Guaranteed Characterization of Exact Non-Asymptotic
Confidence Regions Using Interval Analysis

M. Kieffer

Université Paris-Saclay, CentraleSupélec, CNRS
Laboratoire des Signaux et Systémes

24 november 2023

1/83



Introduction

Y
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Y, (P)

Parameter identification: estimate value of parameter vector p

e considering some model structure . (), with output y;" (p)
@ from noisy data vector y = (yl,...,y,,)T.
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Introduction

Via minimization of cost function, for instance

J(P) = lly—ym ()13, (1)
where
o ym(P) =" (P),--.,y7 (p)) is vector of model outputs
@ |||, is a (possibly weighted) ¢ norm.

Then

p=argminJ(p). ()
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N
Difficulties

Parameters of model may not be identifiable uniquely
— different values of p may yield the same yn, (p)
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N
Difficulties

Parameters of model may not be identifiable uniquely
— different values of p may yield the same yn, (p)

Numerical algorithm to compute p may get trapped at local minimizer

Even if single p is obtained and if y ~ yn, (p), p cannot be considered as
final answer to the estimation problem
— quality tag is missing.

pi = 1.2345+10* is quite different of p; = 1.2345 +103.
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Outline

@ Estimating parameter and uncertainty
@ Classical approaches
@ White Gaussian noise with known variance
@ White Gaussian noise with unknown variance
@ Approaches proposed by Campi et al.
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Estimating parameter and uncertainty Classical approaches

Classical approaches

Based on
o Level-set [WP97, SWO03].
e Monte-Carlo techniques [WP97].
e Evaluation of the density of the estimator [Kay93].
e Bounded-error estimation [MNPLW96, JKDWO1].
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Estimating parameter and uncertainty Classical approaches

Classical approaches

Based on
o Level-set [WP97, SWO03].
e Monte-Carlo techniques [WP97].
e Evaluation of the density of the estimator [Kay93].
e Bounded-error estimation [MNPLW96, JKDWO1].

Characterization of parameter uncertainty via previous approaches relies on
hypotheses on noise corrupting data

e difficult to verify from residuals y —ym (p) when ny is large,

@ impossible to verify with only few data points.
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[ESHTLE R EIE EHIGEL ML e =TIl \White Gaussian noise with known variance

White Gaussian noise with known variance

Assume that the prediction residuals

e;, (P") =y — v (p7)

satisfy

e (p)=¢;, i=1,...,n

with & iid .4 (0,62) with known 2.

Maximum likelihood estimation leads to minimization of

i)=Y (£ (p)°.

i=1
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[ESHTLE R EIE EHIGEL ML e =TIl \White Gaussian noise with known variance

White Gaussian noise with known variance

For the true value p* of the vector of parameters
Nt
Z et (p
. 2
Z % no-.

Useless to try to consider a criterion below j; = no?.
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[ESHTLE R EIE EHIGEL ML e =TIl \White Gaussian noise with known variance

White Gaussian noise with known variance

For the true value p* of the vector of parameters
Nt
Z et (p
. 2
Z % no-.

Useless to try to consider a criterion below j; = no?.
The larger 62, the higher the isocriterion to consider.

Noise raises the maximum acceptable value for the criterion.
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[ESHTLE R EIE EHIGEL ML e =TIl \White Gaussian noise with known variance

White Gaussian noise with known variance

-
Prediction error e (p) = (ef1 (P),.-- ef, (p)) evolves in space of

dimension n; and

j(p")/0*=e" (p*)e(p") /0

distributed according to x2(n;) law with n; degrees of freedom.

9/83



[ESHTLE R EIE EHIGEL ML e =TIl \White Gaussian noise with known variance

White Gaussian noise with known variance

-
Prediction error e (p) = (ef1 (P),.-- ef, (p)) evolves in space of

dimension n; and

j(p")/0*=e" (p*)e(p") /0

distributed according to x2(n;) law with n; degrees of freedom.

