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Parameter identification: estimate value of parameter vector p

considering some model structure M (·), with output ymt (p)

from noisy data vector y = (y1, . . . ,yn)
T .
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Introduction

Via minimization of cost function, for instance

J (p) = ∥y−ym (p)∥22 , (1)

where

ym (p) = (ym1 (p) , . . . ,ymn (p)) is vector of model outputs

∥·∥2 is a (possibly weighted) ℓ2 norm.

Then
p̂= argmin

p
J (p) . (2)
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Difficulties

Parameters of model may not be identifiable uniquely
↪→ different values of p̂ may yield the same ym (p̂)

Numerical algorithm to compute p̂ may get trapped at local minimizer

Even if single p̂ is obtained and if y ≃ ym (p̂), p̂ cannot be considered as
final answer to the estimation problem
↪→ quality tag is missing.

p̂i = 1.2345±10−4 is quite different of p̂i = 1.2345±103.
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Estimating parameter and uncertainty
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Estimating parameter and uncertainty Classical approaches

Classical approaches

Based on

Level-set [WP97, SW03].

Monte-Carlo techniques [WP97].

Evaluation of the density of the estimator [Kay93].

Bounded-error estimation [MNPLW96, JKDW01].

Characterization of parameter uncertainty via previous approaches relies on
hypotheses on noise corrupting data

difficult to verify from residuals y−ym (p̂) when ny is large,

impossible to verify with only few data points.
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Estimating parameter and uncertainty White Gaussian noise with known variance

White Gaussian noise with known variance

Assume that the prediction residuals

epti (p
∗) = yti −ymti (p

∗)

satisfy
epti (p

∗) = εti , i = 1, . . . ,nt

with εti iid N
(
0,σ2

)
with known σ2.

Maximum likelihood estimation leads to minimization of

j (p) =
nt

∑
i=1

(
epti (p)

)2
.
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Estimating parameter and uncertainty White Gaussian noise with known variance

White Gaussian noise with known variance

For the true value p∗ of the vector of parameters

j (p∗) =
nt

∑
i=1

(
epti (p

∗)
)2

=
nt

∑
i=1

(ε (ti ))
2 ≈ ntσ

2.

Useless to try to consider a criterion below j1 = ntσ
2.

The larger σ2, the higher the isocriterion to consider.

Noise raises the maximum acceptable value for the criterion.
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Estimating parameter and uncertainty White Gaussian noise with known variance

White Gaussian noise with known variance

Prediction error e(p) =
(
ept1 (p) , . . . ,e

p
tnt

(p)
)T

evolves in space of

dimension nt and

j (p∗)/σ
2 = eT (p∗)e(p∗)/σ

2

distributed according to χ2 (nt) law with nt degrees of freedom.

Consider X ∼ χ2 (nt) and χ2
α (nt) such that

Pr
(
X ⩾ χ

2
α (nt)

)
= α

χ2
α (nt) has a probability α to be exceeded by a random variable

distributed according to χ2 (nt) law.

Confidence region at 1−α % is [SW03]

P1−α =
{
p | j (p)⩽ σ

2
χ
2
α (nt)

}
.

For example, α = 0.05 leads to 95 % confidence region.
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Estimating parameter and uncertainty White Gaussian noise with known variance

White Gaussian noise with known variance

Example:
ymti (p

∗) = p∗1 exp(−p∗2ti ) ,

with p∗ = (2,0.2) and ti = 0.1i , i = 0, . . . ,63.
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Estimating parameter and uncertainty White Gaussian noise with unknown variance

Noise with unknown variance

Assume now that the prediction error

epti (p
∗) = yti −ymti (p

∗)

satisfies
epti (p

∗) = εti , i = 1, . . . ,nt

where εti s are iid random variables N
(
0,σ2

)
with σ2 unknown.

Confidence region at 1−α % cannot be defined as

P1−α =
{
p | j (p)⩽ σ

2
χ
2
α (nt)

}
.

since σ2 is unknown.
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Estimating parameter and uncertainty White Gaussian noise with unknown variance

Noise with unknown variance

S r

y

Tangent plane to Sr at

P(p)e(p)

ym(p)

e(p)

[I – P(p )] e(p)

 

ym(p)

In data space, y and ym are points.

