

Robust Control Barrier Functions for Uncertain Systems with Set-Membership Estimation and Learning

Sze Zheng Yong

Associate Professor, Mechanical and Industrial Engineering
Northeastern University
s.yong@northeastern.edu

Interval Methods in Control Seminar | October 11, 2023

Safety-Critical Cyber-Physical Systems

Introduction: Set-Based Methods in Control

Sets appear naturally in control systems design:

- Constraints
- Uncertainties
- Design/safety specifications

Polytope

Zonotope

Hyperrectangle/Interval

Ellipsoid

1) Reachability-Based Verification & Planning

3) Set-Valued Estimation

2) Set-Based Control

4) Set-Membership Learning

Introduction: Safety via Control Barrier Function

Controlled Invariant Set (CIS)

$$x(0) \in \mathcal{C} \Rightarrow \exists u(x(t)) \text{ s.t. } x(t) \in \mathcal{C}, \forall t \geq 0$$

Control Barrier Function CIS

• Known control affine system $\dot{x} = f(x) + g(x)u$

Find safe set

$$\mathcal{S} \triangleq \{x \in \mathbb{R}^n : h(x) \ge 0\}$$

such that

$$\sup_{u \in U} [L_f h(x) + L_g h(x) u + \alpha(h(x))] \ge 0$$

$$u(x) = \arg\min_{u \in \mathcal{U}} \frac{1}{2} \|u - k(x)\| \quad \begin{array}{l} \text{Safety} \\ \text{Filter} \end{array}$$

$$s.t. \ \frac{\partial h}{\partial x}(x)(f(x) + g(x)u) \geq -\alpha(h(x))$$

Introduction: Safety via Control Barrier Function

Control Barrier Function \subset **CIS**

Known control affine system

$$\dot{x} = f(x) + g(x)u$$

Find safe set

$$\mathcal{S} \triangleq \{x \in \mathbb{R}^n : h(x) \ge 0\}$$

such that

$$\sup_{u \in U} [L_f h(x) + L_g h(x) u + \alpha(h(x))] \ge 0$$

$$u(x) = \arg\min_{u \in \mathcal{U}} \frac{1}{2} \|u - k(x)\|$$
 Safety Filter $s.t. \ \frac{\partial h}{\partial x}(x)(f(x) + g(x)u) \ge -\alpha(h(x))$

Challenges

- Systems are uncertain
 - 1) Uncertain, time-varying parameters

$$\dot{x}(t) = f(x(t), \theta^*(t)) + g(x(t), \theta^*(t))u(t)$$

2) Mathematical model unavailable

$$\dot{x} = f(x, u)$$

Given an (uncertain) safe set

$$\mathcal{S}_{\theta} \triangleq \{x \in \mathcal{X} \mid h(x, \theta) \ge 0\}$$

how to guarantee controlled invariance for 1) and 2)?

→ Robust Control Barrier Function

Overview

- A. Preliminaries on Mixed-Monotonicity
- **B.** Robust Control Barrier Function
 - Set-Membership Parameter Estimation
- C. Robust Data-Driven Control Barrier Function
 - Set-Membership Learning

Overview

- A. Preliminaries on Mixed-Monotonicity
- **B.** Robust Control Barrier Function
 - Set-Membership Parameter Estimation
- C. Robust Data-Driven Control Barrier Function
 - Set-Membership Learning

Preliminaries on Mixed-Monotonicity

Yang, Mickelin & Ozay, 2019 A mapping $f: \mathcal{X} \subseteq \mathbb{R}^n \to \mathcal{T} \subseteq \mathbb{R}^m$ is (discrete-time) mixed monotone if there exists a decomposition function $f_d: \mathcal{X} \times \mathcal{X} \to \mathcal{T}$ satisfying:

1.
$$f_d(x,x) = f(x)$$
,

2.
$$x_1 \ge x_2 \Rightarrow f_d(x_1, y) \ge f_d(x_2, y)$$
, and

3.
$$y_1 \ge y_2 \Rightarrow f_d(x, y_1) \le f_d(x, y_2)$$
.

Coogan & Arcak 2015

Then, if
$$\underline{x} \leq x \leq \overline{x}$$
,

•
$$f_d(\underline{x}, \overline{x}) \le f(x) \le f_d(\overline{x}, \underline{x})$$

Enables interval bounding of nonlinear functions

Decomposition functions are not unique!

Remainder-Form Decomposition Function

$$\overline{f}_{d,i}(z,\hat{z}) = \min_{\mathbf{m} \in \mathbf{M}^c} f_i(\zeta_{\mathbf{m}}(z,\hat{z})) + \mathbf{m}^{\top}(\zeta_{\mathbf{m}}(\hat{z},z) - \zeta_{\mathbf{m}}(z,\hat{z})),$$

$$\underline{f}_{d,i}(\hat{z},z) = \max_{\mathbf{m} \in \mathbf{M}^c} f_i(\zeta_{\mathbf{m}}(\hat{z},z)) + \mathbf{m}^{\top}(\zeta_{\mathbf{m}}(z,\hat{z}) - \zeta_{\mathbf{m}}(\hat{z},z)),$$

$$\zeta_{\mathbf{m},j}(z,\hat{z}) = \begin{cases} \hat{z}_j, & \text{if } \mathbf{m}_j \ge \max(\overline{J}_C^f)_{ij}, 0), \\ z_j, & \text{if } \mathbf{m}_j \le \min(\underline{J}_C^f)_{ij}, 0), \end{cases}$$

Guarantees

- Tightest in the family (that includes Yang et al. 2019)
- Tractable/Computable in closed form
- Applicable to non-smooth, semi-continuous functions

