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Motivation for State Estimation

Determine the remaining states for full
state feedback;

Prevent collisions;

Detect loss of power in the rotors;

Predict safety in future time instants.
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Figure: Drone schematic.
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Stochastic State Estimation

Assumption: we know the probability density
function for unknown signals.

Start with prior knowledge

Use the model to update the estimates with
the elaspsed time.

Improve the estimates by including the
measurements.

Repeat the procedure with new prior.
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How to perform Stochastic State Estimation

There are numerous methods depending on the set of assumptions:

General case
Bayesian Filter (exact), Particle Filter (sampled version)

Gaussian pdfs for all signals and linear dynamics
Kalman Filter

Gaussian pdfs and nonlinear dynamics
Extended Kalman Filter, Cubature Kalman Filter, etc.

The above list is by no means exhaustive!

Problem

What if we do not know the entire probability density function but rather its
support?
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Set-valued State Estimation

Set-valued State Estimation is suitable when:

We only know the support (i.e., all possible vector realizations of the random
variables);
Distributions with multi-modes may trick a Kalman filter;
The application requires worst-case guarantees (like collision avoidance);
When we want to optimize over all possible states.

Definition (Set-valued state estimation)

Given the supports (admissible values) for the unknown signals, compute the set
of all possible values for the state.
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Set-Valued State Estimation for Linear Systems

System dynamics are assumed linear and known:

xk+1 = Fkxk +Bkuk + wk

yk = Ckxk + vk

Solution

Estimates for time k + 1 are given by:

Xk+1 = (FkXk ⊕Wk +Bkuk) ∩Ck
(yk − Vk),

where ∀k ≥ 0 we have xk ∈ Xk, wk ∈ Wk, vk ∈ Vk and ⊕ stands for the
Minkowski sum and ∩C is the intersection after a linear map.
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Required Set Operations (LPV case)

Linear Map RX + t

Set obtained by applying the linear map to all points {Rx+ t : x ∈ X}

Minkowski sum X + Y
Set containing all sums of two vectors from the sets {x+ y : x ∈ X , y ∈ Y}

Intersection through a Linear Map X ∩R Y
All points in X that after the map R are also in Y {x : x ∈ X , Rx ∈ Y}
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Set representations

Intervals

An Interval I can be represented by lower bounds lb and upper bounds ub such
that:

I = {x : lb ≤ x ≤ ub}

with element-wise inequalities.

Intervals (alternative definition)

An Interval I is a specific linear map of the hyper-cube:

I = {Gξ + c : ∥ξ∥∞ ≤ 1}

with G a diagonal matrix.
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Set representations

Set lin. map lin. eq. base set GX + t X + Y X ∩R Y
I ✓ ✗ B∞ ✓ ✓ ✗

Z ✓ ✗ B∞ ✓ ✓ ✗

E ✓ ✗ B2 ✓ ✓ ✗

CZ ✓ ✓ B∞ ✓ ✓ ✓
P ✓ ✓ B∞ ✓ ✓ ✓

CCG ✓ ✓ any ✓ ✓ ✓

D. Silvestre, CCGs 8/ 17



Set representations

Zonotopes

A Zonotope Z is a linear map of the hyper-cube:

Z = {Gξ + c : ∥ξ∥∞ ≤ 1}

for any matrix G.
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Set representations

Ellipsoids

An Ellipsoid E is a linear map of an ℓ2 unit ball:

E = {Gξ + c : ∥ξ∥2 ≤ 1}

for any matrix G.
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Set representations

Constrained Zonotopes

A Constrained Zonotope CZ is a linear map of an ℓ∞ unit ball with an added
linear constraint:

CZ = {Gξ + c : ∥ξ∥∞ ≤ 1, Aξ = b}

for any matrix G.
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Set representations

Polytope

A Polytope P is the explicit representation equivalent to the implicit way of
writing CZ:

