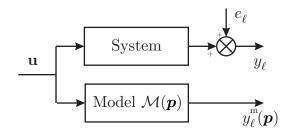
Guaranteed Characterization of Exact Non-Asymptotic Confidence Regions Using Interval Analysis

M. Kieffer

Université Paris-Saclay, CentraleSupélec, CNRS Laboratoire des Signaux et Systèmes

24 november 2023

Introduction



Parameter identification: estimate value of parameter vector **p**

- considering some model structure $\mathcal{M}(\cdot)$, with output $y_t^{\mathsf{m}}(\mathbf{p})$
- from noisy data vector $\mathbf{y} = (y_1, \dots, y_n)^T$.

Introduction

Via minimization of cost function, for instance

$$J(\mathbf{p}) = \|\mathbf{y} - \mathbf{y}_{\mathsf{m}}(\mathbf{p})\|_{2}^{2}, \qquad (1)$$

where

y_m(p) = (y₁^m(p),...,y_n^m(p)) is vector of model outputs
 ||·||₂ is a (possibly weighted) ℓ₂ norm.

Then

$$\hat{\mathbf{p}} = \arg\min_{\mathbf{p}} J(\mathbf{p}).$$
 (2)

イロン イロン イヨン イヨン 三日

3 / 83

Parameters of model may not be identifiable uniquely \hookrightarrow different values of $\hat{\mathbf{p}}$ may yield the same $\mathbf{y}_m(\hat{\mathbf{p}})$

Numerical algorithm to compute $\hat{\mathbf{p}}$ may get trapped at local minimizer Even if single $\hat{\mathbf{p}}$ is obtained and if $\mathbf{y} \simeq \mathbf{y}_m(\hat{\mathbf{p}})$, $\hat{\mathbf{p}}$ cannot be considered as final answer to the estimation problem

 \hookrightarrow quality tag is missing.

 $\hat{p}_i = 1.2345 \pm 10^{-4}$ is quite different of $\hat{p}_i = 1.2345 \pm 10^3$.

Parameters of model may not be identifiable uniquely \hookrightarrow different values of $\hat{\mathbf{p}}$ may yield the same $\mathbf{y}_{m}(\hat{\mathbf{p}})$

Numerical algorithm to compute $\hat{\boldsymbol{p}}$ may get trapped at local minimizer

Even if single $\hat{\mathbf{p}}$ is obtained and if $\mathbf{y} \simeq \mathbf{y}_m(\hat{\mathbf{p}})$, $\hat{\mathbf{p}}$ cannot be considered as final answer to the estimation problem \hookrightarrow quality tag is missing.

 $\hat{p}_i = 1.2345 \pm 10^{-4}$ is quite different of $\hat{p}_i = 1.2345 \pm 10^3$.

Parameters of model may not be identifiable uniquely

 \hookrightarrow different values of \hat{p} may yield the same $y_{\text{m}}\left(\hat{p}\right)$

Numerical algorithm to compute \hat{p} may get trapped at local minimizer

Even if single \hat{p} is obtained and if $y\simeq y_m\left(\hat{p}\right),~\hat{p}$ cannot be considered as final answer to the estimation problem

 \hookrightarrow quality tag is missing.

 $\hat{p}_i = 1.2345 \pm 10^{-4}$ is quite different of $\hat{p}_i = 1.2345 \pm 10^3$.

Outline

- Classical approaches
- White Gaussian noise with known variance
- White Gaussian noise with unknown variance
- Approaches proposed by Campi et al.

SPS

3 LSCR

4 Guaranteed characterization via interval analysis

5 Source localization

- Introduction
- Reference bounded-error approaches
- Results

Classical approaches

Based on

- Level-set [WP97, SW03].
- Monte-Carlo techniques [WP97].
- Evaluation of the density of the estimator [Kay93].
- Bounded-error estimation [MNPLW96, JKDW01].

Characterization of parameter uncertainty via previous approaches relies on hypotheses on noise corrupting data

- difficult to verify from residuals $\mathbf{y} \mathbf{y}_{m}(\hat{\mathbf{p}})$ when n_{y} is large,
- impossible to verify with only few data points.

Classical approaches

Based on

- Level-set [WP97, SW03].
- Monte-Carlo techniques [WP97].
- Evaluation of the density of the estimator [Kay93].
- Bounded-error estimation [MNPLW96, JKDW01].

Characterization of parameter uncertainty via previous approaches relies on hypotheses on noise corrupting data

- difficult to verify from residuals $\mathbf{y} \mathbf{y}_{m}(\hat{\mathbf{p}})$ when n_{y} is large,
- impossible to verify with only few data points.

Assume that the prediction residuals

$$e_{t_i}^{\mathsf{p}}\left(\mathbf{p}^*\right) = y_{t_i} - y_{t_i}^{\mathsf{m}}\left(\mathbf{p}^*\right)$$

satisfy

$$e_{t_i}^{\mathsf{p}}(\mathbf{p}^*) = \varepsilon_{t_i}, \ i = 1, \dots, n_{\mathsf{t}}$$

with ε_{t_i} iid $\mathscr{N}(0,\sigma^2)$ with known σ^2 .

Maximum likelihood estimation leads to minimization of

$$j(\mathbf{p}) = \sum_{i=1}^{n_{\mathrm{t}}} \left(e_{t_i}^{\mathrm{p}}(\mathbf{p}) \right)^2.$$

For the true value \boldsymbol{p}^* of the vector of parameters

$$j(\mathbf{p}^*) = \sum_{i=1}^{n_{\mathrm{t}}} \left(e_{t_i}^{\mathrm{p}}(\mathbf{p}^*) \right)^2$$
$$= \sum_{i=1}^{n_{\mathrm{t}}} \left(\varepsilon(t_i) \right)^2 \approx n_{\mathrm{t}} \sigma^2.$$

Useless to try to consider a criterion below $j_1 = n_t \sigma^2$.

The larger σ^2 , the higher the isocriterion to consider.

Noise raises the maximum acceptable value for the criterion.