Often outperforms all variations of natural inclusion in interval arithmetic

Embedding Systems and Framer Property

For a system $x_t^+ = g(x_t, w_t)$ with a pair of decomposition functions, $g_d(\cdot), \overline{g}_d(\cdot)$, its embedding system can be defined as:

$$\begin{bmatrix} \underline{x}_t^+ \\ \overline{x}_t^+ \end{bmatrix} = \begin{bmatrix} \underline{g}_d([(\underline{x}_t)^\top \underline{w}^\top]^\top, [(\overline{x}_t)^\top \overline{w}^\top]^\top) \\ \overline{g}_d([(\overline{x}_t)^\top \overline{w}^\top]^\top, [(\underline{x}_t)^\top \underline{w}^\top]^\top) \end{bmatrix}.$$

Then, the solution has a framer property: $\underline{x}_t \leq x_t \leq \overline{x}_t, \forall t, \forall w_t \in \mathcal{W}$.

Provides interval framers for (CT and DT) systems by construction

Interval Observer

Continuous-time (CT) or discrete-time (DT) system with bounded noise:

$$x_t^+ = f(x_t) + Ww_t,$$

$$y_t = h(x_t) + Vv_t.$$

- Interval uncertainties: $w \in [\underline{w}, \overline{w}], v \in [\underline{v}, \overline{v}], x_0 \in [\underline{x}_0, \overline{x}_0].$
- f(x) and h(x) are differentiable with known Jacobian bounds.

Interval Observer

- Find equivalent system (adds additional degrees of freedom)
- Write embedding system→ Interval observer
- 3. Find linear comparison system
- 4. Apply stability/gain minimization results to obtain observer gains.

Let $L, N \in \mathbb{R}^{n \times l}$ and $T \in \mathbb{R}^{n \times n}$ such that $T + NC = I_n$, then we can write G equivalently as:

$$\xi_{t}^{+} = (TA - LC - NA_{2})x_{t} + T\phi(x_{t}) - N\rho(x_{t}, w_{t}) + (TW - NB_{2})w_{t} - L\psi(x_{t}) + L(y_{t} - Vv_{t}), x_{t} = \xi_{t} + Ny_{t} - NVv_{t},$$

with JSS decompositions.

Framer error $(\varepsilon_t \triangleq \overline{x}_t - \underline{x}_t)$ dynamics $\tilde{\mathcal{G}}$ for DT case:

$$\begin{split} \varepsilon_t^+ &= |TA - LC - NA_2|\varepsilon_t + |T|\Delta_d^\phi + |N|\Delta_d^\rho + |L|\Delta_d^\psi \\ &+ |TW - NB_2|\Delta w + (|LV| + |NV|)\Delta v + |MNV|\Delta v \\ &\leq (|TA - LC - NA_2| + |T|\overline{F}_x^\phi + |N|\overline{F}_x^\rho + |L|\overline{F}_x^\psi)\varepsilon_t \\ &+ (|TW - NB_2| + |N|\overline{F}_w^\rho)\Delta w + (|LV| + |NV|)\Delta v, \\ &\triangleq \tilde{A}\varepsilon_t + \tilde{B}\begin{bmatrix}\Delta w \\ \Delta v\end{bmatrix} \\ z_t &= \varepsilon_t = \tilde{C}\varepsilon_t + \tilde{D}\begin{bmatrix}\Delta w \\ \Delta v\end{bmatrix} \end{split}$$

Interval Observer

Khajenejad, M. and Yong, S.Z. IEEE L-CSS, 2022.

\mathcal{H}_{∞} -Optimal

- Minimize \mathcal{H}_{∞} gain
- Leads to a mixed-integer nonconvex program
- With additional constraints → SDP or MISDP

Extensions:

- State and input interval observers
- Hybrid interval observers

Pati, T., Yong, S.Z., et al. IEEE L-CSS, 2022.

L_1 -Robust

- Minimize L_1 gain
- Positive framer error system
- Leads to a mixed-integer linear program (MILP)
- With additional constraints → LP

Simulation: DT Example

$$x_{t+1} = \begin{bmatrix} 0 & 1 \\ 0.3 & 0 \end{bmatrix} x_t + \begin{bmatrix} 0.05 \\ 0 \end{bmatrix} [1 - x_{t,1}^2] + w_t,$$
$$y_t = x_{t,1} + v_t.$$

Simulation: CT Example

$$\dot{x}_1 = x_2 + w_1, \quad \dot{x}_2 = b_1 x_3 - a_1 \sin(x_1) - a_2 x_2 + w_2,$$

$$\dot{x}_3 = -a_3 (a_2 x_1 + x_2) + \frac{a_1}{b_1} (a_4 \sin(x_1) + \cos(x_1) x_2) - a_4 x_3 + w_3.$$

Overview

- A. Preliminaries on Mixed-Monotonicity
- **B. Robust Control Barrier Function**
 - Set-Membership Parameter Estimation
- C. Robust Data-Driven Control Barrier Function
 - Set-Membership Learning

Motivation and Literature Review

Challenge: Extend control barrier function [Ames et al., 2016] to guarantee safety under parametric uncertainties

- The degradation of safety [Kolathaya & Ames, 2018], analysis on robustness [Xu et al., 2015].
- Additive Uncertainty: [Jankovic, 2018; Breeden & Panagou, 2021]
- Parametric Uncertainty: Adaptive CBF [Taylor & Ames, 2020]; Robust adaptive CBF [Lopez et al., 2020]; Unmatched CBF [Lopez & Slotine, 2023]; Adaptive CBF with persistence of excitation [Black, Arabi & Panagou, 2021]
- → Do not apply for time-varying and nonlinear parametric uncertainties!