When p varies, ym (p) describes surface response of model Sr
Sr hyperplane when model LP.

Sr curved hypersurface when model NLP.
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Estimating parameter and uncertainty White Gaussian noise with unknown variance

Noise with unknown variance

Consider

Π(p) =
∂ym (p)

∂pT

((
∂ym (p)

∂pT

)T (
∂ym (p)

∂pT

))−1(
∂ym (p)

∂pT

)T

orthogonal projection matrix on hypersurface tangent to Sr in ym (p)

If dim(p) = np, dim(y) = nt and e(p) = y−ym (p), then

j (p∗) = eT (p∗)e(p∗)∼ σ2χ2 (nt), e(p) evolves in space of dimension
nt.

eT (p∗)Π(p∗)e(p∗)∼ σ2χ2 (np), orthogonal projection of e(p) on
tangent space evolves in space of dimension np.

eT (p∗)(I−Π(p∗))e(p∗)∼ σ2χ2 (nt−np), orthogonal complement of
previous projection.
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Estimating parameter and uncertainty White Gaussian noise with unknown variance

Noise with unknown variance

S r

y

Tangent plane to Sr at

P(p)e(p)

ym(p)

e(p)

[I – P(p )] e(p)

 

ym(p)

Moreover, eT (p∗)Π(p∗)e(p∗) and eT (p∗)(I−Π(p∗))e(p∗) are
independent, so that

eT (p∗)Π(p∗)e(p∗)

eT (p∗)(I−Π(p∗))e(p∗)

nt−np
np

∼ F (np,nt−np)

where F (np,nt−np) Fisher-Snedecor law. 14 / 83



Estimating parameter and uncertainty White Gaussian noise with unknown variance

Noise with unknown variance

Computing quotient of two independent χ2-distributed random variables,
unknown σ2 eliminated
↪→ usable when σ2 a priori unknown.

Consider X ∼ F (np,nt−np) and Fα (np,nt−np) such that

Pr (X ⩾ Fα (np,nt−np)) = α

Fα (np,nt−np) is the value which has a probability α to be exceeded by a
variable distributed according to a F (np,nt−np) law.

Confidence region with confidence level 1−α % [SW03]

P1−α =

{
p | eT (p)Π(p)e(p)

eT (p)(I−Π(p))e(p)

nt−np
np

⩽ Fα (np,nt−np)

}
.

Much less amenable for characterization using interval analysis.
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Estimating parameter and uncertainty Approaches proposed by Campi et al.

SPS and LSCR

Campi et al. [CW05, DWC07, CCW12] propose two approaches named
LSCR and SPS

exact characterization of parameter uncertainty

in non-asymptotic conditions.

Hypotheses

1 System generating data must belong to model set (true value p∗

should be meaningful)

2 Noise samples must be independently distributed with distributions
symmetric with respect to zero.
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SPS
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SPS

SPS
Introduction

SPS [CCW12]: sign-perturbed sums.

SPS is designed for linear regression, where

yt = ϕ
T
t p

∗+wt , t = 1, . . . ,n, (3)

with ϕt known regression vector.

SPS defines an exact confidence region for p∗ around least-squares
estimate p̂, which is solution to normal equations

n

∑
t=1

ϕt

(
yt −ϕ

T
t p̂
)
= 0. (4)
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SPS

SPS
Description

For generic p consider

s0 (p) =
n

∑
t=1

ϕt

(
yt −ϕ

T
t p
)
, (5)

and sign-perturbed sums

si (p) =
n

∑
t=1

αi ,tϕt

(
yt −ϕ

T
t p
)
, (6)

where i = 1, . . . ,m−1 and αi ,t =±1 with equal probability, and

zi (p) = ∥si (p)∥22 , i = 0, . . . ,m−1. (7)

When ordering zi (p
∗) in increasing order, rank of z0 (p∗) is uniformly

distributed [CCW12].
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SPS

SPS
Description

Consider set Σq of all p such that z0 (p) is not among the q largest values
of (zi (p))

m−1
i=0 .

