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Introduction: Set-Based Methods in Control

Sets appear naturally in | 1) Reachability-Based 2) Set-Based Control
control systems design: Verification & Planning |
 Constraints \ e

Safe region
h(x) >0

 Uncertainties
» Design/safety

specifications
Polytope Hyperrectan- >

gle/Interval 3) Set-Valued Estimation  4) Set-Membership

Learning
A1 yefE) y € Fil@)
Zonotope Ellipsoid T ,_
Pa s - .- mp

o 2 Ll
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Introduction: Safety via Control Barrier Function

Controlled Invariant Set (CIS) Control Barrier Function C CIS

z(0) € C = Ju(x(t))s.t.x(t) e C,Vt > 0 « Known control affine system
&= f(z)+g(z)u

§ |  Find safe set

o S2 {zeR": h(x) > 0}

such that

ilelg[th(a:) + Lyh(z)u + a(h(z))] >0

1
u(x) = arg min —Hu k(x)|] Safety

ueU 2 Filter
oh

st. o (@)(f(@) + g(@)u) 2 —a(h(z))

Ames et al., TAC, 2016 3
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Introduction: Safety via Control Barrier Function

Control Barrier Function C CIS Challenges
* Known control affine system « Systems are uncertain
= f(z)+ g(x)u 1) Uncertain, time-varying parameters
. Eind safe set i(t) = f(2(t),0°(£) + g(®), 0 (1) u(t)
SE{xecR": h(z) >0} 2) Mathematical model unavailable
such that T = f(x,u)
S‘Elg[th(x) + Lgh(z)u + a(h(z))] = 0 « Given an (uncertain) safe set
A
B 1, Safety Sy ={xre X | h(x,0) >0}
u(r) = argmin olu — k(z)| 32
oh
st. 5= (@) (f(2) + g(a)u) = —a(h(x))
= Robust Control Barrier Function
Ames et al., TAC, 2016
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A. Preliminaries on Mixed-Monotonicity

B. Robust Control Barrier Function
: « Set-Membership Parameter
Overwew Estimation

C. Robust Data-Driven Control Barrier
Function
« Set-Membership Learning
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Preliminaries on Mixed-Monotonicity

Yang A mapping f: X CR"™ — T C R™ is (discrete-time) mixed monotone
Mickelin & if there exists a decomposition function f;: X x X — T satisfying:

Ozay, 2019 1. fy(a,2) = f(a).
2. ©1 > w9 = falx1,y) > fa(zs,y), and
3. y1 2 y2 = fal@,y1) < fa(w,y2).
Coogan & Then, if z <x <7,

Arcak 2015 o fd(la f) < f(gj) < fd(f, Z)

Enables interval bounding of nonlinear functions

« Decomposition functions are not unique!

Intervals
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Remainder-Form Decomposition Function

Faa() = min fi(Gm(2.2) +mT (Gn(2.2) = Gl 2),
fai(22) = M fi(Gnl2.9) +mT (G2 2) = Gun(5,2)),
Cm,j(zvé) — {

5., if my > max((75)i;,0),

2, if my; < min((J7)i;,0),

DTM;={meR" | m; = maX((JC)ZJ 0) Vm; = min((lé)ij,O),Vj eN,_}

CT-M{ = {m € R™ | m; = max((74);5,0) V my = min((JE)i;,0),¥j € N,,_,j # i, m; = 0}

 Tightest in the family (that includes Yang et al. 2019)
Guarantees * Tractable/Computable in closed form
« Applicable to non-smooth, semi-continuous functions

Often outperforms all variations of natural inclusion in interval arithmetic

Khajenejad, M. and Yong, S.Z. IEEE TAC, 2023.
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Embedding Systems and Framer Property

For a system xf = g(x¢, wy) with a pair of decomposition functions,

g9,(-);94(-), its embedding system can be defined as:

E] _ |oul@) "] @) e )
ol gall@) et () T e )

Then, the solution has a framer property: z, < x; < T, Vt, Vw, € W.