For the true value \boldsymbol{p}^* of the vector of parameters

$$j(\mathbf{p}^*) = \sum_{i=1}^{n_{\mathrm{t}}} \left(e_{t_i}^{\mathrm{p}}(\mathbf{p}^*) \right)^2$$
$$= \sum_{i=1}^{n_{\mathrm{t}}} \left(\varepsilon(t_i) \right)^2 \approx n_{\mathrm{t}} \sigma^2.$$

Useless to try to consider a criterion below $j_1 = n_t \sigma^2$.

The larger σ^2 , the higher the isocriterion to consider.

Noise raises the maximum acceptable value for the criterion.

Prediction error $\mathbf{e}(\mathbf{p}) = \left(e_{t_1}^{\mathbf{p}}(\mathbf{p}), \dots, e_{t_{n_t}}^{\mathbf{p}}(\mathbf{p})\right)^T$ evolves in space of dimension n_t and

$$j(\mathbf{p}^*)/\sigma^2 = \mathbf{e}^T(\mathbf{p}^*)\mathbf{e}(\mathbf{p}^*)/\sigma^2$$

distributed according to $\chi^2(n_t)$ law with n_t degrees of freedom. Consider $X \sim \chi^2(n_t)$ and $\chi^2_{\alpha}(n_t)$ such that

 $\Pr\left(X \geqslant \chi^2_{\alpha}(n_{\rm t})\right) = \alpha$

 $\chi^2_{\alpha}(n_{\rm t})$ has a probability α to be exceeded by a random variable distributed according to $\chi^2(n_{\rm t})$ law.

Confidence region at $1 - \alpha$ % is [SW03]

$$\mathbb{P}_{1-\alpha} = \left\{ \mathbf{p} | j(\mathbf{p}) \leqslant \sigma^2 \chi_{\alpha}^2(n_{\rm t}) \right\}.$$

For example, $\alpha = 0.05$ leads to 95 % confidence region, $\alpha = 0.05$ % confidence region, $\alpha = 0.0$

Prediction error $\mathbf{e}(\mathbf{p}) = \left(e_{t_1}^{\mathbf{p}}(\mathbf{p}), \dots, e_{t_{n_t}}^{\mathbf{p}}(\mathbf{p})\right)^T$ evolves in space of dimension n_t and

$$j(\mathbf{p}^*)/\sigma^2 = \mathbf{e}^T(\mathbf{p}^*)\mathbf{e}(\mathbf{p}^*)/\sigma^2$$

distributed according to $\chi^2(n_t)$ law with n_t degrees of freedom. Consider $X \sim \chi^2(n_t)$ and $\chi^2_{\alpha}(n_t)$ such that

$$\Pr\left(X \geqslant \chi^2_{\alpha}(n_{\rm t})\right) = \alpha$$

 $\chi^2_{\alpha}(n_t)$ has a probability α to be exceeded by a random variable distributed according to $\chi^2(n_t)$ law.

Confidence region at $1 - \alpha$ % is [SW03]

$$\mathbb{P}_{1-\alpha} = \left\{ \mathbf{p} | j(\mathbf{p}) \leqslant \sigma^2 \chi_{\alpha}^2(n_{\rm t}) \right\}.$$

Prediction error $\mathbf{e}(\mathbf{p}) = \left(e_{t_1}^{\mathbf{p}}(\mathbf{p}), \dots, e_{t_{n_t}}^{\mathbf{p}}(\mathbf{p})\right)^T$ evolves in space of dimension n_t and

$$j(\mathbf{p}^*)/\sigma^2 = \mathbf{e}^T(\mathbf{p}^*)\mathbf{e}(\mathbf{p}^*)/\sigma^2$$

distributed according to $\chi^2(n_t)$ law with n_t degrees of freedom. Consider $X \sim \chi^2(n_t)$ and $\chi^2_{\alpha}(n_t)$ such that

$$\Pr\left(X \geqslant \chi^2_{\alpha}(n_{\mathrm{t}})\right) = \alpha$$

 $\chi^2_{\alpha}(n_t)$ has a probability α to be exceeded by a random variable distributed according to $\chi^2(n_t)$ law.

Confidence region at $1 - \alpha$ % is [SW03]

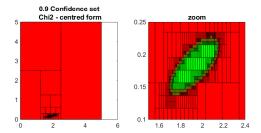
$$\mathbb{P}_{1-\alpha} = \left\{ \mathbf{p} | j(\mathbf{p}) \leqslant \sigma^2 \chi_{\alpha}^2(n_{\rm t}) \right\}.$$

For example, $\alpha = 0.05$ leads to 95 % confidence region , and the second secon

Example:

$$y_{t_i}^{m}(\mathbf{p}^*) = p_1^* \exp(-p_2^* t_i),$$

with $p^* = (2, 0.2)$ and $t_i = 0.1i$, $i = 0, \dots, 63$.



Assume now that the prediction error

$$e_{t_i}^{\mathsf{p}}(\mathbf{p}^*) = y_{t_i} - y_{t_i}^{\mathsf{m}}(\mathbf{p}^*)$$

satisfies

$$e_{t_i}^{\mathsf{p}}(\mathbf{p}^*) = \varepsilon_{t_i}, \ i = 1, \dots, n_{\mathsf{t}}$$

where ε_{t_i} s are iid random variables $\mathcal{N}(0, \sigma^2)$ with σ^2 unknown.

Confidence region at 1-lpha % cannot be defined as

$$\mathbb{P}_{1-\alpha} = \left\{ \mathbf{p} \left| j(\mathbf{p}) \leqslant \sigma^2 \chi_{\alpha}^2(n_{\rm t}) \right\}.$$

since σ^2 is unknown.

Assume now that the prediction error

$$e_{t_i}^{\mathsf{p}}(\mathbf{p}^*) = y_{t_i} - y_{t_i}^{\mathsf{m}}(\mathbf{p}^*)$$

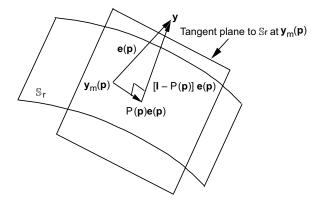
satisfies

$$e_{t_i}^{\mathsf{p}}\left(\mathbf{p}^*\right) = \varepsilon_{t_i}, \ i = 1, \dots, n_{\mathsf{t}}$$

where ε_{t_i} s are iid random variables $\mathcal{N}(0, \sigma^2)$ with σ^2 unknown. Confidence region at $1 - \alpha$ % cannot be defined as

$$\mathbb{P}_{1-\alpha} = \left\{ \mathbf{p} | j(\mathbf{p}) \leqslant \sigma^2 \chi_{\alpha}^2(n_{\rm t}) \right\}.$$

since σ^2 is unknown.