One has p∗ ∈Σq with exact probability 1−q/m, see [CCW12].

Σq is confidence region with level 1−q/m.
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SPS

SPS
Definition

Σq may be defined more formally as

Σq =

{
p ∈ P such that

m−1

∑
i=1

τi (p)⩾ q

}
(8)

where

τi (p) =

{
1 if zi (p)− z0 (p)> 0,

0 else.
(9)
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SPS

SPS
Illustration

Model ymt (p) = p, with 20 noisy data generated for p∗ = 3.
We choose m = 10.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
-50

0

50

100

150

200

p

z i
(

)
p

z p0( )

z p3( )

z p8( )

90% ( =1)q

80% ( =2)q

22 / 83



LSCR

Outline
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LSCR

LSCR
Introduction - main idea

LSCR [CW05]: leave-out sign-dominant correlated regions

Independent estimates of the correlation of the prediction error

εt (p) = yt −ymt (p)

should have random signs.

Leave out subset of parameter space where sign does not appear random
(i.e. is sign dominant)

Defines, without any approximation,

region Θ to which p∗ belongs with specified probability.
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LSCR

LSCR
Example

Model ymt (p) = p, with 8 noisy data generated with p∗ = 3.

0 1 2 3 4 5 6

-4

-3

-2

-1

1

2

3

4
s pi,1( )

"

p

7 different empirical correlations as a function of p
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LSCR

LSCR
Description

Consider prediction error

εt (p) = yt −ymt (p)

such that εt(p∗) is realization of noise corrupting data at time t.

Select two integers r ⩾ 0 and q ⩾ 0.

For t = 1+ r , . . . ,k+ r = n, compute

cε
t−r ,r (p) = εt−r (p)εt (p) . (10)
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LSCR

LSCR
Description

Compute
sε
i ,r (p) = ∑

k∈Ii
cε

k,r (p) , i = 1, ...,m. (11)

where Ii ⊂ I, set of indexes. Collection G of subsets Ii , i = 1, ...,m,
forms a group under the symmetric difference operation, i.e.,
(Ii ∪ Ij)− (Ii ∩ Ij) ∈G.

Then, from [CW05], the probability that less than q among the m
sε
i ,r (p

∗)s have different signs is exactly 2q/m.

Find Θε
r ,q such that at least q of functions sε

i ,r (p) are larger than 0
and at least q are smaller than 0.
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LSCR

LSCR
Description

Example of G st ∀Ii ∈G ,∀Ii ∈G one has (Ii ∪ Ij)− (Ii ∩ Ij) ∈G
1 2 3 4 5 6 7

I1 • • • •

I2 • • • •

I3 • • • •

I4 • • • •

I5 • • • •

I6 • • • •

I7 • • • •

I8

sε
1,1 (p) = ε1 (p)ε2 (p)+ ε2 (p)ε3 (p)+ε3 (p)ε4 (p)+ ε4 (p)ε5 (p)+ ε5 (p)ε6 (p)+ε6 (p)ε7 (p)+ ε7 (p)ε8 (p)

sε
2,1 (p) = ε1 (p)ε2 (p)+ε2 (p)ε3 (p)+ ε3 (p)ε4 (p)+ ε4 (p)ε5 (p)+ε5 (p)ε6 (p)+ ε6 (p)ε7 (p)+ε7 (p)ε8 (p)

.

.

.

sε
7,1 (p) = ε1 (p)ε2 (p)+ ε2 (p)ε3 (p)+ ε3 (p)ε4 (p)+ε4 (p)ε5 (p)+ ε5 (p)ε6 (p)+ ε6 (p)ε7 (p)+ ε7 (p)ε8 (p)
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LSCR

LSCR
Properties

The set Θε
r ,q is such that [CW05]

Pr
(
p∗ ∈Θε

r ,q

)
= 1−2q/m.

Shape and size of Θε
r ,q depend on

values given to q and r

group G and its number of elements m.