Provides interval framers for (CT and DT) systems by construction

Khajenejad, M. and Yong, S.Z. IEEE TAC, 2023. 9
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Interval Observer

Continuous-time (CT) or discrete-time (DT) system with bounded noise:

r = f(ze) + Wy,
Yt — h(CIZ‘t) T V?Jt.

e Interval uncertainties: w € |w, w|, v € |v, V|, kg € |2y, To]-

e f(z) and h(x) are differentiable with known Jacobian bounds.



Interval Observer

1. Find equivalent system
(adds additional degrees of
freedom)

2. Write embedding system
- Interval observer

3. Find linear comparison
system

4. Apply stability/gain
minimization results to
obtain observer gains.
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Let L,N € R™! and T € R™" such that T + NC = I,, then we
can write G equivalently as:

& =(TA—LC—NA2)x:+ T p(xt) — Np(xe, we)
+(TW—N82)Wt—Ll/)(xt)+L(yt—VVt),
Xt =&t + Ny — NV,

with JSS decompositions.

A

Framer error (e = X — x,) dynamics G for DT case:

ef = |TA—LC —NAy|ee+|T|AS +|N|AP +|L|AY
+| TW = NBy|Aw+ (|LV| + |[NV|)Av + |MNV|Av
< (|TA—LC — NAg|+| T[F +|N[Fy +|L[Fy )zt
+(|TW = NBy |+ |N[F2 ) Aw+(|LV| + |[NV|)Av,

- < [A
éAst+BlA\:/v]

Av

Zy = & = é&‘t — [j [AW]
11



Interval Observer

Khajenejad, M. and Yong, S.Z. IEEE L-CSS, 2022.

H o -Optimal

* Minimize Ho gain

» Leads to a mixed-integer nonconvex
program

 With additional constraints > SDP or
MISDP

Extensions:
« State and input interval observers
* Hybrid interval observers

NNortheastem University
College of Engineering
Pati, T., Yong, S.Z., et al. IEEE L-CSS, 2022.

L1 -Robust

« Minimize L1 gain

» Positive framer error system

» Leads to a mixed-integer linear
program (MILP)

« With additional constraints - LP



‘ \ ‘ Northeastern University
College of Engineering

Simulation: DT Example

0 1
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Simulation: CT Example

1 = xo + w1, T =bixs— aisin(r)— are + wy,

: ai :
t3 = —as(asr1 + T2) + b—(a4 sin(x1) + cos(x1)x2) — agxs + ws.
1
6
| T3 — 2
éo N\ e E;{OO — &Z}-[oo
\ —
S 4 __ gbMN _pDMN |
S
IR
2
- \
e N
\\..::'---:.\ T T e m e m — = - = - = = =
O e i e i e e e B T SRR A SRS Aok nar
0 2 4 6
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A. Preliminaries on Mixed-Monotonicity

B. Robust Control Barrier Function
: « Set-Membership Parameter
Overwew Estimation

C. Robust Data-Driven Control Barrier
Function
 Set-Membership Learning

15
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Motivation and Literature Review

Challenge: Extend control barrier function [Ames et al., 2016] to guarantee
safety under parametric uncertainties

« The degradation of safety [Kolathaya & Ames, 2018], analysis on robustness
[Xu et al., 2013].

« Additive Uncertainty: [Jankovic, 2018; Breeden & Panagou, 2021]

« Parametric Uncertainty: Adaptive CBF [Taylor & Ames, 2020]; Robust
adaptive CBF [Lopez et al., 2020]; Unmatched CBF [Lopez & Slotine, 2023];
Adaptive CBF with persistence of excitation [Black, Arabi & Panagou, 2021]

= Do not apply for time-varying and nonlinear parametric uncertainties!
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Motivation and Literature Review

Challenge: Reduce conservatism of robust CBFs via set-membership
parameter estimation, i.e., to find

O(t) suchthat 6*(t) € O(t) C O

« Set-membership identification at sampled times [Lopez et al., 2020]
« Disturbance observer + robust CBFs [Das & Murray, 2022; Wang & Xu, 2023]
« Adaptive CBF with persistence of excitation [Black, Arabi & Panagou, 2021]

= Do not apply for time-varying and nonlinear parametric uncertainties!
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Problem Statement: Uncertain System Dynamics

Consider a control affine system with time-varying, nonlinear
parametric uncertainty:

State: x(t) € X C R",
Input: u(t) ed C R™,
Unknown parameter: 6*(t) € © C RP, and

Unknown parameter variation: 6*(t) € ©4 C RP.