Consider X ~ x2(n;) and x2(n;) such that
Pr(X > xé(nt)) =a

%2 (nt) has a probability a to be exceeded by a random variable
distributed according to x?(n;) law.
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[ESHTLE R EIE EHIGEL ML e =TIl \White Gaussian noise with known variance

White Gaussian noise with known variance

-
Prediction error e (p) = (ef1 (P),.-- ef, (p)) evolves in space of

dimension n; and

j(p")/0*=e" (p*)e(p") /0

distributed according to x2(n;) law with n; degrees of freedom.
Consider X ~ x2(n;) and x2(n;) such that
Pr(X > xé(nt)) =a

%2 (nt) has a probability a to be exceeded by a random variable
distributed according to x?(n;) law.

Confidence region at 1 — o % is [SW03]
P1o={plj(p) < 0°25(m)}.

For example, oo = 0.05 leads to 95 % confidence region.
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[ESHTLE R EIE EHIGEL ML e =TIl \White Gaussian noise with known variance

White Gaussian noise with known variance
Example:

yi (p*) = prexp(—pati),
with p* = (2,0.2) and t; = 0.1/, i =0,...,63.

0.9 Confidence set
Chi2 - centred form
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Estimating parameter and uncertainty White Gaussian noise with unknown variance

Noise with unknown variance

Assume now that the prediction error

et (p*) =y, — vy (p*)

satisfies
P(n*) -
et (P)=¢&y i=1,....,m

where g5 are iid random variables .4 (0,62) with 62 unknown.
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Estimating parameter and uncertainty White Gaussian noise with unknown variance

Noise with unknown variance

Assume now that the prediction error

et (p*) =y, — vy (p*)

satisfies
P(p*) — -
et (P)=¢&y i=1,....,m
where g5 are iid random variables .4 (0,62) with 62 unknown.

Confidence region at 1 — o % cannot be defined as

P1a={pli(p) < 0?25 (m)}.

2

since ¢~ is unknown.
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Estimating parameter and uncertainty White Gaussian noise with unknown variance

Noise with unknown variance

<] Tangent plane to Srat Y (P)

1 - P(p)] e(p

In data space, y and y,, are points.

When p varies, ym (p) describes surface response of model S,
@ S, hyperplane when model LP.
@ S, curved hypersurface when model NLP.
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Estimating parameter and uncertainty White Gaussian noise with unknown variance

Noise with unknown variance

Consider

o2 () C52) ()

orthogonal projection matrix on hypersurface tangent to S, in ym (p)
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SN B EIET EIgEL M =Vl \White Gaussian noise with unknown variance

Noise with unknown variance

Consider

o2 () C52) ()

orthogonal projection matrix on hypersurface tangent to S, in ym (p)

If dim(p) = np, dim(y) = n and e(p) =y — ym (P), then
o j(p*)=e' (p*)e(p*) ~ c%x%(n:), e(p) evolves in space of dimension
ny.
e e’ (p*)N(p*)e(p*) ~ 62x%(np), orthogonal projection of e(p) on
tangent space evolves in space of dimension np.
o e’ (p*)(1-N(p*))e(p*) ~ 62x>(nt — ny), orthogonal complement of
previous projection.
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Estimating parameter and uncertainty White Gaussian noise with unknown variance

Noise with unknown variance

Moreover, e’ (p*)M(p*)e(p*) and e’ (p*) (1-N(p*))e(p*) are
independent, so that
e’ (p)N(p*)e(p*) n—np
e’ (p*)(1-N(p*))e(p*) mp
where F (ny, n — n,) Fisher-Snedecor law.

~ F(np,ne—np)
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Estimating parameter and uncertainty White Gaussian noise with unknown variance

Noise with unknown variance

Computing quotient of two independent y?-distributed random variables,
unknown ¢ eliminated

< usable when 62 a priori unknown.

Consider X ~ F (np,ne —np) and Fy (np, ne — np) such that
Pr(X = Fo(np,nt—np)) =

Fo (np, ne — np) is the value which has a probability o to be exceeded by a
variable distributed according to a F (np,n. — np) law.
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Noise with unknown variance

Computing quotient of two independent y?-distributed random variables,
unknown ¢ eliminated
< usable when 62 a priori unknown.

Consider X ~ F (np,ne —np) and Fy (np, ne — np) such that
Pr(X = Fo(np,nt—np)) =

Fo (np, ne — np) is the value which has a probability o to be exceeded by a
variable distributed according to a F (np,n. — np) law.