A procedure for generating G of appropriate size suggested in [Gor74].
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LSCR

LSCR
Example (continued)

Model ymt (p) = p, with 8 noisy data generated with p∗ = 3.

0 1 2 3 4 5 6

-4

-3

-2

-1

1

2

3

4
s pi,1( )

"

p

q=1

7 empirical correlations, and 71% confidence region

30 / 83



LSCR

LSCR
More formal definition

The set Θε
r ,q may be defined more formally as

Θε
r ,q =Θε,−

r ,q ∩Θε,+
r ,q , (12)

with

Θε,−
r ,q =

{
p ∈ P such that

m

∑
i=1

τ
ε,−
i (p)⩾ q

}
, (13)

Θε,+
r ,q =

{
p ∈ P such that

m

∑
i=1

τ
ε,+
i (p)⩾ q

}
, (14)

where P is prior domain for p.
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LSCR

LSCR
More formal definition

Moreover

τ
ε,−
i (p) =

{
1 if − sε

i ,r (p)⩾ 0,

0 else,
(15)

and

τ
ε,+
i (p) =

{
1 if sε

i ,r (p)⩾ 0,

0 else.
(16)

Θε,−
r ,q contains all p ∈ P such that at least q sε

i ,r (p)s smaller than 0

Θε,+
r ,q contains all p ∈ P such that at least q sε

i ,r (p)s larger than 0.
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LSCR

Example

Example:
ymti (p

∗) = p∗1 exp(−p∗2ti ) ,

with p∗ = (2,0.2) and ti = 0.1i , i = 0, . . . ,63.

Here, assumptions on Gaussian distribution of known variance σ2 not used.
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LSCR

White Gaussian noise with known variance

Back to previous result (using χ2 distribution:

ymti (p
∗) = p∗1 exp(−p∗2ti ) ,

with p∗ = (2,0.2) and ti = 0.1i , i = 0, . . . ,63.
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Guaranteed characterization via interval analysis
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Guaranteed characterization via interval analysis

Guaranteed characterization

In SPS (and LSCR), one has to characterize

Ψq =

{
p ∈ P such that

m

∑
i=1

τi (p)⩾ q

}
, (17)

where τi (p) is some indicator function

τi (p) =

{
1 if fi (p)⩾ 0,

0 else,
(18)

and where fi (p) depends on

model structure,

measurements,

parameter vector p.
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Guaranteed characterization via interval analysis

Guaranteed characterization

In SPS (and LSCR), one has to characterize

Ψq =

{
p ∈ P such that

m

∑
i=1

τi (p)⩾ q

}
, (19)

¿1(p)=1

¿5(p)=1

q=1 (80 %) q=2 (60 %) q=3 (40 %)
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Guaranteed characterization via interval analysis

Guaranteed characterization

¿1(p)=1

¿5(p)=1

q=1 (80 %) q=2 (60 %) q=3 (40 %)

Characterization

approximate using gridding in [CW05, DWC07, CCW12].

guaranteed using interval analysis here [KW14].
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Guaranteed characterization via interval analysis

SIVIA

To characterize Ψq = {p ∈ P such that ∑
m
i=1 τi (p)⩾ q}, one uses SIVIA

and an inclusion function [Moo66, JKDW01] [τ] ([p]) of

τ (p) =
m

∑
i=1

τi (p) .

?

p2

p1

P

[ ]¿ ([ ])p

¿([ ])p

q0
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Guaranteed characterization via interval analysis

SIVIA

To characterize Ψq = {p ∈ P such that ∑
m
i=1 τi (p)⩾ q}, one uses an

inclusion function [τ] ([p]) of

τ (p) =
m

∑
i=1

τi (p) .

p2

p1

P

[ ]¿ ([ ])p

¿([ ])p

q0

?

Contractors may also be used, see [KW14].
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Source localization
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Source localization Introduction

Source localization problem

Problem encountered in

indoor localization

localization of electromagnetic source

...

Various approaches use measurements of wave emitted by object

Time of arrival

Difference of time of arrivals

Received signal strength

...