Motivation and Literature Review

Challenge: Reduce conservatism of robust CBFs via set-membership parameter estimation, i.e., to find

$$\hat{\Theta}(t)$$
 such that $\theta^*(t) \in \hat{\Theta}(t) \subseteq \Theta$

- Set-membership identification at sampled times [Lopez et al., 2020]
- Disturbance observer + robust CBFs [Das & Murray, 2022; Wang & Xu, 2023]
- Adaptive CBF with persistence of excitation [Black, Arabi & Panagou, 2021]
- → Do not apply for time-varying and nonlinear parametric uncertainties!

Problem Statement: Uncertain System Dynamics

Consider a control affine system with time-varying, nonlinear parametric uncertainty:

$$\dot{x}(t) = f(x(t), \theta^*(t)) + g(x(t), \theta^*(t))u(t). \tag{1}$$

- State: $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n$,
- Input: $u(t) \in \mathcal{U} \subset \mathbb{R}^m$,
- Unknown parameter: $\theta^*(t) \in \Theta \subset \mathbb{R}^p$, and
- Unknown parameter variation: $\dot{\theta}^*(t) \in \Theta_d \subset \mathbb{R}^p$.

Problem Statement: Uncertainty-Dependent Safe Set

Definition 1 (Uncertainty-Dependent Safety Set)

A superlevel set S_{θ} defined on a continuously differentiable function $h: \mathcal{X} \times \Theta \to \mathbb{R}$ parametrized by θ :

$$S_{\theta} \triangleq \{ x \in \mathcal{X} \mid h(x, \theta) \ge 0 \}, \tag{2}$$

$$\partial \mathcal{S}_{\theta} \triangleq \{ x \in \mathcal{X} \mid h(x, \theta) = 0 \}, \tag{3}$$

$$int(\mathcal{S}_{\theta}) \triangleq \{x \in \mathcal{X} \mid h(x,\theta) > 0\}.$$
 (4)

Problem Statement

Problem 1 (Robust Safety)

Given system (1) and S_{θ^*} , construct a robust CBF to guarantee robust controlled invariance of all possible safety sets, i.e., S_{θ} for all $\theta \in \Theta$ and $\dot{\theta} \in \Theta_d$.

• Thus, safe for all unknown time-varying $\theta^*(t)$ and $\dot{\theta}^*(t)$, $\forall t \geq 0$.

Problem 2 (Tractable & Less Conservative Robust CBF Conditions)

Given system (1) and S_{θ^*} , find sufficient and/or necessary rCBF conditions that are computationally tractable and <u>less conservative</u>.

- Computational tractable → linear in decision variables (i.e., control input), no semi-infinite ('for all') constraints
- Less conservative \rightarrow with respect to estimated parameter set $\theta^*(t) \in \hat{\Theta}(t) \subseteq \Theta$

Approach: rCBF

Definition 2 (Robust Control Barrier Function (rCBF))

For system in (1), a continuously differentiable function $h: \mathcal{X} \times \Theta \to \mathbb{R}$ is an rCBF for \mathcal{S}_{θ^*} (cf. Definition 1), if there exists a class \mathcal{K}_{∞} function $\alpha(\cdot)$ such that

$$\sup_{u \in \mathcal{U}} \dot{h}(x, u, \theta, \dot{\theta}) \ge -\alpha(h(x, \theta)), \tag{5}$$

for all $x \in \mathcal{X}$, $\theta \in \Theta$, $\dot{\theta} \in \Theta_d$, and $t \geq 0$, where

$$\dot{h}(x,u,\theta,\dot{\theta}) \triangleq \frac{\partial h}{\partial x}(x,\theta)(f(x,\theta)+g(x,\theta)u)+\frac{\partial h}{\partial \theta}(x,\theta)\dot{\theta}. \tag{6}$$

Moreover, for any $x \in S_{\Theta} \triangleq \bigcap_{\theta \in \Theta} S_{\theta}$, we define the safe input set:

$$K_{\mathcal{S}_{\Theta}}(x) = \{ u \in \mathcal{U} \mid \dot{h}(x, u, \theta, \dot{\theta}) \ge -\alpha(h(x, \theta)), \forall \theta \in \Theta, \dot{\theta} \in \Theta_d \}.$$
(7)

Approach: rCBF

Theorem 1 (Robust Safety)

If h is an rCBF on S_{Θ} and $\frac{\partial h}{\partial x}(x,\theta) \neq 0$, $\forall x \in \partial S_{\Theta}$, then any Lipschitz continuous controller

$$u(x) \in K_{S_{\Theta}}(x)$$

for the system (1) renders the set S_{Θ} robustly safe, i.e., it also renders

$$h(x, \theta^*) \ge 0, \forall x \in \mathcal{S}_{\Theta} \subseteq \mathcal{S}_{\theta^*}$$

$$u(x) = \arg\min_{u \in \mathcal{U}} \frac{1}{2} \|u - k(x)\|$$
 Safety Filter
$$s.t. \ \frac{\partial h}{\partial x}(x,\theta)(f(x,\theta) + g(x,\theta)u) + \frac{\partial h}{\partial \theta}(x,\theta)\dot{\theta} \ge -\alpha(h(x,\theta)), \forall \theta \in \Theta, \dot{\theta} \in \Theta_d$$