Confidence region with confidence level 1 — o % [SWO03]

_ e’ (p)N(p)e(p) m—np o
o= {P ) nete) < )
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White Gaussian noise with unknown variance
Noise with unknown variance
Computing quotient of two independent y?-distributed random variables,

unknown &2 eliminated
< usable when 62 a priori unknown.

Consider X ~ F (np,ne —np) and Fy (np, ne — np) such that
Pr(X = Fo(np,nt—np)) =

Fo (np, ne — np) is the value which has a probability o to be exceeded by a
variable distributed according to a F (np,n. — np) law.

Confidence region with confidence level 1 — o % [SWO03]

_ e’ (p)N(p)e(p) m—np o
o= {P ) nete) < )

Much less amenable for characterization using interval analysis.
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Approaches proposed by Campi et al.
SPS and LSCR

Campi et al. [CW05, DWC07, CCW12] propose two approaches named
LSCR and SPS

@ exact characterization of parameter uncertainty

@ in non-asymptotic conditions.
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Estimating parameter and uncertainty Approaches proposed by Campi et al.
SPS and LSCR

Campi et al. [CW05, DWC07, CCW12] propose two approaches named
LSCR and SPS

@ exact characterization of parameter uncertainty

@ in non-asymptotic conditions.

Hypotheses

© System generating data must belong to model set (true value p*
should be meaningful)

© Noise samples must be independently distributed with distributions
symmetric with respect to zero.
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Outline

@ sps
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SPS

Introduction

SPS [CCW12]: sign-perturbed sums.

SPS is designed for linear regression, where
yt:(p;rp*+wt7t:1)"‘7n7 (3)

with @, known regression vector.
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SPS

Introduction

SPS [CCW12]: sign-perturbed sums.

SPS is designed for linear regression, where

yt:(P;rp*+Wt7t:1)"‘7n7 (3)
with @, known regression vector.

SPS defines an exact confidence region for p* around least-squares
estimate P, which is solution to normal equations

;"1% (vi—ofp) =0. (4)
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SPS

Description

For generic p consider

s0(p)= Y 0 (v~ 0lP). 5)
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SPS

Description

For generic p consider
- T
so(p)= ) o, (Yt—(Pt p) ;

t=1
and sign-perturbed sums

5 T

si(p) = Z Qi t Py <Yt — Q@ P> )
t=1

where i =1,...,m—1 and ¢; ; = =1 with equal probability, and

zi(p) = |lsi(p)|3,i=0,...,m—1.
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SPS

Description

For generic p consider

s0(p)= Y 0 (v~ 0lP). 5)

and sign-perturbed sums

n
si(p) =) ai:®, <Yt - <ptTp> ) (6)
t=1
where i =1,...,m—1 and ¢; ; = =1 with equal probability, and

z,-(p)zHS,'(p)Hg,I':O,...,m—].. (7)

When ordering z; (p*) in increasing order, rank of zp (p*) is uniformly
distributed [CCW12].
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SPS

Description

Consider set X of all p such that zy(p) is not among the q largest values
of (2 (P))Zo'-

One has p* € X, with exact probability 1 —q/m, see [CCW12].
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SPS

Description

Consider set X of all p such that zy(p) is not among the q largest values
of (2 (P))Zo'-

One has p* € X, with exact probability 1 —q/m, see [CCW12].

X, is confidence region with level 1—q/m.
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SPS

Definition

2, may be defined more formally as

m—1
X, = {p € IP such that Z 7 (p) = q}

where
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SPS

Illustration

Model y™ (p) = p, with 20 noisy data generated for p* = 3.
We choose m = 10.

200,

150

e}
=
50|
0]
w% (¢=1)
80% (q=2)
_50] , , , , , | | | |
2 22 24 2.6 2.8 3 3.2 3.4 3.6 3.8 4
P
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Outline

© LSCR
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LSCR

Introduction - main idea

LSCR [CWO05]: leave-out sign-dominant correlated regions

Independent estimates of the correlation of the prediction error

& (p) = ye —yi" (p)

should have random signs.
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Introduction - main idea

LSCR [CWO05]: leave-out sign-dominant correlated regions

Independent estimates of the correlation of the prediction error

& (p) = ye —yi" (p)

should have random signs.

Leave out subset of parameter space where sign does not appear random

(i.e. is sign dominant)
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LSCR

Introduction - main idea

LSCR [CWO05]: leave-out sign-dominant correlated regions

Independent estimates of the correlation of the prediction error

& (p) = ye —yi" (p)

should have random signs.