18
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Problem Statement: Uncertainty-Dependent Safe Set

Definition 1 (Uncertainty-Dependent Safety Set)

A superlevel set Sy defined on a continuously differentiable
function h : X x © — R parametrized by 6:

Sp 2 {x € X | h(x,6) > 0},
0S8y = {X e X , ;
int(Sp) = {x € X | h(x,0) > 0}.

-
e
X
D
p
|
()
——
Te—=y (e e
S W N
R

19
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Problem Statement

Problem 1 (Robust Safety)

Given system (1) and Sy«, construct a robust CBF to guarantee
robust controlled invariance of all possible safety sets, i.e., Sy for
all @ € © and 6 € ©4.

o Thus, safe for all unknown time-varying 6*(t) and
g*(t), Vt > 0.

Problem 2 (Tractable & Less Conservative Robust CBF Conditions)

Given system (1) and Sy«, find sufficient and/or necessary rCBF
conditions that are computationally tractable and less conservative.

« Computational tractable - linear in decision variables (i.e., control input), no semi-infinite
(‘for all’) constraints

* Less conservative = with respect to estimated parameter set 0* (t) < @(t) coO
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Approach: rCBF

Definition 2 (Robust Control Barrier Function (rCBF))

For system in (1), a continuously differentiable function
h: X x© — R is an rCBF for Sy« (cf. Definition 1), if there exists
a class K function «(-) such that

supyey h(x, u,6,0) > —a(h(x,0)). (5)

forallxc X, 0c®©, 0c ©y, and t > 0, where
h(x,u,0,0) £ 2h(x,0)(f(x,0) + g(x,0)u) + 2B(x,0)0.  (6)
Moreover, for any x € Sg = (Noco So. we define the safe input set:

Kso(x) ={u el | h(x,u,8,8) > —a(h(x,0)),V8 € ©,6 € O4}.
(7)

21



Approach:

N
rCBF

Theorem 1 (Robust Safety)

If h is an rCBF on Sg and %(x, ) # 0, Vx € 0Sg, then any
Lipschitz continuous controller

u(x) € Ksg(x)

for the system (1) renders the set Sg robustly safe, i.e., it also
renders

h(x0*) > 0,Vx € So C Sy~

Northeastern University
College of Engineering

1
u(x) = argmin =||lu — k(x)|| Safety
uelU 2 Filter
Oh Oh : :
s.t. %(x,ﬁ)(f(az, 0) + g(x,0)u) + @(:13,«9)9 > —a(h(x,0)),V0 € ©,0 € O4

Pati, T. and Yong, S.Z. IFAC World Congress, 2023.

22
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Approach: Tractable rCBF

Uncertainty parameter sets are known intervals/hyperrectangles:
*clI©£100,0], 6*clog2[0,,04]
Functions h(x,0) and o € ko are such that
h(x, u,8,0) + a(h(x,0))
is a differentiable function in @ and 6 with known Jacobian bounds:

J(0,0) e1J £ [J,J],¥0 € 10,0 € 10y.