Approach: Tractable rCBF

Assumption 1

Uncertainty parameter sets are known intervals/hyperrectangles:

$$\theta^* \in \mathbb{I}\Theta \triangleq [\underline{\theta}, \overline{\theta}], \quad \dot{\theta}^* \in \mathbb{I}\Theta_d \triangleq [\underline{\theta}_d, \overline{\theta}_d].$$

Functions $h(x, \theta)$ and $\alpha \in \kappa_{\infty}$ are such that

$$\dot{h}(x, u, \theta, \dot{\theta}) + \alpha(h(x, \theta))$$

is a differentiable function in θ and $\dot{\theta}$ with known Jacobian bounds:

$$J(\theta, \dot{\theta}) \in \mathbb{I}J \triangleq [\underline{J}, \overline{J}], \forall \theta \in \mathbb{I}\Theta, \dot{\theta} \in \mathbb{I}\Theta_d.$$

Approach: Tractable rCBF

• Assumption $1 \Rightarrow \exists$ mixed-monotone decomposition functions h_d , \tilde{f}_d , \tilde{g}_d , and \tilde{h}_d for $h(x(t), \theta)$, $\tilde{f}(\theta) \triangleq \frac{\partial h}{\partial x} f(x(t), \theta)$, $\tilde{g}(\theta) \triangleq \frac{\partial h}{\partial x} g(x(t), \theta)$, $\tilde{h}(\theta) \triangleq \frac{\partial h}{\partial \theta} (x(t), \theta)$

Definition 4 (rCBF-MM)

Let Assumption 1 hold. Then, $h: \mathcal{X} \times \Theta \to \mathbb{R}$ is an rCBF-MM if:

$$\left\{
\begin{array}{ll}
\sup_{u^{+},u^{-}} & \widetilde{g}_{d}(\underline{\theta},\overline{\theta})u^{+} - \widetilde{g}_{d}(\overline{\theta},\underline{\theta})u^{-} \\
s.t. & u^{+} - u^{-} \in \mathcal{U}, u^{+} \geq 0, u^{-} \geq 0
\end{array}
\right\} \geq -\alpha(h_{d}(\underline{\theta},\overline{\theta})) \\
-\widetilde{f}_{d}(\underline{\theta},\overline{\theta}) - \Delta, \quad (8)$$

with $\Delta \triangleq \min\{\tilde{h}_d(\underline{\theta}, \overline{\theta})\underline{\theta}_d, \tilde{h}_d(\underline{\theta}, \overline{\theta})\overline{\theta}_d, \tilde{h}_d(\overline{\theta}, \underline{\theta})\underline{\theta}_d, \tilde{h}_d(\overline{\theta}, \underline{\theta})\overline{\theta}_d, \tilde{h}_d(\overline{\theta}, \underline{\theta})\overline{\theta}_d\}$,

•
$$K_{S_{\Theta}}^{MM}(x) = \{ u = u^+ - u^- \in \mathcal{U} \mid (8) \ \forall \ x \in S_{\Theta} \triangleq \bigcap_{\theta \in \Theta} S_{\theta} \}$$

Approach: Tractable rCBF

Theorem 2 (Sufficient Condition for rCBF-MM)

If h is a rCBF-MM on S_{Θ} (cf. Definition 4) and $\frac{\partial h}{\partial x}(x,\theta)g(x,\theta) \neq 0$, $\forall x \in \partial S_{\Theta}$, then any Lipschitz continuous controller

$$u(x) \in K_{S_{\Theta}}^{MM}(x)$$

for the system (1) renders the set S_{Θ} robustly safe.

Proof Sketch: Use mixed-monotonicity property and interval arithmetic for lower bounding functions:

- $\tilde{f}(x,\theta) \geq \tilde{f}_d(\underline{\theta},\overline{\theta})$,
- $\tilde{g}(x,\theta)u = \tilde{g}(x,\theta)(u^+ u^-) \ge \tilde{g}_d(\underline{\theta},\overline{\theta})u^+ \tilde{g}_d(\overline{\theta},\underline{\theta})u^-$,
- $\tilde{h}(x,\theta)\dot{\theta} \ge \min\{\tilde{h}_d(\underline{\theta},\overline{\theta})\underline{\theta}_d, \tilde{h}_d(\underline{\theta},\overline{\theta})\overline{\theta}_d, \tilde{h}_d(\overline{\theta},\underline{\theta})\underline{\theta}_d, \tilde{h}_d(\overline{\theta},\underline{\theta})\overline{\theta}_d\},$
- $h(x,\theta) \geq h_d(\underline{\theta},\overline{\theta})$.

Approach: Tractable rCBFs + rCLFs

Alternative tractable CBFs:

- Concave dependence on parametric uncertainty

 rCBF-C via vertex enumeration
- Linear dependence on parametric uncertainty → rCBF-L via robust optimization/dual linear programming or rCBF-C

Analogous tractable CLFs:

- General parametric uncertainty → rCLF-MM via mixed-monotonicty
- Convex dependence on parametric uncertainty >> rCLF-C via vertex enum.
- Linear dependence on parametric uncertainty >> rCLF-L via robust opt. or robust adaptive CLF (raCLF)

Approach: Set-Membership Parameter Estimation

Method 1: Polyhedral Intersections (via Computational Geometry Tools)

Generalization of SMID in [Lopez et al., 2020] to allow time-varying parameters

$$\hat{\Theta}_{PI,k} = (\hat{\Theta}_{PI,k-1} \oplus \Delta t \Theta_d) \cap \Theta \cap \{-F(x(i))\theta \le -\hat{x}(i) + f(x(i) + g(x(i))u(i) + \epsilon, F(x(i))\theta \le \hat{x}(i) - f(x(i) - g(x(i))u(i) + \epsilon\}$$

$$\hat{\Theta}_{PI}(t) = \hat{\Theta}_{PI,\lfloor t/\Delta t \rfloor} \oplus \Delta t \Theta_d.$$