In data space, \mathbf{y} and \mathbf{y}_m are points.

When **p** varies, $\mathbf{y}_m(\mathbf{p})$ describes surface response of model \mathbb{S}_r

- S_r hyperplane when model LP.
- S_r curved hypersurface when model NLP.

э

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Consider

$$\boldsymbol{\Pi}(\mathbf{p}) = \frac{\partial \mathbf{y}_{\mathrm{m}}(\mathbf{p})}{\partial \mathbf{p}^{\mathrm{T}}} \left(\left(\frac{\partial \mathbf{y}_{\mathrm{m}}(\mathbf{p})}{\partial \mathbf{p}^{\mathrm{T}}} \right)^{\mathrm{T}} \left(\frac{\partial \mathbf{y}_{\mathrm{m}}(\mathbf{p})}{\partial \mathbf{p}^{\mathrm{T}}} \right) \right)^{-1} \left(\frac{\partial \mathbf{y}_{\mathrm{m}}(\mathbf{p})}{\partial \mathbf{p}^{\mathrm{T}}} \right)^{\mathrm{T}}$$

orthogonal projection matrix on hypersurface tangent to \mathbb{S}_r in $\boldsymbol{y}_m(\boldsymbol{p})$

- If dim $(\mathbf{p}) = n_{p}$, dim $(\mathbf{y}) = n_{t}$ and $\mathbf{e}(\mathbf{p}) = \mathbf{y} \mathbf{y}_{m}(\mathbf{p})$, then
 - $j(\mathbf{p}^*) = \mathbf{e}^T(\mathbf{p}^*) \mathbf{e}(\mathbf{p}^*) \sim \sigma^2 \chi^2(n_t)$, $\mathbf{e}(\mathbf{p})$ evolves in space of dimension n_t .
 - e^T(p^{*})Π(p^{*})e(p^{*}) ~ σ²χ²(n_p), orthogonal projection of e(p) on tangent space evolves in space of dimension n_p.
 - e^T(p^{*})(I−Π(p^{*}))e(p^{*}) ~ σ²χ²(n_t − n_p), orthogonal complement of previous projection.

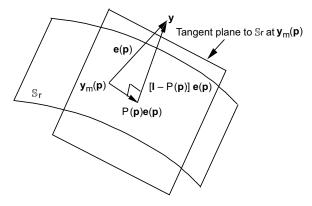
Consider

$$\boldsymbol{\Pi}(\mathbf{p}) = \frac{\partial \mathbf{y}_{m}(\mathbf{p})}{\partial \mathbf{p}^{T}} \left(\left(\frac{\partial \mathbf{y}_{m}(\mathbf{p})}{\partial \mathbf{p}^{T}} \right)^{T} \left(\frac{\partial \mathbf{y}_{m}(\mathbf{p})}{\partial \mathbf{p}^{T}} \right) \right)^{-1} \left(\frac{\partial \mathbf{y}_{m}(\mathbf{p})}{\partial \mathbf{p}^{T}} \right)^{T}$$

orthogonal projection matrix on hypersurface tangent to \mathbb{S}_r in $\boldsymbol{y}_m(\boldsymbol{p})$

If dim
$$(\mathbf{p}) = n_{p}$$
, dim $(\mathbf{y}) = n_{t}$ and $\mathbf{e}(\mathbf{p}) = \mathbf{y} - \mathbf{y}_{m}(\mathbf{p})$, then

- $j(\mathbf{p}^*) = \mathbf{e}^T(\mathbf{p}^*) \mathbf{e}(\mathbf{p}^*) \sim \sigma^2 \chi^2(n_t)$, $\mathbf{e}(\mathbf{p})$ evolves in space of dimension n_t .
- e^T(p^{*})Π(p^{*})e(p^{*}) ~ σ²χ²(n_p), orthogonal projection of e(p) on tangent space evolves in space of dimension n_p.
- e^T(p^{*})(I−Π(p^{*}))e(p^{*}) ~ σ²χ²(n_t − n_p), orthogonal complement of previous projection.



Moreover, $\mathbf{e}^T(\mathbf{p}^*) \Pi(\mathbf{p}^*) \mathbf{e}(\mathbf{p}^*)$ and $\mathbf{e}^T(\mathbf{p}^*) (\mathbf{I} - \Pi(\mathbf{p}^*)) \mathbf{e}(\mathbf{p}^*)$ are independent, so that

$$\frac{\mathbf{e}^{T}(\mathbf{p}^{*})\mathbf{\Pi}(\mathbf{p}^{*})\mathbf{e}(\mathbf{p}^{*})}{\mathbf{e}^{T}(\mathbf{p}^{*})(\mathbf{I}-\mathbf{\Pi}(\mathbf{p}^{*}))\mathbf{e}(\mathbf{p}^{*})}\frac{n_{t}-n_{p}}{n_{p}} \sim F(n_{p},n_{t}-n_{p})$$
where $F(n_{p},n_{t}-n_{p})$ Fisher-Snedecor law.

Computing quotient of two independent χ^2 -distributed random variables, unknown σ^2 eliminated \hookrightarrow usable when σ^2 a priori unknown.

Consider $X \sim F(n_{\rm p}, n_{\rm t}-n_{\rm p})$ and $F_{lpha}(n_{\rm p}, n_{\rm t}-n_{\rm p})$ such that

$$\Pr(X \ge F_{\alpha}(n_{p}, n_{t} - n_{p})) = \alpha$$

 $F_{\alpha}(n_{\rm p}, n_{\rm t} - n_{\rm p})$ is the value which has a probability α to be exceeded by a variable distributed according to a $F(n_{\rm p}, n_{\rm t} - n_{\rm p})$ law.