P = {x : Ax ≤ b}
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Set representations

Constrained Convex Generator [1]

A Constrained Convex Generator CCG is an implicit representation where the
generator variables are constrained to some convex sets:

CCG = {Gξ + c : Aξ = b, ξ ∈ C1 × · · · × Cnp}.
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Set-Valued State Estimation for uncertain Linear
Systems

System dynamics are assumed linear with unknown parameters:

xk+1 =
(
Fk +

n∆∑
ℓ=1

∆
(ℓ)
k Uℓ

)
xk +Bkuk + wk

yk = Ckxk + vk

Solution

Instead of FkXk replace by:

cvxHull

 ⋃
∆∈vertex([−1,1]n∆ )

(
Fk +

n∆∑
ℓ=1

∆ℓ(k)Uℓ

)
X (k)

 .
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Required Set Operations (uncertain LPV case)

Convex Hull cvxHull(X ,Y)

Set with all points in line segments linking points in X and Y ,
cvxHull (X ,Y) :=

{
z : z = λx+ (1− λ)y, λ ∈ [0, 1], x ∈ X , y ∈ Y

}
.

We can leverage the Balas formulation and write:

Zh = {ph = Gxξx + λcx +Gyξy + (1− λ)cy :

0 ≤ λ ≤ 1, Axξx = λbx, Ayξy = (1− λ)by,

∥ξx∥ℓx ≤ λ, ∥ξy∥ℓy ≤ (1− λ)}

And rewrite it to be in standard CCG format.
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Convex Hull for CCGs

Consider two CCGs:

X = (Gx, cx, Ax, bx,C
(τx)
x ) ⊂ Rn

Y = (Gy, cy, Ay, by,C
(τy)
y ) ⊂ Rn

The exact convex hull is given by the CCGs Zh = (Gh, ch, Ah, bh,Ch):

Gh =
[
Gx Gy cx − cy

]
, ch =

cx + cy
2

,

Ah =

[
Ax 0 −bx
0 Ay by

]
, bh =

[
1
2
bx

1
2
by

]
Ch = {C(τx+1)

x (ξx, ξλ,−1, 0.5),C(τy+1)
y (ξy, ξλ, 1, 0.5),R},
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CCG vs CZ convex hull
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Figure: Comparison between the set Zh and the convex hull that one would obtain if
first converted both Z1 and Z2 to constrained zonotopes by overbounding all convex
generators by the ℓ∞ unit ball.
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Simulation Results

Setup: Unicycle model with a digital compass that has a ±5◦ error starting at
position (16, 16) with ±2 uncertainty in the nominal initial position at
(15.5, 15.5). There are two beacons at (5, 25) and (23, 10) that can be detected
in a radius of 5 and 2.

Vehicle performing a figure 8;

There is a clear advantage in using
CCGs in terms of the hypervolume
of the sets.
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CCGs hypervolume is decreased
when the vehicle receives beacon
range measurements;

The exact representation of circle
shapes allow for no conservatism;

The wrapping effect of CZs can be
observed from iteration 50 to 100.
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Elapsed time for constructing the
sets, order reduction and volume
computation per iteration;

Most time is spent in order
reduction and volume computation
(not needed in practice);

There is a need for a better order
reduction for CCGs.
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Order Reduction for CCGs

We can trivially use all order reduction methods from CZs if we upper bound
all norm balls by ℓ∞ balls;

We can model the sets using Integral Quadratic Constraints (IQCs) much
like in ReachSDP [2](currently under review);

This is quite an open topic for further research!
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Concluding Remarks

Code for all set representations given in Github:

https://github.com/danielmsilvestre/ReachTool

Set-valued State Estimation is exact for the broad class of LPV
(encompasses nonlinear models).

Estimation in the presence of uncertainties returns the exact convex hull.

Additional order reductions methods is still quite an open topic.

It is possible to encode CCGs directly in Yalmip using the provided toolbox.
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