Parameter "Propagation"

Measurement Update

Approach: Set-Membership Parameter Estimation

Method 2: Interval Observers

Leverage mixed-monotone embedding systems [Pati, Yong, et al., 2023]

Augmented system dynamics:

$$\dot{z} = \begin{bmatrix} \dot{x} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} f(x,\theta) + g(x,\theta)u \\ w \end{bmatrix} \triangleq \hat{f}(z) + Ww,$$

$$\tilde{\zeta} = \begin{bmatrix} x \\ \hat{x} \end{bmatrix} = \begin{bmatrix} x \\ f(x,\theta) + g(x,\theta)u + v \end{bmatrix} \triangleq h(z) + Vv$$

Interval Observer

$$\underline{\dot{\xi}} = (TA - LC)^{\uparrow} \underline{z} - (TA - LC)^{\downarrow} \overline{z} + L\zeta + T^{\oplus} \omega_{d}(\underline{z}, \overline{z}) - T^{\ominus} \omega_{d}(\overline{z}, \underline{z})
+ (TW)^{\oplus} \underline{w} - (TW)^{\ominus} \overline{w} + (TA - LC)N\zeta,$$

$$\dot{\overline{\xi}} = (TA - LC)^{\uparrow} \overline{z} - (TA - LC)^{\downarrow} \overline{z} + L\zeta + T^{\oplus} \omega_{d}(\overline{z}, \underline{z}) - T^{\ominus} \omega_{d}(\underline{z}, \overline{z})
+ (TW)^{\oplus} \overline{w} - (TW)^{\ominus} \underline{w} + (TA - LC)N\zeta,$$

$$\underline{z} = \underline{\xi} + N\zeta,$$

$$\underline{z} = \underline{\xi} + N\zeta,$$

$$\underline{z} = \underline{\xi} + N\zeta,$$

$$\underline{M}^{\uparrow} \triangleq \underline{M}^{d} + \underline{M}^{nd,\oplus}
\underline{M}^{\downarrow} \triangleq \underline{M}^{nd,\ominus}$$

Parameter Set Estimate

$$\hat{\Theta}_{IO}(t) = \{ \theta \in \Theta \mid W^{\top} \underline{z}(t) \le \theta \le W^{\top} \overline{z}(t) \}$$

Approach: Set-Membership Parameter Estimation

Proposition 1

The interval observer is correct by construction and L_1 -robust, if there exist $Q, \tilde{T}, \tilde{N}, \tilde{L}, q$, and γ that solve the following mixed-integer program (MIP):

$$\begin{split} (\gamma^*, q^*, Q^*, \tilde{T}^*, \tilde{L}^*, \tilde{N}^*) \in \\ & \text{arg min}_{\{\gamma, q, Q, \tilde{T}, \tilde{L}, \tilde{N}\}} \gamma \\ & s.t. \ \mathbf{1}_{1 \times (n+p)} \begin{bmatrix} \Omega & \Lambda \end{bmatrix} < \begin{bmatrix} \sigma & \gamma \mathbf{1}_{1 \times n_w} \end{bmatrix}, \\ & \tilde{T} + \tilde{N}C = Q, \ q > 0, \ \gamma > 0, \end{split}$$

where $Q \triangleq diag(q)$, $\Lambda \triangleq |\tilde{T}W|$, $\sigma \triangleq -\mathbf{1}_{1\times n}$, $\Omega \triangleq M^m + |\tilde{T}|\overline{F}^{\omega}$ with $M \triangleq TA - LC$ and $\overline{F}^{\omega} \triangleq ((\overline{J}^{\omega})^{\oplus} + (\underline{J}^{\omega})^{\ominus})$. Then, $T^* = (Q^*)^{-1}\tilde{T}^*$, $L^* = (Q^*)^{-1}\tilde{L}^*$ and $N^* = (Q^*)^{-1}\tilde{N}^*$.

Proof Sketch: Leverage CT mixed-monotone embedding systems with appropriate equivalent system transformation, as well as positivity of error system [Pati, Yong, et al., 2023]

Comparison: Safety via Adaptive/Robust CBF

$$\mathcal{S} \triangleq \{ x \in \mathbb{R}^n : h(x, \Theta) \ge 0 \}$$

Adaptive CBF

$$\dot{x} = f(x) + F(x)\theta^* + g(x)u$$

$$\sup_{u \in U} [L_f h(x, \hat{\theta}) + L_F h(x, \hat{\theta})\Lambda(x, \hat{\theta}) + L_g h(x)u$$

$$+\alpha(h(x, \hat{\theta}) - \frac{1}{2}\tilde{\vartheta}^\top \Gamma^{-1}\tilde{\vartheta})] \ge 0$$

$$\dot{\hat{\theta}} = \Gamma F(x) \left(\frac{\partial h}{\partial x}(x, \hat{\theta}) \right)^{\top}$$

- θ^* is constant
- Dynamics is linear in θ^*
- Only guarantees that $h(x, \hat{\theta}) \ge 0$ and not $h(x, \theta^*) \ge 0$

Robust CBF

$$\dot{x} = f(x, \theta^*) + g(x, \theta^*)u$$

$$\sup_{u \in U} [L_f h(x, \theta) + L_g h(x, \theta) u + \frac{\partial h}{\partial \theta}(x, \theta) \dot{\theta} + \alpha(h(x, \theta))] \ge 0, \forall \theta \in \Theta, \dot{\theta} \in \Theta_d$$