Confidence region with confidence level 1-lpha % [SW03]

$$\mathbb{P}_{1-\alpha} = \left\{ \mathbf{p} \mid \frac{\mathbf{e}^{\mathsf{T}}(\mathbf{p}) \mathbf{\Pi}(\mathbf{p}) \mathbf{e}(\mathbf{p})}{\mathbf{e}^{\mathsf{T}}(\mathbf{p}) (\mathbf{I} - \mathbf{\Pi}(\mathbf{p})) \mathbf{e}(\mathbf{p})} \frac{n_{\mathrm{t}} - n_{\mathrm{p}}}{n_{\mathrm{p}}} \leqslant F_{\alpha} (n_{\mathrm{p}}, n_{\mathrm{t}} - n_{\mathrm{p}}) \right\}$$

Much less amenable for characterization using interval analysis.

Computing quotient of two independent χ^2 -distributed random variables, unknown σ^2 eliminated \hookrightarrow usable when σ^2 a priori unknown.

Consider $X \sim F(n_{\rm p}, n_{\rm t}-n_{\rm p})$ and $F_{lpha}(n_{\rm p}, n_{\rm t}-n_{\rm p})$ such that

$$\Pr(X \ge F_{\alpha}(n_{p}, n_{t} - n_{p})) = \alpha$$

 $F_{\alpha}(n_{\rm p}, n_{\rm t} - n_{\rm p})$ is the value which has a probability α to be exceeded by a variable distributed according to a $F(n_{\rm p}, n_{\rm t} - n_{\rm p})$ law.

Confidence region with confidence level $1 - \alpha$ % [SW03]

$$\mathbb{P}_{1-\alpha} = \left\{ \mathbf{p} \mid \frac{\mathbf{e}^{\mathsf{T}}(\mathbf{p}) \mathbf{\Pi}(\mathbf{p}) \mathbf{e}(\mathbf{p})}{\mathbf{e}^{\mathsf{T}}(\mathbf{p}) (\mathbf{I} - \mathbf{\Pi}(\mathbf{p})) \mathbf{e}(\mathbf{p})} \frac{n_{\mathsf{t}} - n_{\mathsf{p}}}{n_{\mathsf{p}}} \leqslant F_{\alpha} (n_{\mathsf{p}}, n_{\mathsf{t}} - n_{\mathsf{p}}) \right\}.$$

Much less amenable for characterization using interval analysis.

・ロ・・ 日・・ ヨ・ ・ ヨ・ ・ らくる

Computing quotient of two independent χ^2 -distributed random variables, unknown σ^2 eliminated \hookrightarrow usable when σ^2 a priori unknown.

Consider $X \sim F(n_{\rm p}, n_{\rm t}-n_{\rm p})$ and $F_{lpha}(n_{\rm p}, n_{\rm t}-n_{\rm p})$ such that

$$\Pr(X \ge F_{\alpha}(n_{p}, n_{t} - n_{p})) = \alpha$$

 $F_{\alpha}(n_{\rm p}, n_{\rm t} - n_{\rm p})$ is the value which has a probability α to be exceeded by a variable distributed according to a $F(n_{\rm p}, n_{\rm t} - n_{\rm p})$ law.

Confidence region with confidence level $1 - \alpha$ % [SW03]

$$\mathbb{P}_{1-\alpha} = \left\{ \mathbf{p} \mid \frac{\mathbf{e}^{\mathsf{T}}(\mathbf{p}) \mathbf{\Pi}(\mathbf{p}) \mathbf{e}(\mathbf{p})}{\mathbf{e}^{\mathsf{T}}(\mathbf{p}) (\mathbf{I} - \mathbf{\Pi}(\mathbf{p})) \mathbf{e}(\mathbf{p})} \frac{n_{\mathsf{t}} - n_{\mathsf{p}}}{n_{\mathsf{p}}} \leqslant F_{\alpha} (n_{\mathsf{p}}, n_{\mathsf{t}} - n_{\mathsf{p}}) \right\}.$$

Much less amenable for characterization using interval analysis.

・ロ・・ 日・・ ヨ・ ・ ヨ・ ・ らくる

SPS and LSCR

Campi *et al.* [CW05, DWC07, CCW12] propose two approaches named LSCR and SPS

- exact characterization of parameter uncertainty
- in *non-asymptotic* conditions.

Hypotheses

- System generating data must belong to model set (true value p* should be meaningful)
- Only a set of the s

SPS and LSCR

Campi *et al.* [CW05, DWC07, CCW12] propose two approaches named LSCR and SPS

- exact characterization of parameter uncertainty
- in *non-asymptotic* conditions.

Hypotheses

- System generating data must belong to model set (true value p^{*} should be meaningful)
- Noise samples must be independently distributed with distributions symmetric with respect to zero.

Outline

Estimating parameter and uncertainty

- Classical approaches
- White Gaussian noise with known variance
- White Gaussian noise with unknown variance
- Approaches proposed by Campi et al.

2 SPS

- 3 LSCR
- 4 Guaranteed characterization via interval analysis

5 Source localization

- Introduction
- Reference bounded-error approaches
- Results

SPS [CCW12]: sign-perturbed sums.

SPS is designed for linear regression, where

$$y_t = \boldsymbol{\varphi}_t^{\mathsf{T}} \mathbf{p}^* + w_t, t = 1, \dots, n, \qquad (3)$$

with φ_t known regression vector.

SPS defines an exact confidence region for \mathbf{p}^* around least-squares estimate $\hat{\mathbf{p}}$, which is solution to *normal equations*

$$\sum_{t=1}^{n} \varphi_t \left(y_t - \varphi_t^{\mathsf{T}} \hat{\mathbf{p}} \right) = \mathbf{0}.$$
(4)

 SPS [CCW12]: sign-perturbed sums.

SPS is designed for linear regression, where

$$y_t = \boldsymbol{\varphi}_t^{\mathsf{T}} \mathbf{p}^* + w_t, t = 1, \dots, n, \qquad (3)$$

with φ_t known regression vector.