Here, comparison of bounded-error approaches and LSCR [HKL18]
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Source localization Introduction

System model

na anchor nodes, with fixed and known locations θ i , i = 1, . . . ,na,

Agent with unknown location θ0

emits electromagnetic/acoustic signal, received by anchors.

y(i ,k) : k-th RSS measurement by anchor node i

Anchor nodes transmit RSS measurements to central processing unit.

Confidence region for estimator of θ0 to be derived from y (i ,k),
i = 1, . . . ,na, k = 1, . . . ,n..
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Source localization Introduction

System model

k-th measurement by anchor node i described by Okumura-Hata model
[Hat80]

y (i ,k) = P0−10γP log10
∥θ0−θ i∥

d0
+ ε (i ,k) ,

where

P0 signal power at reference distance d0,

γP path-loss exponent,

ε (i ,k) measurement noise.

One assumes that

γP is the same for all anchors.

ε (i ,k)s, independently, not necessarily identically distributed random
variables with distribution symmetric around zero.
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Source localization Introduction

Parameters to estimate

Parameter vector
p=

[
θ
T
0 ,P0,γP

]
T

True value p∗ of parameter vector, then

y(i ,k) = ym (i ,p∗)+ ε (i ,k) (20)

with

ym (i ,p∗) = P∗
0 −10γ

∗
P log10

∥θ
∗
0−θ i∥
d0

. (21)

Search for p∗ in P0.
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Source localization Reference bounded-error approaches

Bounded-error estimation

Noise samples ε (i ,k) assumed bounded with known bounds

ε (i ,k) ∈ [e (i ,k) ,e (i ,k)] , i = 1 . . .na,k = 1 . . .n

Set of all p ∈ P0 consistent with

system model,

measurements,

noise bounds

defined as

PBE = {p ∈ P0|ym (i ,p) ∈ y (i ,k)− [e (i ,k) ,e (i ,k)] , i = 1 . . .na,k = 1 . . .n} .

Difficulty:

How should e (i ,k) and e (i ,k) be chosen?
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Source localization Reference bounded-error approaches

Robust bounded-error estimation

BE approaches may provide PBE = /0 as a result:

noise bounds too optimistic

inappropriate system model

initial search box too small.
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Source localization Reference bounded-error approaches

Robust bounded-error estimation

RBE estimation methods: find set of p consistent with all but q
measurements and related noise bounds

PRBE,ξ = {p ∈ P0|τ(p) ∈ Yq} ,

where

τ(p) =
na

∑
i=1

n

∑
k=1

τi ,k (p) ,

τi ,k (p) =

{
1 ym (i ,p) ∈ y (i ,k)− [e (i ,k) ,e (i ,k)] ,

0 else

and Yξ = [nan−q,nan].
Problems:

how should e (i ,k) and e (i ,k) be chosen?

how should q be chosen?
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Source localization Results

Simulation conditions

Five anchor nodes (na = 5) are placed in the corners and in the center
of a square of 20m×20m.

N = 32 agents are regularly placed in the square

Each agent broadcasts n = 10 times message containing its identifier.

P0 = 30 dBm at d0 = 1 m is the same for all agents.

γP = 4.
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Source localization Results

Simulation conditions

Data are corrupted by two types of noise samples

iid zero-mean Gaussian noise with σ0 = 2 dBm.

iid Gaussian-Bernoulli-Gaussian variables

with a probability p0 = 0.9, σ0 = 2 dBm
with a probability p1 = 0.1, σ1 = 5 dBm.
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Source localization Results

Simulation conditions

Three estimation problems are considered:

1 Only the location θ0,i , i = 1, . . . ,N of each agent has to be estimated,
γ and P0 are assumed to be known.

2 θ0,i and P0,i , i = 1, . . . ,N have to be determined for each agent.