- + Robust Optimization, Concavity or Mixed-Monotonicity
- $\theta^* \in \Theta$, $\dot{\theta}^* \in \Theta_d$ can be <u>time-varying</u>
- Dynamics can be nonlinear in θ^*
- Guarantees that $h(x, \theta^*) \ge 0$

ADAPTIVE CRUISE CONTROL

Simulation: Adaptive Cruise Control

Time-to-Collision Safety: $D \ge T_c(v - v_l)$, v_l unknown

 h_a : Adaptive CBF [Taylor & Ames, 2020]

 h_r : Robust adaptive CBF (Lopez et al., 2020]

 h_u : Unmatched CBF [Lopez & Slotine, 2023]

 h_{rCBF} : Robust CBF

(a) Time-invariant v_l , i.e., $\dot{v}_l = 0$

Simulation: Adaptive Cruise Control

Parameter	rCBF-L	rCBF-C	rCBF-MM	rCBF-MM
Estimation	+ rCLF-L	+ rCBF-C	+ rCBF-MM	+ raCLF
None	74.9 (20.6%)	64.3 (3.5%)	64.6 (4%)	64.4 (3.7%)
PI	110.4 (77.1%)	97.1 (56%)	98.3 (58%)	96.9 (56%)
IO	83.6 (21.5%)	67.9 (9.4%)	68.2 (10%)	70.4 (13%)

Overview

- A. Preliminaries on Mixed-Monotonicity
- **B.** Robust Control Barrier Function
 - Set-Membership Parameter Estimation
- C. Robust Data-Driven Control Barrier Function
 - Set-Membership Learning

Motivation and Literature Review

Challenge: Extend control barrier function [Ames et al., 2016] to guarantee safety with no mathematical model but only prior state trajectory data

- Neural Networks, e.g., [Choi et al. 2020; Taylor et al., 2020]
- Gaussian Process, e.g., [Jagtap et al., 2020; Dhiman et al., 2023]
- → Either no guarantees or only probabilistic guarantees
- Control Certificate Function under Lipschitz continuity [Taylor et al., 2021]
- → Lipschitz continuity assumption may be strong
- → Computationally expensive Second-Order Cone Programs (SOCPs)

Problem Statement: Uncertain System Dynamics

Consider an unknown nonlinear system:

$$\dot{x} = f(x, u)$$

- State: $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n$,
- Input: $u(t) \in \mathcal{U} \subset \mathbb{R}^m$,

with safe set
$$\mathcal{S} \triangleq \{x \in \mathbb{R}^n : h(x) \ge 0\}$$

- h(x) is known
- f(x, u) are unknown but continuous
- $\Rightarrow h(x, u)$ is unknown but trajectory data is available

Problem Statement: Continuity Assumptions

Assumption

The function $\dot{h}: \mathcal{X} \times \mathcal{U} \to \mathbb{R}$ is

- globally Lipschitz continuous,
- globally componentwise Lipschitz continuous, or
- \bullet differentiable w.r.t. x and u with globally bounded Jacobians.

Problem: Robust Data-Driven CBF

Given a unknown system \dot{x} , CBF candidate $h: \mathcal{R}^n \to \mathcal{R}$ satisfying one of the continuity assumptions and an *a priori* data set, find sufficient conditions for the robust controlled invariance of the safe set $\mathcal{S} \triangleq \{x \in \mathcal{X} \mid \exists u \in \mathcal{U} \text{ s.t. } h(x) \geq 0\}$ (with state feedback).

Idea: Set-Membership Learning

- Set-membership prediction, Lipschitz interpolation, kinky inference
 - Non-parametric learning approach with continuity assumption
 - Lipschitz continuous → Piecewise affine bounding functions
 - Hölder continuous → Piecewise nonconvex bounding functions
 - Differentiable with bounded Jacobians
 - Piecewise affine bounding functions
 - Less conservative than Lipschitz approach

Idea: Set-Membership Learning

• Lower bound $\dot{h}(x,u)$ using data, directly from continuity definitions or interval/mixed-monotone bounding

Assumption

The function $\dot{h}: \mathcal{X} \times \mathcal{U} \to \mathbb{R}$ is

- globally Lipschitz continuous,
- globally componentwise Lipschitz continuous, or
- \bullet differentiable w.r.t. x and u with globally bounded Jacobians.

$$\bullet \quad \dot{h} \geq \dot{h}_i - L_x \|x - x_i\|_p - L_u \|u - u_i\|_p$$

$$\dot{h} \geq \dot{h}_i - L_x^{\top} |x - x_i| - L_u^{\top} |u - u_i|$$

$$\begin{array}{ll}
\bullet & \dot{h} \geq \dot{h}_i + \underline{J}_x \Delta x_i^+ - \overline{J}_x \Delta x_i^- + \underline{J}_u \Delta u_i^+ - \overline{J}_u \Delta u_i^- \\
\text{where } \Delta x_i \triangleq x - x_i \text{ and } \Delta u_i \triangleq u - u_i.
\end{array}$$

$$\dot{h}(x,u) \ge \dot{\underline{h}}_J(x,u) \ge \dot{\underline{h}}_{CL}(x,u) \ge \dot{\underline{h}}_L(x,u)$$

Approach: Robust Data-Driven CBF

CBF-DD-L

Robust CBF condition (Lipschitz continuous):

$$\sup_{u \in \mathcal{U}} \max_{i \in \mathbb{Z}_N^+} \dot{h}_i - L_x \|x - x_i\|_p - L_u \|u - u_i\|_p \ge -\alpha(h(x)),$$

for all $x \in \mathcal{X}$ and $t \geq 0$.