SPS defines an exact confidence region for p^* around least-squares estimate \hat{p} , which is solution to *normal equations*

$$\sum_{t=1}^{n} \varphi_t \left(y_t - \varphi_t^{\mathsf{T}} \hat{\mathbf{p}} \right) = \mathbf{0}.$$
(4)

SPS Description

For generic **p** consider

$$\mathbf{s}_{0}(\mathbf{p}) = \sum_{t=1}^{n} \varphi_{t} \left(y_{t} - \varphi_{t}^{\mathsf{T}} \mathbf{p} \right), \qquad (5)$$

and sign-perturbed sums

$$\mathbf{s}_{i}(\mathbf{p}) = \sum_{t=1}^{n} \alpha_{i,t} \varphi_{t} \left(y_{t} - \varphi_{t}^{\mathsf{T}} \mathbf{p} \right), \tag{6}$$

where $i = 1, \ldots, m-1$ and $\alpha_{i,t} = \pm 1$ with equal probability, and

$$z_i(\mathbf{p}) = \|\mathbf{s}_i(\mathbf{p})\|_2^2, i = 0, \dots, m-1.$$
 (7)

When ordering $z_i(\mathbf{p}^*)$ in increasing order, rank of $z_0(\mathbf{p}^*)$ is uniformly distributed [CCW12].

SPS Description

For generic **p** consider

$$\mathbf{s}_{0}(\mathbf{p}) = \sum_{t=1}^{n} \varphi_{t} \left(y_{t} - \varphi_{t}^{\mathsf{T}} \mathbf{p} \right), \qquad (5)$$

and sign-perturbed sums

$$\mathbf{s}_{i}(\mathbf{p}) = \sum_{t=1}^{n} \alpha_{i,t} \varphi_{t} \left(y_{t} - \varphi_{t}^{\mathsf{T}} \mathbf{p} \right), \qquad (6)$$

where $i=1,\ldots,m-1$ and $lpha_{i,t}=\pm 1$ with equal probability, and

$$z_i(\mathbf{p}) = \|\mathbf{s}_i(\mathbf{p})\|_2^2, i = 0, \dots, m-1.$$
 (7)

When ordering $z_i(\mathbf{p}^*)$ in increasing order, rank of $z_0(\mathbf{p}^*)$ is uniformly distributed [CCW12].

SPS Description

For generic **p** consider

$$\mathbf{s}_{0}(\mathbf{p}) = \sum_{t=1}^{n} \varphi_{t} \left(y_{t} - \varphi_{t}^{\mathsf{T}} \mathbf{p} \right), \qquad (5)$$

and sign-perturbed sums

$$\mathbf{s}_{i}(\mathbf{p}) = \sum_{t=1}^{n} \alpha_{i,t} \varphi_{t} \left(y_{t} - \varphi_{t}^{\mathsf{T}} \mathbf{p} \right), \qquad (6)$$

where $i=1,\ldots,m-1$ and $lpha_{i,t}=\pm 1$ with equal probability, and

$$z_i(\mathbf{p}) = \|\mathbf{s}_i(\mathbf{p})\|_2^2, i = 0, \dots, m-1.$$
(7)

When ordering $z_i(\mathbf{p}^*)$ in increasing order, rank of $z_0(\mathbf{p}^*)$ is uniformly distributed [CCW12].

Consider set Σ_q of all **p** such that $z_0(\mathbf{p})$ is *not* among the *q* largest values of $(z_i(\mathbf{p}))_{i=0}^{m-1}$.

One has $\mathbf{p}^* \in \mathbf{\Sigma}_q$ with exact probability 1 - q/m, see [CCW12].

 Σ_q is confidence region with level 1 - q/m.

・ロ ・ ・ 一 ・ ・ 言 ・ ・ 言 ・ う へ や
20 / 83

Consider set Σ_q of all **p** such that $z_0(\mathbf{p})$ is *not* among the *q* largest values of $(z_i(\mathbf{p}))_{i=0}^{m-1}$.

One has $\mathbf{p}^* \in \mathbf{\Sigma}_q$ with exact probability 1 - q/m, see [CCW12].

 Σ_q is confidence region with level 1 - q/m.

 Σ_q may be defined more formally as

$$\mathbf{\Sigma}_{q} = \left\{ \mathbf{p} \in \mathbb{P} \text{ such that } \sum_{i=1}^{m-1} \tau_{i}(\mathbf{p}) \geqslant q
ight\}$$
 (8)

where

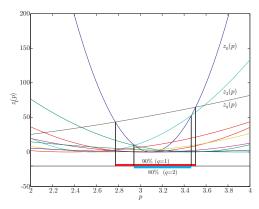
$$\tau_i(\mathbf{p}) = \begin{cases} 1 & \text{if } z_i(\mathbf{p}) - z_0(\mathbf{p}) > 0, \\ 0 & \text{else.} \end{cases}$$
(9)

SPS

(日)

SPS Illustration

Model $y_t^m(p) = p$, with 20 noisy data generated for $p^* = 3$. We choose m = 10.



LSCF

Outline

- Classical approaches
- White Gaussian noise with known variance
- White Gaussian noise with unknown variance
- Approaches proposed by Campi et al.
- 2 SPS

3 LSCR

- Guaranteed characterization via interval analysis
- 5 Source localization
 - Introduction
 - Reference bounded-error approaches
 - Results
- Conclusion

LSCR [CW05]: leave-out sign-dominant correlated regions

Independent estimates of the correlation of the prediction error

$$\varepsilon_{t}\left(\mathbf{p}\right)=y_{t}-y_{t}^{\mathsf{m}}\left(\mathbf{p}\right)$$

should have random signs.

Leave out subset of parameter space where sign does not appear random (*i.e.* is sign dominant)

Defines, without any approximation,

region Θ to which \mathbf{p}^* belongs with specified probability.

LSCR [CW05]: leave-out sign-dominant correlated regions

Independent estimates of the correlation of the prediction error

$$\varepsilon_{t}\left(\mathbf{p}\right)=y_{t}-y_{t}^{\mathsf{m}}\left(\mathbf{p}\right)$$

should have random signs.

Leave out subset of parameter space where sign does not appear random (*i.e.* is sign dominant)

Defines, without any approximation,

region Θ to which \mathbf{p}^* belongs with specified probability.

LSCR [CW05]: leave-out sign-dominant correlated regions

Independent estimates of the correlation of the prediction error

$$\varepsilon_{t}\left(\mathbf{p}\right)=y_{t}-y_{t}^{\mathsf{m}}\left(\mathbf{p}\right)$$

should have random signs.

