \in \underline{Y} = [\underline{y}, \overline{y}]$$

constraint, observation, measurement set

Problem 5 (Set-Inversion)

Find $[X_u] \supseteq \{x \in [X_p] | h(x) \in Y\}$

• Fact:
$$\forall x \in [\underline{x}_m, \overline{x}_m] \subseteq [X_p] \Rightarrow h_d(\underline{x}_m, \overline{x}_m) \le h(x) \le h_d(\overline{x}_m, \underline{x}_m)$$

$$\begin{cases} h_d(\overline{x}_m, \underline{x}_m) < \underline{y} \\ \text{or} \end{cases} ?$$

$$h_d(\underline{x}_m, \overline{x}_m) > \overline{y}$$

$$x^+ = f(x, w)$$

 $h(x) \in \underline{Y} = [\underline{y}, \overline{y}]$

constraint, observation, measurement set

Problem 5 (Set-Inversion)

Find $[X_u] \supseteq \{x \in [X_p] | h(x) \in Y\}$

• Fact:
$$\forall x \in [\underline{x}_m, \overline{x}_m] \subseteq [X_p] \Rightarrow h_d(\underline{x}_m, \overline{x}_m) \le h(x) \le h_d(\overline{x}_m, \underline{x}_m)$$

$$\begin{cases} h_d(\overline{x}_m, \underline{x}_m) < \underline{y} \\ \text{or} \end{cases} ?$$

$$h_d(\underline{x}_m, \overline{x}_m) > \overline{y}$$

$$x^+ = f(x, w)$$

 $h(x) \in \underline{Y} = [\underline{y}, \overline{y}]$

constraint, observation, measurement set

Problem 5 (Set-Inversion)

Find
$$[X_u] \supseteq \{x \in [X_p] | h(x) \in Y\}$$

• Fact:
$$\forall x \in [\underline{x}_m, \overline{x}_m] \subseteq [X_p] \Rightarrow h_d(\underline{x}_m, \overline{x}_m) \le h(x) \le h_d(\overline{x}_m, \underline{x}_m)$$

$$[X_p]$$
 \overline{x}_m \underline{x}_m

$$\begin{cases} h_d(\overline{x}_m, \underline{x}_m) < \underline{y} \\ \text{or} \end{cases} ?$$

$$h_d(\underline{x}_m, \overline{x}_m) > \overline{y}$$

$$x^+ = f(x, w)$$

 $h(x) \in \underline{Y} = [\underline{y}, \overline{y}]$

constraint, observation, measurement set

Problem 5 (Set-Inversion)

Find $[X_u] \supseteq \{x \in [X_p] | h(x) \in Y\}$

• Fact: $\forall x \in [\underline{x}_m, \overline{x}_m] \subseteq [X_p] \Rightarrow h_d(\underline{x}_m, \overline{x}_m) \le h(x) \le h_d(\overline{x}_m, \underline{x}_m)$

$$\begin{cases} h_d(\overline{x}_m, \underline{x}_m) < \underline{y} \\ \text{or} \end{cases} ?$$

$$h_d(\underline{x}_m, \overline{x}_m) > \overline{y}$$

NASA's Generic Transport Model [Summers.ea.2013]

- a remote-controlled commercial aircraft
- $V, \alpha, q \& \theta$: speed, angle of attack, pitch rate & pitch angle

upper and lower framers of $x_1 = v$ and $x_2 = \alpha$, natural (--), centered form (\circ) , $mixed - form (\circ)$, [Yang.ea.2019](\square), remainder-form (*)

Polytopic Estimation

 Can mixed-monotone decomposition be applied for polytope-valued state estimation?

Propagation: $f(X_0)\subseteq \hat{X}_k$

Update: $\hat{X}_k^p \bigcap_{\mu} Y_k \subseteq \overline{X}_k^u$

Polytopes; Equivalent Representations

$$\underbrace{\mathcal{Z} = \{\tilde{G}\xi + \tilde{c}|\xi \in \mathbb{B}^{n_g}, \tilde{A}\xi = \tilde{b}\}}_{\text{Constrained Zonotope (CZ)}}$$

Main Idea

Khajenejad, M. and Yong, S.Z. "Guaranteed State Estimation via Direct Polytopic Set Computation for Nonlinear Discrete-Time Systems." *IEEE Control Systems Letters (L-CSS)*, pages 2060–2065. vol. 6, 2022 (presented in ACC'22).

Khajenejad, M., Shoaib, F. and Yong, S.Z. "Guaranteed State Estimation via Indirect Polytopic Set Computation for Nonlinear Discrete-Time Systems." *IEEE Conference on Decision and Control (CDC)*, Austin, Texas (Virtual), pp. 6167–6174, 2021 (average acceptance rate: %56.7).

 Now apply mixed-monotone decompositions in the space of generators (\(\mathbb{\pi}\)) for propagation and update

Main Idea

Khajenejad, M. and Yong, S.Z. "Guaranteed State Estimation via Direct Polytopic Set Computation for Nonlinear Discrete-Time Systems." *IEEE Control Systems Letters (L-CSS)*, pages 2060–2065, vol. 6, 2022 (presented in ACC'22).

Khajenejad, M., Shoaib, F. and Yong, S.Z. "Guaranteed State Estimation via Indirect Polytopic Set Computation for Nonlinear Discrete-Time Systems." *IEEE Conference on Decision and Control (CDC)*, Austin, Texas (Virtual), pp. 6167–6174, 2021 (average acceptance rate: %56.7).

 Now apply mixed-monotone decompositions in the space of generators (\(\mathbb{\infty}\) for propagation and update

Polytope-Valued State Estimation

[Example I, Rego.ea.2020]

$$\begin{split} x_{1,k} &= 3x_{1,k-1} - \frac{x_{1,k-1}^2}{7} - \frac{4x_{1,k-1}x_{2,k-1}}{4+x_{1,k-1}} + w_{1,k-1}, \\ x_{2,k} &= -2x_{2,k-1} + \frac{3x_{1,k-1}x_{2,k-1}}{4+x_{1,k-1}} + w_{2,k-1}, \|w_k\|_{\infty} \leq 0.1, \\ \begin{bmatrix} y_{1,k} \\ y_{2,k} \end{bmatrix} &= \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_{1,k} \\ x_{2,k} \end{bmatrix} + \begin{bmatrix} v_{1,k} \\ v_{2,k} \end{bmatrix}, \mathcal{X}_0 = \{ \begin{bmatrix} 0.1 & 0.2 & -0.1 \\ 0.1 & 0.1 & 0 \end{bmatrix}, \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \}, \|v_k\|_{\infty} \leq 0.4, \end{split}$$

polytopic estimates for five different approaches. COMB: combination of the zonotope-bundle (D-ZB) and constrained zonotope (D-CZ) approaches

Outline; from Mixed-Monotonicity to...

remainder-form decomposition functions

- applications:
 - set-valued state estimation
 - interval observer design
 - (distributed) resiliency
- future visions

Interval Observer Synthesis

• How about stability/boundedness of the framers?

$$\mathcal{G}: \begin{cases} x_t^+ = f(x_t, w_t) \\ y_t = h(x_t, v_t) \end{cases}$$