Leave out subset of parameter space where sign does not appear random
(i.e. is sign dominant)

Defines, without any approximation,

region @ to which p* belongs with specified probability.
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LSCR

Example

Model y" (p) = p, with 8 noisy data generated with p* = 3.

5:;.1(17) v
)

3

2

7 different empirical correlations as a function of p
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LSCR

Description

Consider prediction error

&(p) =yt —yi"(p)

such that &/(p*) is realization of noise corrupting data at time t.
@ Select two integers r > 0 and g > 0.
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LSCR

Description

Consider prediction error

&(p) =yt —yi"(p)

such that &/(p*) is realization of noise corrupting data at time t.
@ Select two integers r > 0 and g > 0.

@ Fort=1+r,...,k+r=n, compute

t—rr(P) =€ ()& (P)- (10)
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LSCR

Description

e Compute

s, (p)=Y ¢k .(p), i=1,....m (11)
kel;

where I; C 1, set of indexes. Collection G of subsets I;, i =1,...,m,
forms a group under the symmetric difference operation, i.e.,
(]L' U]Ij) — (]L' ﬁﬂj) e G.
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LSCR

Description

e Compute
s, (p)=Y ¢k .(p), i=1,....m (11)

kel;
where I; C 1, set of indexes. Collection G of subsets I;, i =1,...,m,

forms a group under the symmetric difference operation, i.e.,
(]L' U]Ij) — (]L' ﬂ]IJ') eG.

Then, from [CWO05], the probability that less than g among the m

st (p*)s have different signs is exactly 2q/m.

o Find ©7 ; such that at least g of functions sf (p) are larger than 0
and at least g are smaller than 0.
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LSCR

Description

Example of G st VI; € G ,VI; € G one has (I; UL;)) — (I;N;) € G

1 2 3 4 5 6 7
I | e o o
L | e o e .
I3 o . o e
L | e o o .
I | . . .
T o o o .
Ir « o e e
Ig
si1(p)=e1(p)e2(p)+e2(P)e3 (p) +é&4(p) &5 () + 5 (P) € (P)
s31(p)=e1(p)e2(p) +e3(p)€s(p) +€4(p) &5 (p) +¢6 ()7 (P)
si1(p)= &4 (p) &5 () + &5 (P) &6 (P) + £6.(P) £7 (P) +£7 (P) &8 (P)
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LSCR

Properties

The set ©7 , is such that [CW05]
Pr(p"€@®f,) =1-2q/m.

Shape and size of @7 , depend on
@ values given to g and r
@ group G and its number of elements m.

A procedure for generating G of appropriate size suggested in [Gor74].
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LSCR

Example (continued)

Model y" (p) = p, with 8 noisy data generated with p* = 3.

5:;.1(17) v
)

3

2

Il
X

7 empirical correlations, and 71% confidence region
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LSCR

More formal definition

The set @iq may be defined more formally as

0%, =0, Ne.

r.qo

with
e, {peIP’such that ZT Zq}
i=1

o5t = {peIP’such that ZTS’L )>q
i=1

where P is prior domain for p

(12)
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LSCR

More formal definition

Moreover
_ 1 if —sf (p) =0,
= (p) = () (15)
0 else,
and
1 ifsé >0,
) =gt o) (16)
0 else.
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LSCR

More formal definition

Moreover
_ 1 if —sf (p) =0,
= (p) = () (15)
0 else,
and
1 ifsé >0,
) =gt o) (16)
0 else.

O}, contains all p € P such that at least g 57, (p)s smaller than 0
O3} contains all p € P such that at least g s, (p)s larger than 0.
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LSCR

Example
Example:

ve (P*) = prexp(—pati),
with p* =(2,0.2) and t; = 0.1/, i =0,...,63.

0.90476 Confidence set
centred form - LSCR
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LSCR

White Gaussian noise with known variance

Back to previous result (using x2 distribution:
i, (p*) = prexp(—pati),
with p* =(2,0.2) and t;=0.1/, i =0,...,63.