23
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Approach: Tractable rCBF

@ Assumption 1 = 3 mixed-monotone decomposition functions
ha, fa, &4, and hy for h(x(t),0), f(0) = 22f(x(¢),6),

g(0) = 3rg(x(t),0), h(6) £ G5(x(t),0)

Definition 4 (rCBF-MM)

Let Assumption 1 hold. Then, h: X x © — R is an rCBF-MM if:

{sup 24(0,0)ut—24(8,0)u }

ut,uT
s.t. ut—u- elU,ut>0,u" >0
with A £ min{hy(0,0)04, ha(0.0)04. ha(6,0)04, ha(0.0)04},
o K%M(x) ={u=ut—u" €U | (8)Vx €Se = Nyeo Sv}

24
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Approach: Tractable rCBF

Theorem 2 (Sufficient Condition for rCBF-MM)

If his a rCBF-MM on Sg (cf. Definition 4) and

%(x, 0)g(x,0) # 0, Vx € dSg, then any Lipschitz continuous

controller
u(x) € K Q”e"” (x)

for the system (1) renders the set Sg robustly safe.

Proof Sketch: Use mixed-monotonicity property and interval arithmetic for lower bounding functions:
o f(x.0) > f4(0,0),
o g(x,0)u=g(x.0)(ut —u")>gq(0,0)ut—84(0,0)u™
o h(x,0)8 > min{hy(6.0)8,,hq(0,0)04.hq(0.6)8 4, hq(6,0)84},

o h(x,0) > hq(8,0).
Pati, T. and Yong, S.Z. IFAC World Congress, 2023. 75
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Approach: Tractable rCBFs + rCLFs

Alternative tractable CBFs:

« Concave dependence on parametric uncertainty = rCBF-C via vertex
enumeration

« Linear dependence on parametric uncertainty = rCBF-L via robust
optimization/dual linear programming or rCBF-C

Analogous tractable CLFs:

« (General parametric uncertainty = rCLF-MM via mixed-monotonicty

« Convex dependence on parametric uncertainty = rCLF-C via vertex enum.

« Linear dependence on parametric uncertainty = rCLF-L via robust opt. or
robust adaptive CLF (raCLF)

Pati, T. and Yong, S.Z., 2023, submitted.
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Approach: Set-Membership Parameter Estimation

Method 1: Polyhedral Intersections (via Computational Geometry Tools)
Generalization of SMID in [Lopez et al., 2020] to allow time-varying parameters

@p[,k:(ép[k 1@At@d) Ne N
{=F(x(i))8 < —a(i) + f(2(i) + g(z(8)u(i) + e,
F(2(i))0 < @(i) — f(x(i) — g(x(8)u(i) + €}

A

Opr(t) = Opr,|t/at] D AtO4.

3

Parameter “Propagation” Measurement Update
Pati, T. and Yong, S.Z., 2023, submitted. 27
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Approach: Set-Membership Parameter Estimation

Method 2: Interval Observers

« Leverage mixed-monotone embedding systems [Pati, Yong, et al., 2023]

Augmented system 2o |E] 2 [f@0) + g, 0u] o f(2) + Ww
dynamics: =9= w ’
o= Y = ¥ =
¢ = T f(x,0) + g(x,0)u + v] h(z) + Vv

Interval Observer § = (TA - LC>T§ —

e (nggA — LC’)L Z+ L+ T%w04(2,2) — TCPwy(z, 2)
+ w -
(
)

@+ (TA— LC)NC,

TA—LCO)Y Z+4 L+ T®wa(z, 2) — TCwa(z,7)
Sw+ (TA—- LCO)NC,

£ =(TA—LC)'z -
+(TW)%w — (TW
= §{ + N, MT & M4 S

z
z =&+ N, MY £ MmEE

Parameter Set Estimate Orot)={0ecO | WTz(t) <0 <W'z(1)
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Approach: Set-Membership Parameter Estimation

The interval observer Is correct by construction and Li-robust, if
there exist Q, T, N, L, q, and ~ that solve the following

mixed-integer program (MIP):

(,},*7 g%, Q*, -,“-* [* N*) =
arg min{%q,Q,f’[,N} 8
st. Lisip) [ Al < [0 Ylixn,]
T+NC=@Q, g>0,v>0,

where Q@ £ diag(q) , N2 |TW/|, 0 & —114p, Q& M™ + |T|F”
with M £ TA— LC eind F' 2 ((7")@ +(J9)®). )
Then, T* = (@*)1T*,1* = (@*)"1[* and N* = (Q*)1Ai*.