Problem 6 (Interval Observer Synthesis)

synthesize framers $\underline{x}_t, \overline{x}_t$ such that

- states are framed: $\underline{x}_t \leq x_t \leq \overline{x}_t$
- framers are uniformly bounded
- design is optimized

Interval Observer Synthesis

• How about stability/boundedness of the framers?

$$\mathcal{G}: \begin{cases} x_t^+ = f(x_t, w_t), \\ y_t = h(x_t, v_t) \end{cases}$$

Problem 6 (Interval Observer Synthesis)

synthesize framers $\underline{x}_t, \overline{x}_t$ such that

- states are framed: $\underline{x}_t \leq x_t \leq \overline{x}_t$
- framers are uniformly bounded
- design is optimized

Design Strategy: JSS decomposition of vector fields

$$x^{+} = f(x, w) = Ax + Bw + \underbrace{\phi(x, w)}_{JSS}$$

$$y = h(x, v) = Cx + Dv + \underbrace{\psi(x, v)}_{JSS}$$

$$0 = L(y - Cx - Dv - \psi(x, v))$$

$$A = \underbrace{(A - LC)x + Bw - LDv + Ly + \underbrace{\phi(x, w) - L\psi(x, v)}_{f_{0}(x, w, v)}}$$

Linear + Nonlinear Embedding Systems
$$\begin{cases} \underline{x}^+ = f_{\ell d}(\underline{\xi}, \overline{\xi}) + f_{\nu d}(\underline{\xi}, \overline{\xi}) + Ly \\ \overline{x}^+ = f_{\ell d}(\overline{\xi}, \underline{\xi}) + f_{\nu d}(\overline{\xi}, \underline{\xi}) + Ly \end{cases}$$

Khajenejad, M. and Yong, S.Z. " \mathcal{H}_{∞} -Optimal Interval Observer Synthesis for Uncertain Nonlinear Dynamical Systems via Mixed-Monotone Decompositions." *IEEE Control Systems Letters* (L-CSS), page 3008–3013, vol. 6, 2022 (presented in CDC'22). Khajenejad, M., Shoaib, F. and Yong, S.Z. "Interval Observer Synthesis for Locally Lipschitz Nonlinear Dynamical Systems via Mixed-Monotone Decompositions." American Control Conference (ACC), Atlanta, Georgia, pp. 2970–2975, 2022 (average acceptance rate: %67).

Pati T., Khajenejad, M., Daddala S.P. and Yong, S.Z. "L₁-Robust Interval Observer Design for Uncertain Nonlinear Dynamical Systems." *IEEE Control Systems Letters (L-CSS)*, pages 3475–3480, vol. 6, 2022 (presented in CDC'22).

Design Strategy: JSS decomposition of vector fields

$$x^{+} = f(x, w) = Ax + Bw + \underbrace{\phi(x, w)}_{JSS}$$

$$y = h(x, v) = Cx + Dv + \underbrace{\psi(x, v)}_{JSS}$$

$$0 = L(y - Cx - Dv - \psi(x, v))$$

$$x^{+} = \underbrace{(A - LC)x + Bw - LDv}_{f_{\ell}(x, w, v)} + Ly + \underbrace{\phi(x, w) - L\psi(x, v)}_{f_{\nu}(x, w, v)}$$

Linear + Nonlinear Embedding Systems
$$\begin{cases} \underline{x}^+ = f_{\ell d}(\underline{\xi}, \overline{\xi}) + f_{\nu d}(\underline{\xi}, \overline{\xi}) + Ly \\ \overline{x}^+ = f_{\ell d}(\overline{\xi}, \underline{\xi}) + f_{\nu d}(\overline{\xi}, \underline{\xi}) + Ly \end{cases}$$

Khajenejad, M. and Yong, S.Z. " \mathcal{H}_{∞} -Optimal Interval Observer Synthesis for Uncertain Nonlinear Dynamical Systems via Mixed-Monotone Decompositions." *IEEE Control Systems Letters* (L-CSS), page 3008–3013, vol. 6, 2022 (presented in CDC'22). Khajenejad, M., Shoaib, F. and Yong, S.Z. "Interval Observer Synthesis for Locally Lipschitz Nonlinear Dynamical Systems via Mixed-Monotone Decompositions." American Control Conference (ACC), Atlanta, Georgia, pp. 2970–2975, 2022 (average acceptance rate: %67).

Pati T., Khajenejad, M., Daddala S.P. and Yong, S.Z. "L₁-Robust Interval Observer Design for Uncertain Nonlinear Dynamical Systems." *IEEE Control Systems Letters (L-CSS)*, pages 3475–3480, vol. 6, 2022 (presented in CDC'22).

Design Strategy: JSS decomposition of vector fields

$$x^{+} = f(x, w) = Ax + Bw + \underbrace{\phi(x, w)}_{JSS}$$

$$y = h(x, v) = Cx + Dv + \underbrace{\psi(x, v)}_{JSS}$$

$$0 = L(y - Cx - Dv - \psi(x, v))$$

$$x^{+} = \underbrace{(A - LC)x + Bw - LDv}_{f_{\ell}(x, w, v)} + Ly + \underbrace{\phi(x, w) - L\psi(x, v)}_{f_{\nu}(x, w, v)}$$

Linear + Nonlinear Embedding Systems

$$\begin{cases} \underline{x}^{+} = f_{\ell d}(\underline{\xi}, \overline{\xi}) + f_{\nu d}(\underline{\xi}, \overline{\xi}) + Ly \\ \overline{x}^{+} = f_{\ell d}(\overline{\xi}, \underline{\xi}) + f_{\nu d}(\overline{\xi}, \underline{\xi}) + Ly \end{cases}$$

Khajenejad, M. and Yong, S.Z. "H_{oo}-Optimal Interval Observer Synthesis for Uncertain Non-linear Dynamical Systems via Mixed-Monotone Decompositions." *IEEE Control Systems Letters (It-CSS)*, page 3008–3013, vol. 6, 2022 (presented in CDC'22).

Khajenejad, M., Shoaib, F. and Yong, S.Z. "Interval Observer Synthesis for Locally Lipschitz Nonlinear Dynamical Systems via Mixed-Monotone Decompositions." *American Control Conference (ACC)*, Atlanta, Georgia, pp. 2970–2975, 2022 (average acceptance rate: %67).

Pati T., Khajenejad, M., Daddala S.P. and Yong, S.Z. "L₁-Robust Interval Observer Design for Uncertain Nonlinear Dynamical Systems." *IEEE Control Systems Letters (L-CSS)*, pages 3475–3480, vol. 6, 2022 (presented in CDC'22).