CBF-DD-J1

Robust CBF condition (Bounded Jacobians v1):

$$\sup_{u \in \mathcal{U}} \max_{i \in \mathbb{Z}_N^+} \frac{\dot{h}_i + \underline{J}_x \Delta x_i^+ - \overline{J}_x \Delta x_i^-}{+\underline{J}_u \Delta u_i^+ - \overline{J}_u \Delta u_i^-} \ge -\alpha(h(x)),$$

for all $x \in \mathcal{X}$ and $t \geq 0$, where $\Delta x_i \triangleq x - x_i$ and $\Delta u_i \triangleq u - u_i$.

CBF-DD-CL

Robust CBF condition (Componenentwise Lipschitz continuous):

$$\sup_{u \in \mathcal{U}} \max_{i \in \mathbb{Z}_N^+} \dot{h}_i - L_x^\top |x - x_i| - L_u^\top |u - u_i| \ge -\alpha(h(x)),$$

for all $x \in \mathcal{X}$ and t > 0.

CBF-DD-J2

Robust CBF condition (Bounded Jacobians v2):

for all $x \in \mathcal{X}$ and $t \geq 0$, where $\Delta x_i \triangleq x - x_i$.

→ Involves piecewise affine functions → Mixed-Integer Quadratic Programs

Approach: Complexity Reduction Strategies

1. Parallel Computing via decomposition into multiple quadratic programming (QP) or analytical subproblems

CBF-DD-sub

Consider a data point (\dot{h}_i, x_i, u_i) in the data set $\mathcal{D} = \{(\dot{h}_i, x_i, u_i)\}_{1}^{N}$, we can find the u_i that is closest to the u in the safe input set $\mathcal{U}_i(x)$ by solving the following optimization problem:

$$u_i^*(x) = \arg\min_{u = \frac{1}{2}} ||u - k(x)||_2^2$$

s.t. $u \in \mathcal{U}_i^{\phi}(x)$.

with $\mathcal{U}_{i}^{\phi}(x), \phi \in \{L, CL, J1, J2\}$ based on the given continuity case.

$$u(x) = \arg\min_{u \in \{u_1^*(x), \dots, u_N^*(x)\}} \frac{1}{2} ||u - k(x)||_2^2.$$

Approach: Complexity Reduction Strategies

- 2. **Downsampling** via the use of a subset of "nearby" data by leveraging monotonicity of the learning approach
 - kNN and clustering method (cf. [Jin, Khajenejad & Yong, 2020])

Monotonicity

The safe input sets in Definitions satisfy monotonicity, in the sense that given two data sets \mathcal{D} and \mathcal{D}' and their corresponding safe input sets $K_{\mathcal{S}}(x)$ and $K'_{\mathcal{S}}(x)$, $\mathcal{D}' \subseteq \mathcal{D}$ implies that $K'_{\mathcal{S}}(x) \subseteq K_{\mathcal{S}}(x)$.

Approach: Lipschitz Constants/Jacobian Bounds

What if the Lipschitz constants or Jacobian bounds are unknown?

Estimation of Lipschitz Constant

The Lipschitz constant from sampled data set $\overline{\mathcal{D}} = \{(\tilde{s}^o_j, \tilde{y}^o_{j+1}) | j = n_y, \cdots, N-1\}$ can be estimated by:

$$\hat{L}_p^{(i)} = \max_{j \neq k} \frac{|(\tilde{y}_j^o)^{(i)} - (\tilde{y}_k^o)_k^{(i)}| - 2\varepsilon_v}{||\tilde{s}_j^o - \tilde{s}_k^o||_p + 2\varepsilon_s}.$$

Estimation of Jacobian Bounds

The Jacobian bounds from the data set

$$\overline{\mathcal{D}} = \{(\tilde{s}_j, \tilde{y}_{j+1}) | j = n_y, \cdots, N-1\}$$
 by solving the MILP:

$$\min_{J_u,J_l} \sum_{i=1}^m \overline{g}^{(i)}(J_u,J_l,\overline{\Delta s}_{j,\ell},\underline{\Delta s}_{j,\ell}) - \underline{g}^{(i)}(J_u,J_l,\overline{\Delta s}_{j,\ell},\underline{\Delta s}_{j,\ell})$$

subject to
$$\forall j, \ell \in \{n_y, \dots, N-1\}, j \neq \ell$$
:

$$\tilde{y}_{j+1} - \tilde{y}_{\ell+1} \leq \overline{g}(J_u, J_l, \overline{\Delta s}_{j,\ell}, \underline{\Delta s}_{j,\ell}) + 2\varepsilon_v,$$

$$\tilde{y}_{j+1} - \tilde{y}_{\ell+1} \ge \underline{g}(J_u, J_l, \overline{\Delta s}_{j,\ell}, \underline{\Delta s}_{j,\ell}) - 2\varepsilon_v,$$

$$J_u \geq J_I$$

Estimation with high probability:

Proposition (PAC Learning)

Let $\epsilon, \delta \in \mathbb{R}^+$. Suppose N samples drawn from some \mathcal{P} satisfies $N \geq \frac{1}{\epsilon} \ln \frac{1}{\delta}$. Then, with a probability greater than $1 - \delta$, the probability of an error $\text{err}_{\mathcal{P}}(\hat{\theta})$ is less than ϵ .

Simulations: Inverted Pendulum & Adaptive Cruise Control

TABLE I: CPU time comparison for different methods.

Method	L	CL	J1	J2	SOCP [16]
CPU time (s)	3029	3054	3154	2724	2.84×10^{5}

Taylor, Dorobantu, Dean, Recht, Yue, and Ames, CDC, 2021.