0.9 Confidence set
Chi2 - centred form
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Guaranteed characterization via interval analysis

@ Guaranteed characterization via interval analysis
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Guaranteed characterization via interval analysis

Guaranteed characterization

In SPS (and LSCR), one has to characterize

m
v, = {p € IP such that Z 7i(p) = q
i=1

where 7;(p) is some indicator function

T;(p):{l if £:(p) >0,

0 else,

and where f; (p) depends on
@ model structure,
@ measurements,

@ parameter vector p.
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Guaranteed characterization via interval analysis

Guaranteed characterization

In SPS (and LSCR), one has to characterize

Wq:{pEIF’such that Zr,-(p)}q}, (19)
i=1

75(p)=1

7(p)=1

g=1 (80 %) ¢=2 (60 %) ¢=3 (40 %)
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Guaranteed characterization via interval analysis

Guaranteed characterization

75(p)=1

7(p)=1

g=1 (80 %) g=2 (60 %) ¢=3 (40 %)

Characterization
@ approximate using gridding in [CWO05, DWCO07, CCW12].
@ guaranteed using interval analysis here [KW14].
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Guaranteed characterization via interval analysis

To characterize W, = {p € P such that ¥, 7;(p) > q}, one uses SIVIA
and an inclusion function [Moo66, JKDWO01] [7]([p]) of

T(p)zgmlr;(p).

Py
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Guaranteed characterization via interval analysis

To characterize W, = {p € P such that ¥, 7;(p) > q}, one uses an
inclusion function [7]([p]) of

“(p) = gmlr,-(p)-
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Guaranteed characterization via interval analysis

To characterize W, = {p € P such that ¥, 7;(p) > q}, one uses an
inclusion function [7]([p]) of

“(p) = ;mlr,-(p).

Contractors may also be used, see [KW14].
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Outline

© Source localization
@ Introduction
@ Reference bounded-error approaches
@ Results
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Source localization Introduction

Source localization problem

Problem encountered in
@ indoor localization
@ localization of electromagnetic source
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Source localization Introduction

Source localization problem

Problem encountered in
@ indoor localization
@ localization of electromagnetic source
° ...
Various approaches use measurements of wave emitted by object
@ Time of arrival
Difference of time of arrivals

°
@ Received signal strength
°
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Source localization Introduction

Source localization problem

Problem encountered in
@ indoor localization
@ localization of electromagnetic source
° ..
Various approaches use measurements of wave emitted by object
@ Time of arrival
@ Difference of time of arrivals
@ Received signal strength
° ...

Here, comparison of bounded-error approaches and LSCR [HKL18]
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Source localization Introduction

System model

n, anchor nodes, with fixed and known locations 6;, i=1,...,n,,
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Source localization Introduction

System model

n, anchor nodes, with fixed and known locations 6;, i=1,...,n,,
Agent with unknown location ¢
@ emits electromagnetic/acoustic signal, received by anchors.
@ y(i,k): k-th RSS measurement by anchor node i

Anchor nodes transmit RSS measurements to central processing unit.
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Source localization Introduction

System model

n, anchor nodes, with fixed and known locations 6;, i=1,...,n,,
Agent with unknown location ¢
@ emits electromagnetic/acoustic signal, received by anchors.
@ y(i,k): k-th RSS measurement by anchor node i

Anchor nodes transmit RSS measurements to central processing unit.

Confidence region for estimator of ¢ to be derived from y (i, k),
i=1,...,n, k=1,...,n..

44 /83



Source localization Introduction

System model

k-th measurement by anchor node i described by Okumura-Hata model
[Hat80]

y (i,k) = Po— 10y logyg ”9”6,_09”
where

@ Py signal power at reference distance dp,

@ Y path-loss exponent,

e £(i, k) measurement noise.
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Source localization Introduction

System model

k-th measurement by anchor node i described by Okumura-Hata model
[Hat80]

, 00— 0; .
y (i, k) =Py—109p |Og10HOdH+S(I,k),
0

where
@ Py signal power at reference distance dp,
@ Y path-loss exponent,

e £(i, k) measurement noise.