Observer Synthesis

Theorem 1 (ISS & \mathcal{H}_{∞}/L_1 -Optimal Observer Design)

- locally Lipschitz ⇒ mixed-monotonicity ⇒ embedding systems
- $SDP/MILP \Rightarrow \mathcal{H}_{\infty}/L_1$ -optimal gains
- both continuous-time and discrete-time systems

Observer Synthesis

Theorem 1 (ISS & \mathcal{H}_{∞}/L_1 -Optimal Observer Design)

- locally Lipschitz ⇒ mixed-monotonicity ⇒ embedding systems
- SDP/MILP $\Rightarrow \mathcal{H}_{\infty}/L_1$ -optimal gains
- both continuous-time and discrete-time systems

Observer Synthesis

Theorem 1 (ISS & \mathcal{H}_{∞}/L_1 -Optimal Observer Design)

- locally Lipschitz ⇒ mixed-monotonicity ⇒ embedding systems
- SDP/MILP $\Rightarrow \mathcal{H}_{\infty}/L_1$ -optimal gains
- both continuous-time and discrete-time systems

Simulation Results

[CT Example, Dinh.ea.2014]

$$\begin{split} \dot{x}_1 &= x_2 + w_1, \quad \dot{x}_2 = b_1 x_3 - a_1 \sin(x_1) - a_2 x_2 + w_2, \\ \dot{x}_3 &= -a_2 a_3 x_1 + \frac{a_1}{b_1} (a_4 \sin(x_1) + \cos(x_1) x_2) - a_3 x_2 - a_4 x_3 + w_3, \quad y = x_1. \end{split}$$

State, x_3 , as well as its upper and lower framers and error returned by our proposed L_1 observer, $\overline{x}_3, \underline{x}_3$, our proposed \mathcal{H}_{∞} observer, $\overline{x}_3^{\mathcal{H}_{\infty}}, \underline{x}_3^{\mathcal{H}_{\infty}}$, and by the observer in [Dinh.ea.2014], $\overline{x}_3^{DMN}, \underline{x}_3^{DMN}, \varepsilon_3^{DMN}$.

Outline; from Mixed-Monotonicity to...

remainder-form decomposition functions

- applications:
 - set-valued state estimation
 - interval observer design
 - ▶ (distributed) resiliency
- future visions

Data Attack Resiliency

 Can we simultaneously obtain guaranteed estimates of states and unknown inputs (adversarial signals) and possibly mitigate their effect?

Resilient Observer Design; State and Input Estimation

$$\begin{aligned} x_{k+1} &= f(x_k) + Bu_k + Ww_k + Gd_k, \\ y_k &= h(x_k) + Du_k + Vv_k + H \underbrace{d_k}_{\text{known, control input unknown input}} \end{aligned}$$

 no prior 'useful' knowledge or assumption or known bounds on the dynamics of d_k

Problem 7 (Simultaneous Input and State Observer)

Resilient Observer Design; State and Input Estimation

$$x_{k+1} = f(x_k) + Bu_k + Ww_k + Gd_k,$$

 $y_k = h(x_k) + Du_k + Vv_k + Hd_k$
known, control input unknown input

 no prior 'useful' knowledge or assumption or known bounds on the dynamics of d_k

Problem 7 (Simultaneous Input and State Observer)

design stable and optimal set-valued input and state estimates

Design Strategy: Unknown Input Decomposition

$$x_{k+1} = f(x_k) + Bu_k + Gd_k + Ww_k,$$

$$y_k = h(x_k) + Du_k + Hd_k + Vv_k$$

Key Insights:

- $d_k \Leftrightarrow d_{1,k} \& d_{2,k}$:
- $y_k \Leftrightarrow z_{1,k} \& z_{2,k}$:
- auxiliary state: $\gamma_k \triangleq \Lambda(I NC_2)x_k$ • unaffected by d_k
- $\Lambda(I NC_2)(f(x) G_1Sh_1(x)) = Ax + \rho(x)$

mixed-monotone decomposition

$$L(z_{2,k}-C_2x_k-\psi_2(x_k)-V_2v_k)=0$$

Design Strategy: Unknown Input Decomposition

$$x_{k+1} = f(x_k) + Bu_k + G_1 \frac{d_{1,k}}{d_{1,k}} + G_2 \frac{d_{2,k}}{d_{2,k}} + Ww_k,$$

$$\frac{z_{1,k}}{z_{2,k}} = h_1(x_k) + \sum \frac{d_{1,k}}{d_{1,k}} + D_1 u_k + V_1 v_k$$

$$\frac{z_{2,k}}{d_{2,k}} = \underbrace{C_2 x_k + \psi_2(x_k)}_{(x_k)} + D_2 u_k + V_2 v_k$$

mixed-monotone decomposition

Key Insights:

- $d_k \Leftrightarrow d_{1,k} \& d_{2,k}$:
 - $y_k \Leftrightarrow z_{1,k} \& z_{2,k}$:
- auxiliary state: $\gamma_k \triangleq \Lambda(I NC_2)x_k$
- $\Lambda(I NC_2)(f(x) G_1Sh_1(x)) = Ax + \rho(x)$

mixed-monotone decomposition

 $L(z_{2,k}-C_2x_k-\psi_2(x_k)-V_2v_k)=0$

Design Strategy: Unknown Input Decomposition

$$x_{k+1} = f(x_k) + Bu_k + G_1 \frac{d_{1,k}}{d_{1,k}} + G_2 \frac{d_{2,k}}{d_{2,k}} + Ww_k,$$

$$z_{1,k} = h_1(x_k) + \sum \frac{d_{1,k}}{d_{1,k}} + D_1 u_k + V_1 v_k$$

$$z_{2,k} = \underbrace{C_2 x_k + \psi_2(x_k)}_{} + D_2 u_k + V_2 v_k$$

mixed-monotone decomposition

Key Insights:

- $d_k \Leftrightarrow d_{1,k} \& d_{2,k}$:
- $y_k \Leftrightarrow z_{1,k} \& z_{2,k}$:
- auxiliary state: $\gamma_k \triangleq \Lambda(I NC_2)x_k$
 - ightharpoonup unaffected by d_k

$$\Lambda(I - NC_2)(f(x) - G_1Sh_1(x)) = \underbrace{Ax + \rho(x)}$$

mixed-monotone decomposition

$$L(z_{2,k} - C_2 x_k - \psi_2(x_k) - V_2 v_k) = 0$$

3-Step Recursive Observer

Input Framer Computation

$$\begin{array}{l} \underline{d}_{k-1} &= \Phi^{\oplus}\underline{x}_k - \Phi^{\ominus}\overline{x}_k + \frac{J_d(\underline{x}_{k-1}, \overline{x}_{k-1}) + A_z z_{1,k-1}}{H_v^{\oplus}\underline{v} - A_v^{\ominus}\overline{v} + \Phi^{\ominus}\underline{w} - \Phi^{\oplus}\overline{w},} \\ \overline{d}_{k-1} &= \Phi^{\oplus}\overline{x}_k - \Phi^{\ominus}\underline{x}_k + \frac{J_d(\overline{x}_{k-1}, \underline{x}_{k-1}) + A_z z_{1,k-1}}{H_v^{\ominus}\overline{v} - A_v^{\ominus}\underline{v} + \Phi^{\ominus}\overline{w} - \Phi^{\oplus}\underline{w},} \end{array}$$