Proof Sketch: Leverage CT mixed-monotone embedding systems with appropriate equivalent
system transformation, as well as positivity of error system [Pati, Yong, et al., 2023]

Pati, T. and Yong, S.Z., 2023, submitted. 29



IN e e
Comparison: Safety via Adaptive/Robust CBF
S2{zxecR":h(zx,0) >0}

Adaptive CBF Robust CBF
= f(x)+ F(x)0" + g(z)u &= f(x,0%) + g(z,0)u .
sup[L¢h(z,0) + Lph(z,0)A(z,0) + Lyh(x)u sup [Lyh(w,0) + Loh(w, 0)u + - (z, 0)0
uelU ue .
) +a(h(z,6) — %&Tr—lé)] > () +a(h(z,0))] 2 0,V0 € ©,0 € Oy
: oh -\ + Robust Optimization, Concavity or
0 =T'F(x) (@(333 9)) Mixed-Monotonicity
e O™ is constant e OF E @, 6* S @d can be time-
- Dynamics is linear in 6* varying | o
. Only guarantees that h(x, g) > 0  Dynamics can be nonlinear in 6
and not h(x, 8*) = 0 « Guarantees that h(x,0*) = 0

Lopez et al., LCSS, 2020. _
Similarly, in Taylor & Ames, ACC, 2022; Lopez & Slotine, ACC, 2023. Pati, T. and Yong, S.Z. IFAC World Congress, 2023.
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ADAPTIVE CRUISE CONTROL |

Simulation: Adaptive Cruise Control

Time-to-Collision Safety: D > T.(v — v;), v; unknown -
Adaptive CBF [Taylor & Ames, 2020] :

Robust adaptive CBF (Lopez et al., 2020]
:  Unmatched CBF [Lopez & Slotine, 2023]
rcer- Robust CBF

L

N

S S S S
ﬂ

S — 0 ha(x,vl) +hu(x’é4)
—O—hr(a?,Til) -"ha($,94) _hrCBF(w7vl)
= hr(w394) _"'"hU(xavl)

D — Tc(’U — 94)

0 001 002 003 004 0.05
t |s]

(a) Time-invariant vy, i.e., o7 = 0 (b) Time-varying vy, i.e., o7 # 0 31




‘ \ | Northeastern University
College of Engineering

Simulation: Adaptive Cruise Control

——=f = () rCBF-C+I10
—1rCBF-L+PI - - rCBF-MM+PI
——1rCBF-L+I0 -+ rCBF-MM+I0
----rCBF-C+PI ------ rCBF

e - s
«* o o Y N
'* a3 =% A
a» . g .
] . N - v
\ ] .0 ° o *
A A
| d

30
cE

201 e \Without Parameter Estimation

AR .
W\ = With Parameter Estimation
Vi Vimvia
15
Parameter rCBF-L rCBF-C rCBF-MM rCBF-MM
Estimation + rCLF-L + rCBF-C + rCBF-MM  + raCLF
None 74.9 (20.6%) 64.3 (3.5%) 64.6 (4%) 64.4 (3.7%)
PI 110.4 (77.1%) 97.1 (56%) 98.3 (58%) 96.9 (56%)
10 83.6 21.5%) 67.9 (9.4%) 68.2 (10%) 70.4 (13%)

Pati, T. and Yong, S.Z., 2023, submitted. 32
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A. Preliminaries on Mixed-Monotonicity

B. Robust Control Barrier Function
: « Set-Membership Parameter
Overwew Estimation

C. Robust Data-Driven Control Barrier
Function
« Set-Membership Learning

33
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Motivation and Literature Review

Challenge: Extend control barrier function [Ames et al., 2016] to guarantee
safety with no mathematical model but only prior state trajectory data

* Neural Networks, e.g., [Choi et al. 2020; Taylor et al., 2020]
« (Gaussian Process, e.qg., [Jagtap et al., 2020; Dhiman et al., 2023]

= Either no guarantees or only probabilistic guarantees

« Control Certificate Function under Lipschitz continuity [Taylor et al., 2021]