One assumes that
@ Yp is the same for all anchors.
e £(i,k)s, independently, not necessarily identically distributed random
variables with distribution symmetric around zero.
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Source localization Introduction

Parameters to estimate

Parameter vector
_ a1 T
p= [90 ;POaYP}
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Source localization Introduction

Parameters to estimate

Parameter vector
_ a7 T
p= |:60 ) P07 YP:|

True value p* of parameter vector, then

y(i,k)=y™(i,p") +€(i,k) (20)
with

160 — 0ill

Y™ (7.p") = Pg— 107 logio 121, (21)
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Source localization Introduction

Parameters to estimate

Parameter vector
p= |:6(-J,—7P077P} T

True value p* of parameter vector, then
y(i,k)=y™(i,p") +€(i,k) (20)
with

10504l

y™(i,p*) = Py — 10% logyo &

Search for p* in Py.
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Source localization Reference bounded-error approaches

Bounded-error estimation

Noise samples € (i, k) assumed bounded with known bounds

(i, k) €e(i,k),8(i,k)], i=1...n,k=1...n

47/83



Source localization Reference bounded-error approaches

Bounded-error estimation

Noise samples € (i, k) assumed bounded with known bounds

(i, k) €e(i,k),8(i,k)], i=1...n,k=1...n

Set of all p € Py consistent with
@ system model,
@ measurements,
@ noise bounds

defined as

Pee = {p € Polym (i,p) € y (i, k) — [e(i, k), (i,k)],i=1...np,k=1...n}.
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Source localization Reference bounded-error approaches

Bounded-error estimation

Noise samples € (i, k) assumed bounded with known bounds

(i, k) €e(i,k),8(i,k)], i=1...n,k=1...n

Set of all p € Py consistent with
@ system model,
@ measurements,
@ noise bounds

defined as

Pee = {p € Polym (i,p) € y (i, k) — [e(i, k), (i,k)],i=1...np,k=1...n}.

Difficulty:
How should e(/, k) and €(i, k) be chosen?
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Source localization Reference bounded-error approaches

Robust bounded-error estimation

BE approaches may provide Pgg =0 as a result:
@ noise bounds too optimistic
@ inappropriate system model

@ initial search box too small.
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Source localization Reference bounded-error approaches

Robust bounded-error estimation

RBE estimation methods: find set of p consistent with all but g

measurements and related noise bounds

Pree,e = {p € Po|7(p) € Yq},

where

S

a

n
Z Tuk

1k=1

Tk (P) = {1 Y (i,p) € y (i, k) — [e (i, k) ;€ (i, k)],

0 else

and Y¢ = [nan— g, nan].
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Source localization Reference bounded-error approaches

Robust bounded-error estimation

RBE estimation methods: find set of p consistent with all but g

measurements and related noise bounds

Pree,e = {p € Po|7(p) € Yq},

where
(o)=Y ¥ ik (p).
i=1k=1
T’k(p)_{é m(ip) €y (= [e(hi0 21

and Y¢ = [nan— g, nan].

Problems:
@ how should e(i, k) and €(i, k) be chosen?
@ how should g be chosen?
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Source localization Results

Simulation conditions

e Five anchor nodes (n, =5) are placed in the corners and in the center
of a square of 20m x 20 m.

@ N =32 agents are regularly placed in the square

50/83



Source localization Results

Simulation conditions

Five anchor nodes (n, = 5) are placed in the corners and in the center
of a square of 20m x 20 m.

N = 32 agents are regularly placed in the square
Each agent broadcasts n = 10 times message containing its identifier.

Po =30 dBm at dy =1 m is the same for all agents.
Y =4
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Source localization Results

Simulation conditions

Data are corrupted by two types of noise samples

@ iid zero-mean Gaussian noise with cg =2 dBm.
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Source localization Results

Simulation conditions

Data are corrupted by two types of noise samples
@ iid zero-mean Gaussian noise with cg =2 dBm.
@ iid Gaussian-Bernoulli-Gaussian variables

e with a probability pgp =0.9, 6o =2 dBm
e with a probability p; =0.1, 61 =5 dBm.
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Source localization Results

Simulation conditions

Three estimation problems are considered:

© Only the location 6¢;, i =1,..., N of each agent has to be estimated,
Y and Py are assumed to be known.
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Source localization Results

Simulation conditions

Three estimation problems are considered:

© Only the location 6¢;, i =1,..., N of each agent has to be estimated,
Y and Py are assumed to be known.

@ 0p, and Py;, i=1,...,N have to be determined for each agent.