Auxiliary State Propagation

$$\begin{array}{l} \underline{\gamma}_{k+1} &= (A-LC_2)^{\oplus}\underline{\gamma}_k - (A-LC_2)^{\ominus}\overline{\gamma}_k + \underline{\rho_d}(\underline{x}_k, \overline{x}_k) \\ &+ D^{\ominus}\underline{\epsilon} - D^{\oplus}\overline{\epsilon} + L^{\ominus}\underline{\psi}_{2,d}(\underline{x}_k, \overline{x}_k) - L^{\oplus}\underline{\psi}_{2,d}(\overline{x}_k, \underline{x}_k) \\ &+ \hat{V}^{\ominus}\underline{\underline{v}} - \hat{V}^{\oplus}\overline{v} + \hat{W}^{\ominus}\underline{\underline{w}} - \hat{W}^{\ominus}\overline{w} + \hat{z}_k, \\ \overline{\gamma}_{k+1} &= (A-LC_2)^{\oplus}\overline{\gamma}_k - (A-LC_2)^{\ominus}\underline{\gamma}_k + \underline{\rho_d}(\overline{x}_k, \underline{x}_k) \\ &+ D^{\ominus}\overline{\epsilon} - D^{\oplus}\underline{\epsilon} + L^{\ominus}\underline{\psi}_{2,d}(\overline{x}_k, \underline{x}_k) - L^{\oplus}\underline{\psi}_{2,d}(\underline{x}_k, \overline{x}_k) \\ &+ \hat{V}^{\ominus}\overline{v} - \hat{V}^{\oplus}\underline{v} + \hat{W}^{\oplus}\overline{w} - \hat{W}^{\ominus}\underline{w} + \hat{z}_k, \end{array}$$

State Framer Computation

$$\underline{x}_{k} = \underline{\gamma}_{k} + \Lambda N z_{2,k} + \Lambda^{\ominus} \underline{\epsilon} - \Lambda^{\oplus} \overline{\epsilon} + (\Lambda N V_{2})^{\ominus} \underline{v} - (\Lambda N V_{2})^{\oplus} \overline{v},$$

$$\overline{x}_{k} = \overline{\gamma}_{k} + \Lambda N z_{2,k} + \Lambda^{\ominus} \overline{\epsilon} - \Lambda^{\oplus} \underline{\epsilon} + (\Lambda N V_{2})^{\ominus} \overline{v} - (\Lambda N V_{2})^{\oplus} \underline{v},$$

\mathcal{H}_{∞} -Optimal State and Input Observer Design

Error Dynamics

$$\begin{array}{l} e_{k+1}^{\times} \leq (|A - LC_2| + \overline{F}_{\rho} + |L| \overline{F}_{\psi_2}) e_k^{\times} + |\hat{W}| \delta^w \\ + (|V_{\sigma} - LV_b| - |A - LC_2| |\Lambda NV_2| + |\Lambda NV_2|) \delta^v \\ + (|\Lambda| + |D_{\sigma} - LD_b| - |A - LC_2| |\Lambda|) \delta^{\epsilon}, \end{array}$$

Theorem 2 (\mathcal{H}_{∞} -Observer Design)

- strong observability \improx existence of decompositions
- semi-definite programs ⇒ optimal stabilizing gains
- various comparison systems \implies various sufficient conditions

Khajenejad, M., Jin, Z., Dinh T.N. and Yong, S.Z. "Resilient State Estimation for Nonlinear Discrete-Time Systems via Input and State Interval Observer Synthesis." *IEEE Conference on Decision and Control (CDC)*, 2023, under review.

$\mathcal{H}_{\infty} ext{-}\mathsf{Optimal}$ State and Input Observer Design

Error Dynamics

$$\begin{array}{l} e_{k+1}^{\times} \leq (|A-LC_2| + \overline{F}_{\rho} + |L| \overline{F}_{\psi_2}) e_k^{\times} + |\hat{W}| \delta^w \\ + (|V_{\theta} - LV_{b}| - |A-LC_2| |\Lambda NV_2| + |\Lambda NV_2|) \delta^v \\ + (|\Lambda| + |D_{\theta} - LD_{b}| - |A-LC_2| |\Lambda|) \delta^{\epsilon}, \end{array}$$

Theorem 2 (\mathcal{H}_{∞} -Observer Design)

- strong observability \improx existence of decompositions
- semi-definite programs ⇒ optimal stabilizing gains
- various comparison systems \implies various sufficient conditions

Khajenejad, M., Jin, Z., Dinh T.N. and Yong, S.Z. "Resilient State Estimation for Nonlinear Discrete-Time Systems via Input and State Interval Observer Synthesis." *IEEE Conference on Decision and Control (CDC)*, 2023, under review.

\mathcal{H}_{∞} -Optimal State and Input Observer Design

Error Dynamics

$$\begin{array}{l} e_{k+1}^{\times} \leq (|A-LC_2| + \overline{F}_{\rho} + |L| \overline{F}_{\psi_2}) e_k^{\times} + |\hat{W}| \delta^w \\ + (|V_{\theta} - LV_{b}| - |A-LC_2| |\Lambda NV_2| + |\Lambda NV_2|) \delta^v \\ + (|\Lambda| + |D_{\theta} - LD_{b}| - |A-LC_2| |\Lambda|) \delta^{\epsilon}, \end{array}$$

Theorem 2 (\mathcal{H}_{∞} -Observer Design)

- strong observability \improx existence of decompositions
- semi-definite programs ⇒ optimal stabilizing gains
- various comparison systems \implies various sufficient conditions

Khajenejad, M., Jin, Z., Dinh T.N. and Yong, S.Z. "Resilient State Estimation for Nonlinear Discrete-Time Systems via Input and State Interval Observer Synthesis." *IEEE Conference on Decision and Control (CDC)*, 2023, under review.

Simulation Results: A Three-Area Power Station

Resilient Hyperball-Valued Observers

$$\begin{cases} \|x_k - \hat{x}_k\|_2 \le \delta_k^{\mathsf{X}} \\ \|d_{k-1} - \hat{d}_{k-1}\|_2 \le \delta_{k-1}^{\mathsf{d}} \end{cases}$$

Matrix Parametrized

Linear Parameter-Varying Systems." American Control Conference (ACC), Philadelphia, PA, for Quadratically Constrained Nonlinear Dynamical Systems." International Journal of Robust pp. 4521-4526, 2019.

Khajenejad, M. and Yong, S.Z. "Simultaneous Input and State Set-Valued H₂₀-Observers For Khajenejad, M. and Yong, S.Z. "Simultaneous State and Unknown Input Set-Valued Observers and Nonlinear Control, pages 6589–6622, vol. 32, issue 12, 2022 (Impact Factor = 3.897).

Simulation Results: Two-Link Flexible-Joint Robot

36 / 42

Scalable & Distributed Resiliency in CPS

Target system, $x \in \mathbb{R}^n$

$$x^{+} = f(x, w, \frac{d}{d})$$
$$w \in [\underline{w}, \overline{w}], \ d \in \mathbb{R}^{p}$$

d is unknown and arbitrary

Sensor network,
$$i = 1, ..., N$$

 $y^i = h^i(x, v^i, \mathbf{d}), \ v^i \in [\underline{v}^i, \overline{v}^i]$

Distributed Set-Valued Input & State Observer Design

Network update: min/max consensus

$$\underline{x}_{k}^{i,t} = \max_{j \in \mathcal{N}_{i}} \underline{x}_{k}^{j,t-1}$$
 $\overline{x}_{k}^{i,t} = \min_{j \in \mathcal{N}_{i}} \overline{x}_{k}^{j,t-1}$ $\underline{x}_{k}^{i} = \underline{x}_{k}^{i,t_{x}}$ $\overline{x}_{k}^{i} = \overline{x}_{k}^{i,t_{x}}$

Khajenejad, M., Brown, S., and Martínez, S. "Distributed Interval Observers for LTI Systems with Bounded Noise." American Control Conference (ACC), San Diego, California, accepted, 2023 (average acceptance rate: %67).