= Lipschitz continuity assumption may be strong
= Computationally expensive Second-Order Cone Programs (SOCPs)
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Problem Statement: Uncertain System Dynamics

Consider an unknown nonlinear system:
&= f(z,u)
o State: x(t) € X CR",
o Input: u(t) ed C R™,
with safe set S = {x € R" : h(z) > 0}
@ h(x) is known

@ f(x,u) are unknown but continuous

= h(x, u) is unknown but trajectory data is available

35
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Problem Statement: Continuity Assumptions

Assumption

The function h: X xU — R is
©Q globally Lipschitz continuous,

Q@ globally componentwise Lipschitz continuous, or
@ differentiable w.r.t. x and u with globally bounded Jacobians. ]

Problem: Robust Data-Driven CBF
Given a unknown system x, CBF candidate h : R" — R satisfying one of

the continuity assumptions and an a priori data set, find sufficient
conditions for the robust controlled invariance of the safe set
S={x€X|3uecl st h(x)>0} (with state feedback).

4

36
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Idea: Set-Membership Learning

« Set-membership prediction, Lipschitz interpolation, kinky inference
* Non-parametric learning approach with continuity assumption
 Lipschitz continuous - Piecewise affine bounding functions
« Holder continuous = Piecewise nonconvex bounding functions
 Differentiable with bounded Jacobians
* Piecewise affine bounding functions
* Less conservative than Lipschitz approach

10

y € Fi(x) y € Fa(e) y € (@) 5\ 7 *

-10+

s sin(s)

S

x | x \ s

Jin, Z., Khajenejad, M. and Yong, S.Z. LCSS, 2022.
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Idea: Set-Membership Learning

 Lower bound h(x, u) using data, directly from continuity definitions or
interval/mixed-monotone bounding

Assumption
The function h: X xU — R is

globally Lipschitz continuous,

globally componentwise Lipschitz continuous, or

differentiable w.r.t. x and v with globally bounded Jacobians.

h> hi — Le|x = xillp = Lullu = uill

h>hi— Ll |x—xi| = L) |u— u

h>hi+J AxT — I Ax + J,Aut — J,Au;

where Ax; £ x — x; and Au; £ u — u;.

h(xvu) > Ej(xau) > ECL(QC?U“) > EL(xvu)l

Jin, Z., Khajenejad, M. and Yong, S.Z. LCSS, 2022 & LSCC, 2023. 38

o0 0 6060
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Approach: Robust Data-Driven CBF

CBF-DD-L
Robust CBF condition (Lipschitz continuous):

sup max hi — Ly||x — xillp — Lullu — uillp > —a(h(x)),
uelU i€Ly,

forall x e X and t > 0.

CBF-DD-J1
Robust CBF condition (Bounded Jacobians v1):

hi + J Ax:T — Iy Ax

L Aut — A 2 o),

sup max
uelU i€Ly,

A

for all x € X and t > 0, where Ax; = x — x; and Au; = u — u;. )

CBF-DD-CL

Robust CBF condition (Componenentwise Lipschitz continuous):

sup max hj — L |x — xj| — L} |u — uj| > —a(h(x)),
uel i€Zy;

forall xe X and t > 0.

CBF-DD-J2
Robust CBF condition (Bounded Jacobians v2):

sup max hj+J, Axt—J Ax+J, uP—J,uf > —a(h(x))
uelU, €Ly,
u® 40

s.t. ufBZO,uieZO,ufB—uie:u—u,-

for all x € X and t > 0, where Ax; £ x — x;.

= Involves piecewise affine functions - Mixed-Integer Quadratic Programs

Jin, Z., Khajenejad, M. and Yong, S.Z. LCSS, 2023.

39
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Approach: Complexity Reduction Strategies

1. Parallel Computing via decomposition into multiple quadratic
programming (QP) or analytical subproblems

CBF-DD-sub

Consider a data point (hj,x;, u;) in the data set D = {(hi, xi, u;)}Y, we
can find the u; that is closest to the u in the safe input set U;(x) by
solving the following optimization problem:

ui (x) =argmin, 3lu — k(x)|13

s.t. u€ Ui¢(x).

with U?(x), ¢ € {L, CL, J1, J2} based on the given continuity case.