52/83



Source localization Results

Simulation conditions

Three estimation problems are considered:

© Only the location 6¢;, i =1,..., N of each agent has to be estimated,
Y and Py are assumed to be known.

@ 0p, and Py;, i=1,...,N have to be determined for each agent.
© 0pand y,i=1,...,N have to be determined for each agent.
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RT3
Selection of the parameters of LSCR

Different ways to organize the measurements are considered

=(r(1,1),y(1,2),y(1,3),y(2,1),5(2,2),¥(2,3),...,
y(n3,1),y(n2,2), ¥(na,3)) "

or

y=((1,1),y(2,1),...,y(na,1),y(1,2),y(2,2),...,y(na,2),
y(1,3),7(2,3),...,y(na,3)) "
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RT3
Selection of the parameters of LSCR

y=(v(1,1),5(1.2),5(1,3),¥(2,1),5(2,2),(2.3),-.,¥(ns,1). y(n2,2), y (12, 3)) "

j{

Table: Confidence regions as defined by LSCR obtained for different organizations
of the measurement vector
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Source localization Results

Comparison with alternative techniques

0o | 6o, Po | 0o, 7p
LSCR

) e ii\?/!!\('/

Table: Measurements corrupted by Gaussian noise
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Source localization Results

Comparison with alternative techniques

6o | 6o, Po | 6o, 7P
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Table: Measurements corrupted by Gaussian noise
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Source localization Results

Comparison with alternative techniques

6o | 0o, Po | 0o, 7P
LSCR
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Table: Measurements corrupted by Gaussian noise
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Source localization Results

Comparison with alternative techniques

6o \ 0o, Po \ o, 1P

LSCR

2 o Ax WA Ax e
Ax Bx Dx Ax Bx A
Ax Ax Ax Dx BAx Ax
Ax Ax ‘.A»Ax

I Ax Ax Ax Ax A<Dy
. ca- Ba A

Table: Measurements corrupted by Gaussian-Bernoulli-Gaussian noise
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Source localization Results

Comparison with alternative techniques

6o | 0o, Po | o, 1P

LSCR

Table: Measurements corrupted by Gaussian-Bernoulli-Gaussian noise

59/83



Source localization Results

Comparison with alternative techniques

6o \ 6o, Po \ 6o, 1P

LSCR

e ?

.919%.

PO Y

FERN

Table: Simulations considering Gaussian-Bernoulli-Gaussian noise
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Source localization Results

Comparison with alternative techniques

80 \‘/‘/‘, —e— ML
/7 20 —e— SDP
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Ve / ——RBE in
0 BEout o .
/ BE in
65 —¥LSCR out
/ —LSCRin |
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
7, (dBm) 7, (dBm)

Figure: Proportions of agents for which the true value of the agent location is
contained in the projection on the (6, 60,)-plane of the NACRs, the set estimates
or the confidence region derived from the CRLB
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Source localization Results

Comparison with alternative techniques

area (m?)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0, (dBm)

Figure: Evolution of the average surface of the projection on the (6y, 6;)-plane of
the NACRs, the set estimates or the confidence region derived from the CRLB
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Source localization Results

Comparison with alternative techniques
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Figure: RMS localization error as a function of oy
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Conclusion

Conclusions

Several ways to obtain non-asymptotic confidence regions

@ Gaussian noise with known variance: adapted to characterization
using IA

@ Gaussian noise with unknown variance: difficult for IA
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Conclusion

Conclusions

Several ways to obtain non-asymptotic confidence regions

@ Gaussian noise with known variance: adapted to characterization
using IA

@ Gaussian noise with unknown variance: difficult for IA
SPS

@ Suited for model linear in the parameters

e Efficient characterization, efficient contractors, see [KW14]
LSCR

@ Applies to linear and nonlinear models

e Efficient characterization, less efficient contractors, see [KW14]
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Contractors

Introduction

Contractor 67y associated with generic set-inversion problem
X = [XINfL(Y), (22)
takes [x] as input and returns

%y (X)) C[x] (23)

such that
X]NX =%y ([x]) NX, (24)

so no part of X in [x] is lost.
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Contractors

Examples

Various types of contractors
@ by interval constraint propagation,
@ by parallel linearization,
@ the Newton contractor,

@ the Krawczyk contractor, etc.
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_________________ Cowcios

Contractors
With LSCR and SPS

W, =Pne([g.m)). (25)
The 7s are not differentiable and forbid use of classic contractors.