Summary

- Robust control barrier functions for uncertain systems:
 - Uncertain parameter-varying systems
 - Leveraged mixed-monotonicity, concave bounding and robust optimization
 - Set-membership parameter estimation using computational geometry and mixed-monotonicity based interval observers
 - Unknown continuous systems with only prior trajectory data
 - Set-membership learning under various continuity assumptions
 - Complexity reduction techniques for robust data-driven CBF

Challenges/Opportunities

- Computationally efficient and tight set-membership parameter estimation
 - → Tighter zonotopic/polytopic observers for immersion/nonlinear systems
- Reliable estimation of continuity parameters—Lipschitz constant/Jacobian bounds—for set-membership learning
 - → Confidence or error bounds for these constants/bounds
- Learning of control barrier functions from positive demonstrations
 - → Non-parametric/set-membership learning of CBFs
 - → Active learning for exploring safety boundaries while remaining safe
- Preview control barrier functions
 - → Incorporation of future/preview information of (immutable) disturbances or predictions for nonlinear systems

Thank you!

References

- A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, "Control barrier function based quadratic programs for safety critical systems," IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.
- S. Coogan and M. Arcak. "Efficient finite abstraction of mixed monotone systems." In Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, pp. 58-67. 2015.
- L. Yang, O. Mickelin, and N. Ozay. "On sufficient conditions for mixed monotonicity." IEEE Transactions on Automatic Control 64, no. 12 (2019): 5080-5085.
- M. Khajenejad and S. Z. Yong. "Tight remainder-form decomposition functions with applications to constrained reachability and guaranteed state estimation." IEEE Transactions on Automatic Control (2023).
- S. Kolathaya and A. D. Ames. "Input-to-state safety with control barrier functions." IEEE control systems letters 3, no. 1 (2018): 108-113.
- X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. "Robustness of control barrier functions for safety critical control." IFAC-PapersOnLine 48, no. 27 (2015): 54-61.
- M. Jankovic. "Robust control barrier functions for constrained stabilization of nonlinear systems." Automatica 96 (2018): 359-367.
- J. Breeden, and D. Panagou. "Robust control barrier functions under high relative degree and input constraints for satellite trajectories." Automatica 155 (2023): 111109.
- A. J. Taylor and A. D. Ames. "Adaptive safety with control barrier functions." In 2020 American Control Conference (ACC), pp. 1399-1405. IEEE, 2020.
- B. T. Lopez J.-J. E. Slotine, and J. P. How. "Robust adaptive control barrier functions: An adaptive and data-driven approach to safety." *IEEE Control Systems Letters* 5, no. 3 (2020): 1031-1036.
- B. T. Lopez and J.-J. E. Slotine, "Unmatched control barrier functions: Certainty equivalence adaptive safety," in American Control Conference, 2023, pp. 3681–3687.
- M. Black, E. Arabi, and D. Panagou, "A fixed-time stable adaptation law for safety-critical control under parametric uncertainty," in European Control Conference (ECC), 2021, pp. 1323–1328.

References

- E. Das and R. M. Murray, "Robust safe control synthesis with disturbance observer-based control barrier functions," in IEEE Conference on Decision and Control (CDC), 2022, pp. 5566–5573.
- Y. Wang and X. Xu, "Disturbance observer-based robust control barrier functions," in American Control Conference, 2023, pp. 3662–3668.
- T. Pati, M. Khajenejad, S. P. Daddala, and S. Z. Yong, "L1-robust interval observer design for uncertain nonlinear dynamical systems," IEEE Control Systems Letters, vol. 6, pp. 3475–3480, 2022.
- T. Pati and S. Z. Yong, "Robust control barrier functions for control affine systems with time-varying parametric uncertainties," in IFAC World Congress, 2023.
- T. Pati and S. Z. Yong, "Robust Control Barrier Functions for Uncertain Parameter-Varying Control Affine Systems with Set-Membership Parameter Estimation," 2023, submitted.
- J. Choi, F. Castaneda, C. J. Tomlin, and K. Sreenath, "Reinforcement learning for safety-critical control under model uncertainty, using control Lyapunov functions and control barrier functions," in Robotics: Science and Systems (RSS), 2020.
- A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames, "Learning for safety-critical control with control barrier functions," in Learning for Dynamics and Control. PMLR, 2020, pp. 708–717.
- P. Jagtap, G. J. Pappas, and M. Zamani, "Control barrier functions for unknown nonlinear systems using Gaussian processes," in IEEE Conference on Decision and Control (CDC), 2020, pp. 3699–3704.
- V. Dhiman, M. J. Khojasteh, M. Franceschetti, and N. Atanasov, "Control barriers in Bayesian learning of system dynamics," IEEE Transactions on Automatic Control, vol. 68, no. 1, pp. 214–229, 2023.
- A. J. Taylor, V. D. Dorobantu, S. Dean, B. Recht, Y. Yue, and A. D. Ames, "Towards robust data-driven control synthesis for nonlinear systems with actuation uncertainty," in IEEE Conference on Decision and Control (CDC), 2021, pp. 6469

 –6476.
- Z. Jin, M. Khajenejad, and S. Z. Yong, "Data-driven abstraction and model invalidation for unknown systems with bounded Jacobians," IEEE Control Systems Letters, vol. 6, pp. 3421–3426, 2022.
- Z. Jin, M. Khajenejad, and S. Z. Yong, "Robust Data-Driven Control Barrier Functions for Unknown Continuous Control Affine Systems." IEEE Control Systems Letters (2023).