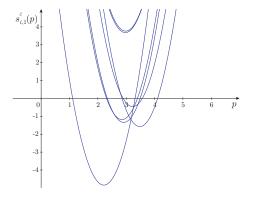
Leave out subset of parameter space where sign does not appear random (*i.e.* is sign dominant)

Defines, without any approximation,

region $\boldsymbol{\Theta}$ to which \boldsymbol{p}^* belongs with specified probability.

LSCR Example

Model $y_t^m(p) = p$, with 8 noisy data generated with $p^* = 3$.



7 different empirical correlations as a function of p

LS

LSCR Description

Consider prediction error

$$\varepsilon_{t}\left(\mathbf{p}\right)=y_{t}-y_{t}^{\mathsf{m}}\left(\mathbf{p}\right)$$

such that $\varepsilon_t(\mathbf{p}^*)$ is realization of noise corrupting data at time t.

• Select two integers $r \ge 0$ and $q \ge 0$.

• For $t = 1 + r, \dots, k + r = n$, compute

$$c_{t-r,r}^{\varepsilon}(\mathbf{p}) = \varepsilon_{t-r}(\mathbf{p})\varepsilon_t(\mathbf{p}).$$
(10)

LSCR Description

Consider prediction error

$$\varepsilon_{t}\left(\mathbf{p}\right)=y_{t}-y_{t}^{\mathsf{m}}\left(\mathbf{p}\right)$$

such that $\varepsilon_t(\mathbf{p}^*)$ is realization of noise corrupting data at time t.

- Select two integers $r \ge 0$ and $q \ge 0$.
- For $t = 1 + r, \dots, k + r = n$, compute

$$c_{t-r,r}^{\varepsilon}(\mathbf{p}) = \varepsilon_{t-r}(\mathbf{p})\varepsilon_t(\mathbf{p}).$$
(10)

LSCR Description

Compute

$$s_{i,r}^{\varepsilon}(\mathbf{p}) = \sum_{k \in \mathbb{I}_i} c_{k,r}^{\varepsilon}(\mathbf{p}), \ i = 1, ..., m.$$
(11)

where $\mathbb{I}_i \subset \mathbb{I}$, set of indexes. Collection \mathbb{G} of subsets \mathbb{I}_i , i = 1, ..., m, forms a group under the symmetric difference operation, *i.e.*, $(\mathbb{I}_i \cup \mathbb{I}_j) - (\mathbb{I}_i \cap \mathbb{I}_j) \in \mathbb{G}$.

Then, from [CW05], the probability that less than q among the m $s_{i,r}^{\varepsilon}(\mathbf{p}^*)$ s have different signs is exactly 2q/m.

• Find $\Theta_{r,q}^{\varepsilon}$ such that at least q of functions $s_{i,r}^{\varepsilon}(\mathbf{p})$ are larger than 0 and at least q are smaller than 0.

LSCR Description

Compute

$$s_{i,r}^{\varepsilon}(\mathbf{p}) = \sum_{k \in \mathbb{I}_i} c_{k,r}^{\varepsilon}(\mathbf{p}), \ i = 1, ..., m.$$
(11)

where $\mathbb{I}_i \subset \mathbb{I}$, set of indexes. Collection \mathbb{G} of subsets \mathbb{I}_i , i = 1, ..., m, forms a group under the symmetric difference operation, *i.e.*, $(\mathbb{I}_i \cup \mathbb{I}_j) - (\mathbb{I}_i \cap \mathbb{I}_j) \in \mathbb{G}$.

Then, from [CW05], the probability that less than q among the $m s_{i,r}^{\varepsilon}(\mathbf{p}^*)$ s have different signs is exactly 2q/m.

• Find $\Theta_{r,q}^{\varepsilon}$ such that at least q of functions $s_{i,r}^{\varepsilon}(\mathbf{p})$ are larger than 0 and at least q are smaller than 0.

LSCR Description

Example of \mathbb{G} st $\forall \mathbb{I}_i \in \mathbb{G}$, $\forall \mathbb{I}_i \in \mathbb{G}$ one has $(\mathbb{I}_i \cup \mathbb{I}_i) - (\mathbb{I}_i \cap \mathbb{I}_i) \in \mathbb{G}$

	1	2	3	4	5	6	7
\mathbb{I}_1	•	•		•	•		
\mathbb{I}_2	•		•	•		•	
\mathbb{I}_3		•	•		•	•	
\mathbb{I}_4	•	•				•	•
\mathbb{I}_5	•		•		•		•
\mathbb{I}_6		•	•	•			•
\mathbb{I}_7				•	•	•	•
\mathbb{I}_8							