3 θ0,i and γ, i = 1, . . . ,N have to be determined for each agent.
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Source localization Results

Selection of the parameters of LSCR

Different ways to organize the measurements are considered

y =(y(1,1),y(1,2),y(1,3),y(2,1),y(2,2),y(2,3), . . . ,

y(na,1),y(na,2),y(na,3))
T

or

y =(y(1,1),y(2,1), . . . ,y(na,1),y(1,2),y(2,2), . . . ,y(na,2),

y(1,3),y(2,3), . . . ,y(na,3))
T
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Source localization Results

Selection of the parameters of LSCR

y=(y(1,1),y(1,2),y(1,3),y(2,1),y(2,2),y(2,3), . . . ,y(na,1),y(na,2),y(na,3))
T
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T
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Table: Confidence regions as defined by LSCR obtained for different organizations
of the measurement vector
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Source localization Results

Comparison with alternative techniques
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Table: Measurements corrupted by Gaussian noise
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Source localization Results

Comparison with alternative techniques
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Source localization Results

Comparison with alternative techniques
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Table: Simulations considering Gaussian-Bernoulli-Gaussian noise

60 / 83



Source localization Results

Comparison with alternative techniques
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Figure: Proportions of agents for which the true value of the agent location is
contained in the projection on the (θ1,θ2)-plane of the NACRs, the set estimates
or the confidence region derived from the CRLB
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Source localization Results

Comparison with alternative techniques
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Figure: Evolution of the average surface of the projection on the (θ1,θ2)-plane of
the NACRs, the set estimates or the confidence region derived from the CRLB
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Source localization Results

Comparison with alternative techniques
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Figure: RMS localization error as a function of σ0
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Conclusion

Conclusions

Several ways to obtain non-asymptotic confidence regions

Gaussian noise with known variance: adapted to characterization
using IA

Gaussian noise with unknown variance: difficult for IA

SPS

Suited for model linear in the parameters

Efficient characterization, efficient contractors, see [KW14]

LSCR

Applies to linear and nonlinear models

Efficient characterization, less efficient contractors, see [KW14]
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Contractors

Contractors
Introduction

Contractor Cf,Y associated with generic set-inversion problem

X= [x]∩ f−1 (Y) , (22)

takes [x] as input and returns

Cf,Y ([x])⊂ [x] (23)

such that
[x]∩X= Cf,Y ([x])∩X, (24)

so no part of X in [x] is lost.
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Contractors

Contractors
Examples

Various types of contractors

by interval constraint propagation,

by parallel linearization,

the Newton contractor,

the Krawczyk contractor, etc.
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Contractors

Contractors
With LSCR and SPS

Ψq = P∩ τ
−1 ([q,m]) , (25)

The τs are not differentiable and forbid use of classic contractors.

Proposed contractor assumes fi s differentiable.

1 build set of m possibly overlapping subboxes of [p], trying to remove
all values of p ∈ [p] such that fi (p)< 0, i = 1, . . . ,m.

2 compute union of all non-empty intersections of at least q of these
boxes.
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Contractors

Box contraction using the fi ’s, suitable for LSCR and SPS

First step: Centered inclusion function of fi , for some m ∈ [p],

[fi ,c] ([p]) = fi (m)+([p]−m)T [gi ] ([p]) (26)

= fi (m)+
np

∑
j=1

([pj ]−mj) [gi ,j ] ([p]) , (27)

where gi is gradient of fi .
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Contractors

Box contraction using the fi ’s, suitable for LSCR and SPS

For k-th component [pk ] of [p], when 0 /∈ [gi ,k ] ([p]), Cfi ,[0,∞[ associates the
contracted interval

[
p′i ,k
]
= [pk ]∩

((
([fi ,c] ([p])∩ [0,∞[)− fi (m)

−
np

∑
j=1,j ̸=k

([pj ]−mj) [gi ,j ] ([p])

)
/ [gi ,k ] ([p])+mk

)
. (28)

When 0 ∈ [gi ,k ] ([p]), Cfi ,[0,∞[ leaves [pk ] unchanged, i.e.,[
p′i ,k
]
= [pk ] . (29)
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Contractors

Box contraction using the fi ’s, suitable for LSCR and SPS

Considering m functions fi and applying all the contractors Cfi ,[0,∞[,
i = 1, . . . ,n, to [p], one obtains

L =
{
Cf1,[0,∞[ ([p]) , . . . ,Cfm,[0,∞[ ([p])

}
(30)

=
{[
p′1
]
, . . . ,

[
p′m
]}

. (31)