Time, k

Khajenejad, M., Brown, S., and Martínez, S. "Distributed Resilient Interval Observers for Bounded-Error LTI Systems Subject to False Data Injection Attacks." American Control Conference (ACC), San Diego, California, accepted, 2023 (average acceptance rate: %67).

Time k

Takeaway

Outline; from Mixed-Monotonicity to...

remainder-form decomposition functions

- applications
 - set-valued state estimation
 - interval observer design
 - (distributed) resiliency
- future visions

Towards Hybrid, Nonconvex & Unknown CPS

hybrid reachability and invariance properties

nonconvex optimization

unknown CPS: set-membership learning meets model-based approaches

aleatoric+epistemic uncertainties: random sets

• NSF-CPS, NASA-NSPIRES early career award

Thank you! Questions?

Taha, Fatemeh, Marsa

Sze Zheng Yong

Sonia Martinez

My labmates

UC San Diego

Jacobs School of Engineering

Back-Up Slides

Mode (Switching) Attack Resiliency

• How about if we have switching attacks, as well?

 q: discrete switching unknown mode of th system, modified by switching attacks

Switched (Non)linear Discrete-time System

$$\begin{aligned}
x_{k+1} &= f^{q}(x_{k}) + B^{q}u_{k}^{q} + G^{q}d_{k}^{q} + W^{q}w_{k}^{q}, \\
y_{k} &= C^{q}x_{k} + D^{q}u_{k}^{q} + H^{q}d_{k}^{q} + v_{k}^{q}, \quad q \in \mathbb{Q}.
\end{aligned}$$

Mode (Switching) Attack Resiliency

• How about if we have switching attacks, as well?

 q: discrete switching unknown mode of the system, modified by switching attacks

Switched (Non)linear Discrete-time System

$$x_{k+1} = f^{q}(x_{k}) + B^{q}u_{k}^{q} + G^{q}d_{k}^{q} + W^{q}w_{k}^{q},$$

$$y_{k} = C^{q}x_{k} + D^{q}u_{k}^{q} + H^{q}d_{k}^{q} + v_{k}^{q}, \quad q \in \mathbb{Q}.$$

Mode (Switching) Attack Resiliency

• How about if we have switching attacks, as well?

 q: discrete switching unknown mode of the system, modified by switching attacks

Switched (Non)linear Discrete-time System

$$x_{k+1} = f^{q}(x_{k}) + B^{q}u_{k}^{q} + G^{q}d_{k}^{q} + W^{q}w_{k}^{q},$$

$$y_{k} = C^{q}x_{k} + D^{q}u_{k}^{q} + H^{q}d_{k}^{q} + v_{k}^{q}, \quad q \in \mathbb{Q}.$$

Multiple-Model Framework

Khajenejad, M. and Yong, S.Z. "Resilient State Estimation and Attack Mitigation in Cyber-Physical Systems." Security and Resilience in Cyber-Physical Systems: Detection, Estimation and Control, Syringer, pages 149–185, 2022.

Khajenejad, M. and Yong, S.Z. "Simultaneous Mode, State and Input Set-Valued Observers for Switched Nonlinear Systems." Automatica, 2022, under review.

Khajenejad, M. and Yong, S.Z. "Simultaneous Mode, Input and State Set-Valued Observers with Applications to Resilient Estimation against Sparse Attacks." *IEEE Conference on Decision and Control (CDC)*, Nice, France, pp. 1544–1550, 2019 (average seceptance rate: "86.7).

Mode Detectability

Adversarial property serves as an additional sensor

Theorem 8 (Sufficient Conditions for Mode Detectability)

All false modes are eliminated if the unknown input signal has unlimited energy.

Resilient Estimation and Attack Mitigation in CPS

IEEE 68-bus test system with locations of potential actuator signal and mode/transmission line attacks (n = 136).

Resilient Estimation and Attack Mitigation in CPS

A comparison of system states with and without the proposed attack mitigation, as well as the attack signal and its point-valued (stochastic) and set-valued (bounded-error) estimates

Embedding Systems

Definition 9 (Embedding Systems)

- $x_t^+ = f(x_t, w_t)$: an *n*-dimensional DT/CT system
- $x_0 \in [\underline{x}_0 \ \overline{x}_0], \ w_t \in [\underline{w} \ \overline{w}]$
- $f_d(\cdot,\cdot)$: any decomposition function of f
- 2*n*-dimensional embedding system:

$$\begin{bmatrix} \underline{x}_t^+ \\ \overline{x}_t^+ \end{bmatrix} = \begin{bmatrix} f_d([\underline{x}_t^\top \ \underline{w}^\top]^\top, [\overline{x}_t^\top \ \overline{w}^\top]^\top) \\ f_d([\overline{x}_t^\top \ \overline{w}^\top]^\top, [\underline{x}_t^\top \ \underline{w}^\top]^\top) \end{bmatrix}$$
(2)

Proposition 3 (State Framer Property [Khajenejad. Yong. 2021])

$$\underline{x}_t \leq x_t \leq \overline{x}_t, \forall t \geq 0, \forall w \in \mathcal{W}$$

Embedding Systems

Definition 9 (Embedding Systems)

- $x_t^+ = f(x_t, w_t)$: an *n*-dimensional DT/CT system
- $x_0 \in [\underline{x}_0 \ \overline{x}_0], \ w_t \in [\underline{w} \ \overline{w}]$
- $f_d(\cdot,\cdot)$: any decomposition function of f
- 2*n*-dimensional embedding system:

$$\begin{bmatrix} \underline{x}_t^+ \\ \overline{x}_t^+ \end{bmatrix} = \begin{bmatrix} f_d([\underline{x}_t^\top \ \underline{w}^\top]^\top, [\overline{x}_t^\top \ \overline{w}^\top]^\top) \\ f_d([\overline{x}_t^\top \ \overline{w}^\top]^\top, [\underline{x}_t^\top \ \underline{w}^\top]^\top) \end{bmatrix}$$
(2)

Proposition 3 (State Framer Property [Khajenejad. Yong. 2021])

$$x_t \leq x_t \leq \overline{x}_t, \forall t \geq 0, \forall w \in \mathcal{W}.$$

Future Vision: 1. Resiliency Meets Privacy

- adversary can both inject attack and steal valuable data
- to simultaneously mitigate attacks and protect data
- level of tolerance
- ONR (science of autonomy program), NSF-RI

Khajenejad, M. and Martínez, S. "Guaranteed Privacy of Distributed Nonconvex Optimization via Mixed-Monotone Functional Perturbations." *IEEE Control Systems Letters (L-CSS)*, pages 1081–1086. vol. 7. 2023 (will be presented in ACC'23).