Proposed contractor assumes f;s differentiable.

@ build set of m possibly overlapping subboxes of [p], trying to remove
all values of p € [p] such that f;(p) <0, i=1,...,m.

@ compute union of all non-empty intersections of at least g of these
boxes.
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Contractors

Box contraction using the f;'s, suitable for LSCR and SPS

First step: Centered inclusion function of f;, for some m € [p],

1] ((p]) = £ (m) + (o] — m)" [:] ([o]) (26)
— f(m)+ 2([@-1 — my) g1 (e, (27)
£

where g; is gradient of f;.
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Contractors

Box contraction using the f;'s, suitable for LSCR and SPS

For k-th component [p] of [p], when 0 ¢ [g; «] ([P]), €F [0, @sSOCiates the
contracted interval

[Pi] =[P (<([ﬁ,c]([P])ﬂ[0,°°[)— fi (m)

Np

- Y (Ipl—m)lei)] ([P])) /gl (Ip]) + mk) : (28)

j=Ti#k

When 0 € [g; k] ([P]), ¥ [0, l€aves [px] unchanged, i.e.,

[P k] = [Pl (29)
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Box contraction using the f;'s, suitable for LSCR and SPS

Considering m functions f; and applying all the contractors 6% [g o[,
i=1,...,n, to [p], one obtains

2 ={Cq (), G, ool ([P])} (30)
={lm].- [pm]}- (31)

[pi] = 0 indicates that there is no p € [p] such that f;(p) > 0.
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Box contraction suitable for SPS only
Main idea

Takes advantage of s;(p), i =0,...,m affine in p to
@ reduce number of occurrences of p in s;(p),

@ reduce pessimism of corresponding inclusion functions.

77/83



Box contraction suitable for SPS only

One may rewrite
so(p) =Y o (ve—olp).
t=1
as
so(p) = Z Y@y — (Z (pt(PI> P (32)
t=1 t=1
= bo—Aop (33)

with bo = Y.¢_ 1 yr@, and Ag =Y (pt(P;r-
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Box contraction suitable for SPS only

Similarly,
si(p) =) &0, (yt - (ptTp> ; (34)
t=1
may be rewritten as
S; (p) = b,‘ — A,-p (35)

with b; =Y i ry: @, and A; =Y0 1 0+ 0,0].
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Box contraction suitable for SPS only

One gets then

z(p)—2(p) = (bi—A;p)’(bj—Aip) (36)
— (bo—Aop)" (bo—Aop)

The matrices A,? — A% are symmettric
A?_-AZ=U]D,u;. (37)
Using the change of variables 7 = U;p, z;(p) — z0(p) becomes
zi(p)—z0(p)=n"Dim—2B] T+, (38)

with B/ = (b] A; —b{ A¢) UT and % = b/ b; — b] by.
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Box contraction suitable for SPS only

One then obtains
& ﬁu & i2J
20 -am)= Yo (5-00) - £ o)
= dij j=19iyj

If p€ [p,p], one is able to get 7 € [7,7] = U [p,p].
Whenever di # 0, a contractor for [my] is obtained from (39) as follows

[nk]:[mm(i\/ (a2l @D nl0.D -5 rhs (5~ 52) -5 )/dmk) (40)

If dj x =0, [mx] is left unchanged. From (40), a contractor for [p] is

obtained as
p] =lpn (U] [7]) (41)
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Building a g-relaxed intersection

Second step: contractor builds a box [p’] enclosing the g-relaxed
intersection &2 [JW02, Jau09, Jaull] of the boxes in £ = {[p}],....[P\n]}

card(J) > ¢

and satisfying
2 c o] Clp]. (44)
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Evaluating the g-relaxed intersection

Consider a list Z ={[p1],...,[pm]} of m intervals.

1
2

S~ W

7
8
9

[p] = 0;
Reindex the boxes [p;] in such a way that
PiSPyS SP
Fori=qton
X (pelpl) > q
P=p; break;
Reindex the boxes [p;] in such a way that
PL>Py > 2P,
Fori=qton
fYi(pi€lpl)2q
P = p;; break;

[p] = g-relaxed intersection ([p1], ..., [pn])
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