[p′i ] = /0 indicates that there is no p ∈ [p] such that fi (p)⩾ 0.
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Contractors

Box contraction suitable for SPS only
Main idea

Takes advantage of si (p), i = 0, . . . ,m affine in p to

reduce number of occurrences of p in si (p),

reduce pessimism of corresponding inclusion functions.
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Contractors

Box contraction suitable for SPS only

One may rewrite

s0 (p) =
n

∑
t=1

ϕt

(
yt −ϕ

T
t p
)
,

as

s0 (p) =
n

∑
t=1

ytϕt −

(
n

∑
t=1

ϕtϕ
T
t

)
p (32)

= b0−A0p (33)

with b0 = ∑
n
t=1 ytϕt and A0 = ∑

n
t=1 ϕtϕ

T
t .
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Contractors

Box contraction suitable for SPS only

Similarly,

si (p) =
n

∑
t=1

αi ,tϕt

(
yt −ϕ

T
t p
)
, (34)

may be rewritten as
si (p) = bi −Aip (35)

with bi = ∑
n
t=1 αi ,tytϕt and Ai = ∑

n
t=1 αi ,tϕtϕ

T
t .

79 / 83



Contractors

Box contraction suitable for SPS only

One gets then

zi (p)− z0 (p) = (bi −Aip)
T (bi −Aip) (36)

− (b0−A0p)
T (b0−A0p)

The matrices A2
i −A2

0 are symmetric

A2
i −A2

0 =UT
i DiUi . (37)

Using the change of variables π =Uip, zi (p)− z0 (p) becomes

zi (p)− z0 (p) = π
TDiπ −2β

T
i π + γi , (38)

with β
T
i =

(
bTi Ai −bT0A0

)
UT

i and γi = bTi bi −bT0 b0.
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Contractors

Box contraction suitable for SPS only

One then obtains

zi (p)− z0 (p) =
np

∑
j=1

di ,j

(
πj −

βi ,j

di ,j

)2

+ γi −
np

∑
j=1

β 2
i ,j

di ,j
. (39)

If p ∈
[
p,p
]
, one is able to get π ∈ [π,π] =U

[
p,p
]
.

Whenever dk ̸= 0, a contractor for [πk ] is obtained from (39) as follows

[π ′
k ] = [πk ]∩

(
±

√(
([zi − z0] ([p])∩ [0,∞[)−∑

np
j=1,j ̸=i di ,j

(
πj −

βi ,j

di ,j

)2
− γi +∑

np
j=1

β 2
i ,j

di ,j

)
/di ,k +

βi ,k

di ,k

)
.(40)

If di ,k = 0, [πk ] is left unchanged. From (40), a contractor for [p] is
obtained as [

p′
]
= [p]∩

(
UT

i

[
π
′]) . (41)
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Contractors

Building a q-relaxed intersection

Second step: contractor builds a box [p′] enclosing the q-relaxed
intersection P [JW02, Jau09, Jau11] of the boxes in L = {[p′1] , . . . , [p′m]}

P =
q⋂

j∈{1,...,m}

[
p′j
]
. (42)

=
⋃

J ⊂ [1, . . . ,m]
card(J)⩾ q

⋂
j∈J

[
p′j
]
, (43)

and satisfying
P ⊂

[
p′
]
⊂ [p] . (44)
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Contractors

Evaluating the q-relaxed intersection

Consider a list L = {[p1] , . . . , [pm]} of m intervals.
1 [p] = /0;
2 Reindex the boxes [pi ] in such a way that

p
1
⩽ p

2
⩽ · · ·⩽ p

n
;

3 For i = q to n

4 if ∑
n
j=1

(
p
i
∈ [pj ]

)
⩾ q

5 p = p
i
; break;

6 Reindex the boxes [pi ] in such a way that
p1 ⩾ p2 ⩾ · · ·⩾ pn

7 For i = q to n
8 if ∑

n
j=1 (pi ∈ [pj ])⩾ q

9 p = pi ; break;
[p] = q-relaxed intersection([p1] , . . . , [pn])
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