Future Vision: 2. Heterogeneous and Strategic Agents

- heterogeneous beliefs/types
- bounded rationality
- strategic vs. best worst-case
- local communication
- robust dynamic/differential networked games
- ARL, DARPA-ARC, AFOSR-YIP

"Resilient Distributed Learning for Multi-Agent Cooperative Control"

Guaranteed Private Distributed Optimization

Distributed nonconvex optimization

$$\min_{x \in \mathcal{X}_0} f(x) \triangleq \sum_{i=1}^N f_i(x),$$

Mixed-monotone functional perturbation

unknown, deterministic

$$g(x) \triangleq \sum_{i=1}^{N} f_i(x) + \widetilde{\tilde{m}}_i x$$

(a) true objective, (b) perturbed objective

Khajenejad, M. and Martínez, S. "Guaranteed Privacy of Distributed Nonconvex Optimization via Mixed-Monotone Functional Perturbations." *IEEE Control Systems Letters (L-CSS)*, pages 1081–1086, vol. 7, 2023 (will be presented in ACC'23).

Resilient Estimation and Attack Mitigation in CPS

Estimates of mode probabilities when the attack mode switches from q=2 to q=5 at 2.5s assuming stochastic uncertainties, as well as mode indicators assuming bounded norm uncertainties

From Collective Positive Detectability to Distributed Resiliency

- optimality
- 2 mode detectability
- attack unidentifiability
- attack-mitigating

- asymptotic
- maximum likelihood
- Gaussian signal
- $m{\mathcal{H}}_{\infty}$ controller

- \mathcal{H}_{∞}
- elimination
- limited energy
- $m{\mathcal{H}}_{\infty}$ controller

- optimality
- @ mode detectability
- attack unidentifiability
- attack-mitigating

- asymptotic
 - maximum likelihood
- Gaussian signa
- ullet \mathcal{H}_{∞} controller

- ullet \mathcal{H}_{∞}
 - elimination
- limited energy
- $m{\mathcal{H}}_{\infty}$ controller

- optimality
- 2 mode detectability
- attack unidentifiability
- attack-mitigating

- asymptotic
- maximum likelihood
- Gaussian signal
- ullet \mathcal{H}_{∞} controller

- \bullet \mathcal{H}_{∞}
- elimination
 - limited energy
 - $m{\mathcal{H}}_{\infty}$ controller

- optimality
- 2 mode detectability
- attack unidentifiability
- attack-mitigating

- asymptotic
- maximum likelihood
- Gaussian signal
- ullet \mathcal{H}_{∞} controller

- ullet \mathcal{H}_{∞}
- elimination
- limited energy
 - $m{\mathcal{H}}_{\infty}$ controller

- optimality
- 2 mode detectability
- attack unidentifiability
- attack-mitigating

- asymptotic
- maximum likelihood
- Gaussian signal
- ullet \mathcal{H}_{∞} controller

- \bullet \mathcal{H}_{∞}
- elimination
- limited energy
- \mathcal{H}_{∞} controller

Fundamental limitations

- maximum number of (asymptotically) correctable signal attacks
- maximum required number of mode/models for estimation resilience

- optimality
- 2 mode detectability
- attack unidentifiability
- attack-mitigating

- asymptotic
- maximum likelihood
- Gaussian signal
- $\bullet \ \mathcal{H}_{\infty} \ controller$

- \bullet \mathcal{H}_{∞}
- elimination
- limited energy
- \mathcal{H}_{∞} controller

Fundamental limitations

- maximum number of (asymptotically) correctable signal attacks
- maximum required number of mode/models for estimation resilience

From Strong Detectability to Resiliency

Simulation Results

[DT Example, Hénon Chaos System in Efimov.ea.2013]

$$x_{t+1} = Ax_t + r[1 - x_{t,1}^2] + w_t, \quad y_t = x_{t,1} + v_t,$$

$$A = \begin{bmatrix} 0 & 1 \\ 0.3 & 0 \end{bmatrix}, \ r = \begin{bmatrix} 0.05 \\ 0 \end{bmatrix}, \ \mathcal{X}_0 = [-2, 2] \times [-1, 1], \ \mathcal{W} = 0.01[-1, 1]^2, \ \mathcal{V} = [-0.1, 0.1].$$

State, x_1 , and its upper and lower framers and errors, returned by our proposed observer, $\overline{x}_1, \underline{x}_1$, our proposed \mathcal{H}_{∞} observer, $\overline{x}_1^{\mathcal{H}_{\infty}}, \underline{x}_1^{\mathcal{H}_{\infty}}$, and by the observer in [Tahir.Açıkmeşe.2021], $\overline{x}_1^{\mathsf{TA}}, \underline{x}_1^{\mathsf{TA}}$.

From Mixed-Monotonicity to Robustness

Uncertainty Models

- has distribution
- mean, variance, ...
- expected values
- point estimates
- Kalman filter

- no/unknown distribution
- center, radius, volume, ...
- best worst-case scenario
- set estimates
- set-valued analysis

Uncertainty Models

- has distribution
- mean, variance, ...
- expected values
- point estimates
- Kalman filter

- no/unknown distribution
- center, radius, volume, ...
- best worst-case scenario
- set estimates
- set-valued analysis

Sets: Examples

$$x \in \{x | Ax \le b\}$$

Polytope

$$w \in \{c + G\xi | \|\xi\|_{\infty} \le d\}$$

 $||u||_{\infty} \le c$

Hyperbox

$$||u||_2 \leq e$$

Hyperball

NewSpace Initiative

Center for Complex System Safety

Why ASU?

New Economy Initiative

Global Security Initiative

New American University

Example: Continuous-Time Constrained Reachability

NASA's Generic Transport Model [Summers.ea.2013]

$$\begin{split} \dot{V} &= \frac{-D - mg \sin(\theta - \alpha) + T_x \cos \alpha + T_z \sin \alpha}{d}, \\ \dot{\alpha} &= q + \frac{-L + mg \cos(\frac{m}{\theta - \alpha}) - T_x \sin \alpha + T_z \cos \alpha}{mV}, \\ \dot{q} &= \frac{M + T_m}{l_{yy}}, \dot{\theta} = q, \end{split}$$

- A remote-controlled commercial aircraft
- V, α, q and θ : air speed, angle of attack, pitch rate and pitch angle

Upper and lower framers of $x_1 = v$ and $x_2 = \alpha$, $T_N(--)$, T_C (\circ), T_M (\diamond), T_L (\square), T_R (*), the best of $T_N - T_R$ (\cdot -), as well as the midpoint trajectory (-).

From Mixed-Monotonicity to Guaranteed Privacy

Privacy

• How can we protect valuable data, identity, info?

Privacy

- differential privacy
 - random pert
 - performance loss
 - stochastic accuracy
- encryption-based
 - comp. overhead
- functional perturbation
 - stochastic guarantee
 - ► limited func. space
 - convex problems

- differential privacy
 - random pert.
 - performance loss
 - stochastic accuracy
- encryption-based
 - ▶ comp. overhead
- functional perturbation
 - stochastic guarantee
 - ▶ limited func. space
 - convex problems

- differential privacy
 - random pert.
 - performance loss
 - stochastic accuracy
- encryption-based
 - comp. overhead
- functional perturbation
 - stochastic guarantee
 - limited func. space
 - convey problems
 - . bounds + nonconvexity

- differential privacy
 - random pert.
 - performance loss
 - stochastic accuracy
- encryption-based
 - comp. overhead
- functional perturbation
 - stochastic guarantee
 - ▶ limited func. space
 - convex problems
- hard bounds + nonconvexity

guaranteed privacy

- differential privacy
 - random pert.
 - performance loss
 - stochastic accuracy
- encryption-based
 - comp. overhead
- functional perturbation
 - stochastic guarantee
 - ▶ limited func. space
 - convex problems
- $\bullet \ \mathsf{hard} \ \mathsf{bounds} + \mathsf{nonconvexity} \\ \Downarrow$

guaranteed privacy

Distributed nonconvex optimization

$$\min_{x \in \mathcal{X}_0} f(x) \triangleq \sum_{i=1}^{N} f_i(x),$$

Mixed-monotone functiona perturbation

$$g(x) \triangleq \sum_{i=1}^{N} f_i(x) + \tilde{m}_i x$$

Khajenejad, M. and Martínez, S. "Guaranteed Privacy of Distributed Nonconvex Optimization via Mixed-Monotone Functional Perturbations." *IEEE Control Systems Letters (L-CSS)*, pages 1081–1086, vol. 7, 2023 (will be presented in ACC'23).