 $s_{1,1}^{\varepsilon}(\mathbf{p}) = \varepsilon_{1}(\mathbf{p})\varepsilon_{2}(\mathbf{p}) + \varepsilon_{2}(\mathbf{p})\varepsilon_{3}(\mathbf{p}) + \varepsilon_{3}(\mathbf{p})\varepsilon_{4}(\mathbf{p}) + \varepsilon_{4}(\mathbf{p})\varepsilon_{5}(\mathbf{p}) + \varepsilon_{5}(\mathbf{p})\varepsilon_{6}(\mathbf{p}) + \varepsilon_{6}(\mathbf{p})\varepsilon_{7}(\mathbf{p}) + \varepsilon_{7}(\mathbf{p})\varepsilon_{6}(\mathbf{p}) \\ s_{2,1}^{\varepsilon}(\mathbf{p}) = \varepsilon_{1}(\mathbf{p})\varepsilon_{2}(\mathbf{p}) + \varepsilon_{3}(\mathbf{p}) + \varepsilon_{3}(\mathbf{p})\varepsilon_{4}(\mathbf{p}) + \varepsilon_{4}(\mathbf{p})\varepsilon_{5}(\mathbf{p}) + \varepsilon_{5}(\mathbf{p})\varepsilon_{6}(\mathbf{p}) + \varepsilon_{6}(\mathbf{p})\varepsilon_{7}(\mathbf{p}) + \varepsilon_{7}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,1}^{\varepsilon}(\mathbf{p}) = \varepsilon_{1}(\mathbf{p})\varepsilon_{2}(\mathbf{p}) + \varepsilon_{2}(\mathbf{p})\varepsilon_{3}(\mathbf{p}) + \varepsilon_{3}(\mathbf{p})\varepsilon_{4}(\mathbf{p}) + \varepsilon_{4}(\mathbf{p})\varepsilon_{5}(\mathbf{p}) + \varepsilon_{5}(\mathbf{p})\varepsilon_{6}(\mathbf{p}) + \varepsilon_{6}(\mathbf{p})\varepsilon_{7}(\mathbf{p}) + \varepsilon_{7}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,1}^{\varepsilon}(\mathbf{p}) = \varepsilon_{2,1}^{\varepsilon}(\mathbf{p})\varepsilon_{2}(\mathbf{p}) + \varepsilon_{2}(\mathbf{p})\varepsilon_{3}(\mathbf{p}) + \varepsilon_{3}(\mathbf{p})\varepsilon_{4}(\mathbf{p})\varepsilon_{5}(\mathbf{p}) + \varepsilon_{5}(\mathbf{p})\varepsilon_{6}(\mathbf{p}) + \varepsilon_{6}(\mathbf{p})\varepsilon_{7}(\mathbf{p}) + \varepsilon_{7}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,1}^{\varepsilon}(\mathbf{p}) = \varepsilon_{2,1}^{\varepsilon}(\mathbf{p})\varepsilon_{2}(\mathbf{p}) + \varepsilon_{2}(\mathbf{p})\varepsilon_{3}(\mathbf{p}) + \varepsilon_{3}(\mathbf{p})\varepsilon_{4}(\mathbf{p})\varepsilon_{5}(\mathbf{p}) + \varepsilon_{5}(\mathbf{p})\varepsilon_{6}(\mathbf{p}) + \varepsilon_{6}(\mathbf{p})\varepsilon_{7}(\mathbf{p}) + \varepsilon_{7}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,1}^{\varepsilon}(\mathbf{p}) = \varepsilon_{2,1}^{\varepsilon}(\mathbf{p})\varepsilon_{2}(\mathbf{p}) + \varepsilon_{2}(\mathbf{p})\varepsilon_{3}(\mathbf{p}) + \varepsilon_{3}(\mathbf{p})\varepsilon_{4}(\mathbf{p})\varepsilon_{5}(\mathbf{p}) + \varepsilon_{5}(\mathbf{p})\varepsilon_{6}(\mathbf{p}) + \varepsilon_{6}(\mathbf{p})\varepsilon_{7}(\mathbf{p}) + \varepsilon_{7}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,1}^{\varepsilon}(\mathbf{p}) = \varepsilon_{2,1}^{\varepsilon}(\mathbf{p})\varepsilon_{5}(\mathbf{p}) + \varepsilon_{5}(\mathbf{p})\varepsilon_{6}(\mathbf{p}) + \varepsilon_{6}(\mathbf{p})\varepsilon_{7}(\mathbf{p}) + \varepsilon_{7}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,2}^{\varepsilon}(\mathbf{p})\varepsilon_{7}(\mathbf{p}) + \varepsilon_{7}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,2}^{\varepsilon}(\mathbf{p})\varepsilon_{7}(\mathbf{p}) + \varepsilon_{7}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,2}^{\varepsilon}(\mathbf{p})\varepsilon_{7}(\mathbf{p}) + \varepsilon_{7}(\mathbf{p})\varepsilon_{8}(\mathbf{p})\varepsilon_{7}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,2}^{\varepsilon}(\mathbf{p})\varepsilon_{7}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,2}^{\varepsilon}(\mathbf{p})\varepsilon_{8}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,2}^{\varepsilon}(\mathbf{p})\varepsilon_{8}(\mathbf{p})\varepsilon_{8}(\mathbf{p})\varepsilon_{8}(\mathbf{p})\varepsilon_{8}(\mathbf{p})\varepsilon_{8}(\mathbf{p})\varepsilon_{8}(\mathbf{p}) \\ s_{2,2}^{\varepsilon}(\mathbf{p})\varepsilon_{8}(\mathbf{p}$

 $\mathbf{s}_{7,1}^{\boldsymbol{\varepsilon}}(\mathbf{p}) = \varepsilon_1(\mathbf{p})\varepsilon_2(\mathbf{p}) + \varepsilon_2(\mathbf{p})\varepsilon_3(\mathbf{p}) + \varepsilon_3(\mathbf{p})\varepsilon_4(\mathbf{p}) + \varepsilon_4(\mathbf{p})\varepsilon_5(\mathbf{p}) + \varepsilon_5(\mathbf{p})\varepsilon_6(\mathbf{p}) + \varepsilon_6(\mathbf{p})\varepsilon_7(\mathbf{p}) \pm \varepsilon_7(\mathbf{p})\varepsilon_8(\mathbf{p}) = \frac{\varepsilon_7(\mathbf{p})\varepsilon_7(\mathbf{p})}{28/83}$

LSCR Properties

The set $\mathbf{\Theta}_{r,q}^{\varepsilon}$ is such that [CW05]

$$\Pr\left(\mathbf{p}^* \in \mathbf{\Theta}_{r,q}^{\varepsilon}\right) = 1 - 2q/m.$$

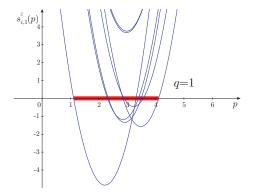
Shape and size of $\mathbf{\Theta}_{r,q}^{\varepsilon}$ depend on

- values given to q and r
- group \mathbb{G} and its number of elements m.

A procedure for generating $\mathbb G$ of appropriate size suggested in [Gor74].

LSCR Example (continued)

Model $y_t^m(p) = p$, with 8 noisy data generated with $p^* = 3$.



7 empirical correlations, and 71% confidence region

LSCR More formal definition

The set $\mathbf{\Theta}_{r,q}^{\varepsilon}$ may be defined more formally as

$$\boldsymbol{\Theta}_{r,q}^{\varepsilon} = \boldsymbol{\Theta}_{r,q}^{\varepsilon,-} \cap \boldsymbol{\Theta}_{r,q}^{\varepsilon,+}, \tag{12}$$

with

$$\mathbf{\Theta}_{r,q}^{\varepsilon,-} = \left\{ \mathbf{p} \in \mathbb{P} \text{ such that } \sum_{i=1}^{m} \tau_{i}^{\varepsilon,-} \left(\mathbf{p} \right) \ge q \right\},$$
(13)
$$\mathbf{\Theta}_{r,q}^{\varepsilon,+} = \left\{ \mathbf{p} \in \mathbb{P} \text{ such that } \sum_{i=1}^{m} \tau_{i}^{\varepsilon,+} \left(\mathbf{p} \right) \ge q \right\},$$
(14)

where \mathbb{P} is prior domain for **p**.