U(X) — argminue{ui“(x),...,u,"\‘,(x)} %”U o k(X)”%

Jin, Z., Khajenejad, M. and Yong, S.Z. LCSS, 2023. 40
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Approach: Complexity Reduction Strategies

10 —

2. Downsampling via the use of a subset of
“nearby” data by leveraging monotonicity of the

learning approach

« kNN and clustering method (cf. [Jin,
Khajenejad & Yong, 2020])

¥

—
—
b
—

Monotonicity
The safe input sets in Definitions satisfy monotonicity, in the sense that
given two data sets D and D’ and their corresponding safe input sets
Ks(x) and K5(x), D’ C D implies that Kg(x) C Ks(x).

V.

s /
s B\ /
L ’/ \/\\ A
~ \/ ~
N~/ N

b

—
—
b
e
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Approach: Lipschitz Constants/Jacobian Bounds

What if the Lipschitz constants or
Jacobian bounds are unknown?

Estimation of Lipschitz Constant

The Lipschitz constant from sampled data set

D = {(5, Fj+1)li = ny,- -

Estimation of Jacobian Bounds
The Jacobian bounds from the data set

DnlJr}Zg(' (Ju, 1, Asje As; g)—g (Ju J. Asjg As; )

N — 1} by solving the MILP:

D= {(5 )~’1+1)|J — My~
can be estlmated by:

_1}

(7°)D — (70)7] — 2,
Y

subject to Vj, ¢ € {ny,...,

Yj+1

L¢)

X

— g
e 118 —5gllp + 225

JUZJI

-4

N-1}, j#¢:

Vi1 — Yer1 < 8(Ju, 1, Dsje, As;
— Vi1 = Q(Ju- JI-Ej,es&j,e) — Zey,

’e) + 25\/.

Estimation with high
probability:

Proposition (PAC Learning)

Let €,6 € RT. Suppose N samples drawn

from some P satisfies N > %In %.

Then, with a probability greater than 1 — 9,

the probability of an error errp(f) is less than .

v
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Simulations: Inverted Pendulum & Adaptive

Cruise Control

TABLE I: CPU time comparison for different methods.

Method L CL Il J2  SOCP [16]
CPU time (s) 3029 3054 3154 2724 2.84 x 10°

Taylor, Dorobantu, Dean, Recht, Yue, and Ames, CDC, 2021.

40 ‘ ‘ ‘ 24 ¢ ‘ ‘ .
— CBF-DD-J2
30 @ 22 - =U] ]
— \S/ 20 ADAPTIVE CRUISE CONTROL |
g/ 20+ =
= 18 ‘
10 S )
< 1l i s s e
2 16 €5
0 P N S |
0 5 10 15 20 0 5 10 15 20
Time (s) 43



NNortheastem University
College of Engineering

Summary

* Robust control barrier functions for uncertain systems:

« Uncertain parameter-varying systems
» Leveraged mixed-monotonicity, concave bounding and robust
optimization
« Set-membership parameter estimation using computational geometry and
mixed-monotonicity based interval observers

« Unknown continuous systems with only prior trajectory data

« Set-membership learning under various continuity assumptions
« Complexity reduction techniques for robust data-driven CBF
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Challenges/Opportunities

« Computationally efficient and tight set-membership parameter estimation
—> Tighter zonotopic/polytopic observers for immersion/nonlinear systems
» Reliable estimation of continuity parameters—Lipschitz constant/Jacobian
bounds—for set-membership learning
- Confidence or error bounds for these constants/bounds

 Learning of control barrier functions from positive demonstrations
- Non-parametric/set-membership learning of CBFs
—> Active learning for exploring safety boundaries while remaining safe

* Preview control barrier functions

—> Incorporation of future/preview information of (immutable) disturbances or
predictions for nonlinear systems
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