(a) true objective, (b) perturbed objective

Khajenejad, M. and Martínez, S. "Guaranteed Privacy of Distributed Nonconvex Optimization via Mixed-Monotone Functional Perturbations." *IEEE Control Systems Letters (L-CSS)*, pages 1081–1086, vol. 7, 2023 (will be presented in ACC'23).

Distributed nonconvex optimization

$$\min_{x \in \mathcal{X}_0} f(x) \triangleq \sum_{i=1}^N f_i(x),$$

Mixed-monotone functional

perturbation

unknown, deterministic

$$g(x) \triangleq \sum_{i=1}^{N} f_i(x) + \widehat{\tilde{m}}_i x$$

(a) true objective, (b) perturbed objective

Khajenejad, M. and Martínez, S. "Guaranteed Privacy of Distributed Nonconvex Optimization via Mixed-Monotone Functional Perturbations." *IEEE Control Systems Letters (L-CSS)*, pages 1981–1986, vol. 7, 2023 (will be presented in ACC'23).

Distributed nonconvex optimization

$$\min_{x \in \mathcal{X}_0} f(x) \triangleq \sum_{i=1}^N f_i(x),$$

Mixed-monotone functional

perturbation

unknown, deterministic

$$g(x) \triangleq \sum_{i=1}^{N} f_i(x) + \widetilde{\tilde{m}}_i x$$

(a) true objective, (b) perturbed objective

Khajenejad, M. and Martínez, S. "Guaranteed Privacy of Distributed Nonconvex Optimization via Mixed-Monotone Functional Perturbations." *IEEE Control Systems Letters (L-CSS)*, pages 1081–1086, vol. 7, 2023 (will be presented in ACC'23).

Future Vision: 3. Mixed-Monotonicity; Other interesting Implications

hybrid reachability and invariance properties

nonconvex optimization

unknown CPS: set-membership learning meets model-based approaches

aleatoric+epistemic uncertainties: random sets

• to target: NSF-CPS, NASA early career award

Past Research

• Input reconstruction and state estimation play key roles in fault detection, attack mitigation, safe control, etc.

Past Research

 Input reconstruction and state estimation play key roles in fault detection, attack mitigation, safe control, etc.

mixed-monotonicity, observability strong detectability, sparsity

Objective

To simultaneously estimate "sets" of states and unknown inputs and possibly mitigate the effect of attacks

Past Research Overview: Set-Valued Methods

Robust reachability analysis

Polytope-valued estimation

Distribution-free uncertainty sets

Past Research Roadmap

Perspective

Funding Opportuinities

- NSF CAREER Award (\$500k / 5 years)
 - All assistant profs, up to 3 attempts
- Army Research Lab (ARL)
- DoD Young Investigator Programs (\$500k / 3 years)
 - AFOSR, ONR, ARO
 - Assistant profs within 5 years of PhD
- DoE Early Career Award (\$750k / 5 years)
 - Assistant profs within 10 years of PhD
- DARPA Young Faculty Award (\$300k / 2 years)
 - Assistant profs within 10 years of PhD
- NASA Early Career Faculty Award (\$600k / 3 years)
- Industry grants (Google, Amazon, Ford, Toyota, etc.)
- ASU New Economy Initiative Science and Technology Centers

- Given μ and $[\underline{y}, \overline{y}]$, find a tight superset of $\{z | \mu(z) \in [\underline{y}, \overline{y}]\}$
- Idea: $z \in [\underline{z}_m, \overline{z}_m] \Rightarrow \mu_d(\underline{z}_m, \overline{z}_m) \leq \mu(z) \leq \mu_d(\overline{z}_m, \underline{z}_m)$
- If $\mu_d(\overline{z}_m, \underline{z}_m) < y$ or $\mu_d(\underline{z}_m, \overline{z}_m) > \overline{y}$, then rule out $[\underline{z}_m, \overline{z}_m]$
- Bisection procedure:

- Given μ and $[\underline{y}, \overline{y}]$, find a tight superset of $\{z | \mu(z) \in [\underline{y}, \overline{y}]\}$
- Idea: $z \in [\underline{z}_m, \overline{z}_m] \Rightarrow \mu_d(\underline{z}_m, \overline{z}_m) \leq \mu(z) \leq \mu_d(\overline{z}_m, \underline{z}_m)$
- If $\mu_d(\overline{z}_m, \underline{z}_m) < y$ or $\mu_d(\underline{z}_m, \overline{z}_m) > \overline{y}$, then rule out $[\underline{z}_m, \overline{z}_m]$
- Bisection procedure:

- Given μ and $[\underline{y}, \overline{y}]$, find a tight superset of $\{z | \mu(z) \in [\underline{y}, \overline{y}]\}$
- Idea: $z \in [\underline{z}_m, \overline{z}_m] \Rightarrow \mu_d(\underline{z}_m, \overline{z}_m) \leq \mu(z) \leq \mu_d(\overline{z}_m, \underline{z}_m)$
- If $\mu_d(\overline{z}_m, \underline{z}_m) < \underline{y}$ or $\mu_d(\underline{z}_m, \overline{z}_m) > \overline{y}$, then rule out $[\underline{z}_m, \overline{z}_m]$
- Bisection procedure:

- Given μ and $[\underline{y}, \overline{y}]$, find a tight superset of $\{z | \mu(z) \in [\underline{y}, \overline{y}]\}$
- Idea: $z \in [\underline{z}_m, \overline{z}_m] \Rightarrow \mu_d(\underline{z}_m, \overline{z}_m) \leq \mu(z) \leq \mu_d(\overline{z}_m, \underline{z}_m)$
- If $\mu_d(\overline{z}_m, \underline{z}_m) < \underline{y}$ or $\mu_d(\underline{z}_m, \overline{z}_m) > \overline{y}$, then rule out $[\underline{z}_m, \overline{z}_m]$
- Bisection procedure:

Example: Reachable Sets for Van Der Pol System

Upper and lower bounds on x_1 and x_2 in Van der Pol system, applying $T_N(--)$, $T_C(\circ)$, $T_M(\diamond)$, $T_L(\Box)$, $T_R(*)$, the best of $T_N-T_R(-)$ and $T_O(+)$, as well as the center trajectory (-).

Polytopic Estimation

 Can mixed-monotone decomposition be applied for polytope-valued state estimation? (CDC'21)

Propagation: $f(X_0)\subseteq \hat{X}_k$

Update: $\hat{X}_k^p \bigcap_{\mu} Y_k \subseteq \overline{X}_k^u$

Polytopes; Equivalent Representations

$$\mathcal{Z} = \{\tilde{G}\xi + \tilde{c}|\xi \in \mathbb{B}^{n_g}, \tilde{A}\xi = \tilde{b}\}$$

$$\mathcal{Z} = \bigcap_{s=1}^{3} \{ G_s \zeta + c_s | \zeta \in \mathbb{B}^{\hat{n}_g} \}$$

Main Idea

 Now apply mixed-monotone decompositions in the space of generators (≡) for propagation and update

Main Idea

 Now apply mixed-monotone decompositions in the space of generators (\(\in\)) for propagation and update

Simultaneous State and Input Observer Design

Design stable and optimal hyperball-valued observer

System with Unknown Inputs

$$x_{k+1} = f(x_k) + Bu_k + Gd_k + Ww_k,$$

$$y_k = Cx_k + Du_k + Hd_k + v_k,$$

• Find centers \hat{x}_k , \hat{d}_{k-1} and radii δ_k^{\times} , δ_{k-1}^d , such that:

$$\begin{cases} \|x_k - \hat{x}_k\|_2 \le \delta_k^{\times} \\ \|d_{k-1} - \hat{d}_{k-1}\|_2 \le \delta_{k-1}^{d} \end{cases}$$

Residual-Based Mode Elimination

Theorem 10 (Mode Elimination Criterion)

- $r_k^q \triangleq z_{2,k}^q C_2^q \hat{x}_{k|k}^{\star,q} D_2^q u_k^q$ (residual signal)
- $r_k^{q|*}$: the true mode's residual signal (i.e., $q = q^*$)
- $\delta_{r,k}^{q,*}$: some tractable upper bound for the residual's norm, i.e., $||r_{\iota}^{q|*}||_{2} \leq \delta_{r,\iota}^{q,*}$
- Then, mode q is NOT the true mode, i.e., can be eliminated at time k, if $\|r_{\nu}^{q}\|_{2} > \delta_{r,\nu}^{q,*}$.

Residual-Based Mode Elimination

Theorem 10 (Mode Elimination Criterion)

- $r_k^q \triangleq z_{2,k}^q C_2^q \hat{x}_{k|k}^{\star,q} D_2^q u_k^q$ (residual signal)
- $r_k^{q|*}$: the true mode's residual signal (i.e., $q = q^*$)
- $\delta_{r,k}^{q,*}$: some tractable upper bound for the residual's norm, i.e., $||r_{r}^{q|*}||_{2} \leq \delta_{r,k}^{q,*}$
- Then, mode q is NOT the true mode, i.e., can be eliminated at time k, if $||r_k^q||_2 > \delta_{r,k}^{q,*}$.

Towards Resilient Estimation and Attack Mitigation in CPS

How about considering different "uncertainty models"?

Truncated Gaussian Uncertainty (aleatoric+epistemic)

Future Vision: 4. Uncertain and Hybrid Networked CPS

Hybrid reachability and invariance properties

Hidden mode CPS: MM framework

Unknown CPS: set-membership learning meets model-based approaches

Aleatoric+epistemic uncertainties: random sets

Mixed-Monotonicity; Further Interesting Implications

- reachability of nonsmooth & discontinuous systems
- computing controlled invariant sets
- reach-avoid-stay sets

Robust, Resilient, Safe & Private Autonomy

Design Strategy: JSS decomposition of vector fields

$$x^{+} = f(x, w) = Ax + Bw + \underbrace{\phi(x, w)}_{JSS}$$

$$y = h(x, v) = Cx + Dv + \underbrace{\psi(x, v)}_{JSS}$$

$$0 = L(y - Cx - Dv - \psi(x, v))$$

$$x^{+} = \underbrace{(A - LC)x + Bw - LDv}_{f_{\ell}(x, w, v)} + Ly + \underbrace{\phi(x, w) - L\psi(x, v)}_{f_{\nu}(x, w, v)}$$

Linear + Nonlinear Embedding Systems

$$\begin{cases} \underline{\mathbf{x}}^{+} = f_{\ell d}(\underline{\xi}, \overline{\xi}) + f_{\nu d}(\underline{\xi}, \overline{\xi}) = (A - LC)^{\uparrow} \underline{\mathbf{x}} - (A - LC)^{\downarrow} \overline{\mathbf{x}} + L\mathbf{y} + \phi_{d}(\underline{\mathbf{x}}, \underline{\mathbf{w}}, \overline{\mathbf{x}}, \overline{\mathbf{w}}) \\ -L^{\oplus} \psi_{d}(\overline{\mathbf{x}}, \overline{\mathbf{v}}, \underline{\mathbf{x}}, \underline{\mathbf{v}}) + L^{\ominus} \psi_{d}(\underline{\mathbf{x}}, \underline{\mathbf{v}}, \overline{\mathbf{x}}, \overline{\mathbf{v}}), \end{cases}$$

$$\overline{\mathbf{x}}^{+} = f_{\ell d}(\overline{\xi}, \underline{\xi}) + f_{\nu d}(\overline{\xi}, \underline{\xi}) = (A - LC)^{\uparrow} \overline{\mathbf{x}} - (A - LC)^{\downarrow} \underline{\mathbf{x}} + L\mathbf{y} + \phi_{d}(\overline{\mathbf{x}}, \overline{\mathbf{w}}, \underline{\mathbf{x}}, \underline{\mathbf{w}}) \\ -L^{\oplus} \psi_{d}(\underline{\mathbf{x}}, \underline{\mathbf{v}}, \overline{\mathbf{x}}, \underline{\mathbf{v}}) + L^{\ominus} \psi_{d}(\overline{\mathbf{x}}, \overline{\mathbf{v}}, \underline{\mathbf{x}}, \underline{\mathbf{v}}) \end{cases}$$

Khajengi, M. aud Yang, S.Z. "H., Optimal Interval Observer Synthesis for Uncertain Non-Khajengiad, M. yand Yang, S.Z. "H., Optimal Interval Observer Synthesis for Locally Lips-Pail", Khajengiad, M., Dadaha S.P. and Yang, S.Z. "L. Polontal Interval Observer Dange Interval Number Demander Systems with Number Monte Demander Systems with Number Advances Demander Systems and Syste

Future Vision: 3. Guaranteed Privacy-Preserving Mechanism Design

- Existing notions of privacy: either sacrifice accuracy or incur large computation or communication overhead
- Need for hard accuracy bounds
- Towards guaranteed private estimation, control and verification by leveraging unknown but deterministic functional perturbations

Future Vision: 3. Guaranteed Privacy-Preserving Mechanism Design

- Existing notions of privacy: either sacrifice accuracy or incur large computation or communication overhead
- Need for hard accuracy bounds
- Towards guaranteed private estimation, control and verification by leveraging unknown but deterministic functional perturbations

Future Vision: 3. Guaranteed Privacy-Preserving Mechanism Design

- Existing notions of privacy: either sacrifice accuracy or incur large computation or communication overhead
- Need for hard accuracy bounds
- Towards guaranteed private estimation, control and verification by leveraging unknown but deterministic functional perturbations