LSCR More formal definition

Moreover

$$\tau_{i}^{\varepsilon,-}\left(\mathbf{p}\right) = \begin{cases} 1 & \text{if } -s_{i,r}^{\varepsilon}\left(\mathbf{p}\right) \ge 0, \\ 0 & \text{else,} \end{cases}$$
(15)

and

$$\tau_{i}^{\varepsilon,+}(\mathbf{p}) = \begin{cases} 1 & \text{if } s_{i,r}^{\varepsilon}(\mathbf{p}) \ge 0, \\ 0 & \text{else.} \end{cases}$$
(16)

 $\Theta_{r,q}^{\varepsilon,-}$ contains all $\mathbf{p} \in \mathbb{P}$ such that at least $q \ s_{i,r}^{\varepsilon}(\mathbf{p})$ s smaller than 0 $\Theta_{r,q}^{\varepsilon,+}$ contains all $\mathbf{p} \in \mathbb{P}$ such that at least $q \ s_{i,r}^{\varepsilon}(\mathbf{p})$ s larger than 0.

LSCR More formal definition

Moreover

$$\tau_{i}^{\varepsilon,-}(\mathbf{p}) = \begin{cases} 1 & \text{if } -s_{i,r}^{\varepsilon}(\mathbf{p}) \ge 0, \\ 0 & \text{else,} \end{cases}$$
(15)

and

$$\tau_{i}^{\varepsilon,+}\left(\mathbf{p}\right) = \begin{cases} 1 & \text{if } s_{i,r}^{\varepsilon}\left(\mathbf{p}\right) \ge 0, \\ 0 & \text{else.} \end{cases}$$
(16)

 $\Theta_{r,q}^{\varepsilon,-}$ contains all $\mathbf{p} \in \mathbb{P}$ such that at least $q \ s_{i,r}^{\varepsilon}(\mathbf{p})$ s smaller than 0 $\Theta_{r,q}^{\varepsilon,+}$ contains all $\mathbf{p} \in \mathbb{P}$ such that at least $q \ s_{i,r}^{\varepsilon}(\mathbf{p})$ s larger than 0.

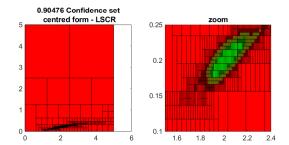
LSCF

Example

Example:

$$y_{t_i}^{\mathsf{m}}(\mathbf{p}^*) = p_1^* \exp(-p_2^* t_i),$$

with $p^* = (2, 0.2)$ and $t_i = 0.1i, i = 0, \dots, 63.$



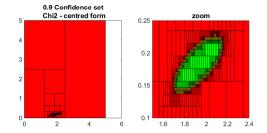
(ヨ) ヨ のへで 33/83

White Gaussian noise with known variance

Back to previous result (using χ^2 distribution:

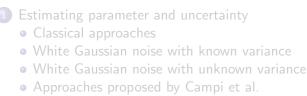
$$y_{t_i}^{m}(\mathbf{p}^*) = p_1^* \exp(-p_2^* t_i),$$

with $p^* = (2, 0.2)$ and $t_i = 0.1i$, $i = 0, \dots, 63$.



▶ < ≣ ▶ ≣ ∽ < 34 / 83

Outline



- 2 SPS
- **LSCR**

Guaranteed characterization via interval analysis

- Source localization
 - Introduction
 - Reference bounded-error approaches
 - Results

Guaranteed characterization

In SPS (and LSCR), one has to characterize

$$\Psi_{q} = \left\{ \mathbf{p} \in \mathbb{P} \text{ such that } \sum_{i=1}^{m} \tau_{i}\left(\mathbf{p}\right) \geqslant q \right\},$$
(17)

where $\tau_i(\mathbf{p})$ is some indicator function

$$\tau_{i}(\mathbf{p}) = \begin{cases} 1 & \text{if } f_{i}(\mathbf{p}) \ge 0, \\ 0 & \text{else}, \end{cases}$$
(18)

and where $f_i(\mathbf{p})$ depends on

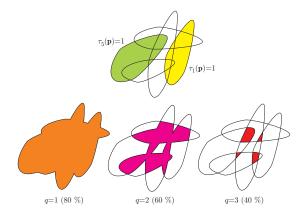
- model structure,
- measurements,
- parameter vector **p**.

Guaranteed characterization

In SPS (and LSCR), one has to characterize

$$\Psi_{q} = \left\{ \mathbf{p} \in \mathbb{P} \text{ such that } \sum_{i=1}^{m} \tau_{i}(\mathbf{p}) \ge q \right\},$$
(19)
$$\tau_{5}(\mathbf{p}) = 1$$
$$\tau_{5}(\mathbf{p}) = 1$$
$$\tau_{1}(\mathbf{p}) = 1$$

Guaranteed characterization



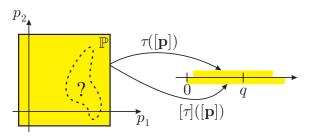
Characterization

- approximate using gridding in [CW05, DWC07, CCW12].
- guaranteed using interval analysis here [KW14].

SIVIA

To characterize $\Psi_q = \{ \mathbf{p} \in \mathbb{P} \text{ such that } \sum_{i=1}^{m} \tau_i(\mathbf{p}) \ge q \}$, one uses SIVIA and an inclusion function [Moo66, JKDW01] [τ]([**p**]) of

$$\tau(\mathbf{p}) = \sum_{i=1}^m \tau_i(\mathbf{p}).$$

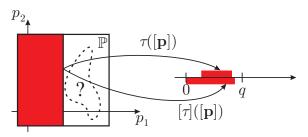


イロト イヨト イヨト

SIVIA

To characterize $\Psi_q = \{ \mathbf{p} \in \mathbb{P} \text{ such that } \sum_{i=1}^m \tau_i(\mathbf{p}) \ge q \}$, one uses an inclusion function $[\tau]([\mathbf{p}])$ of

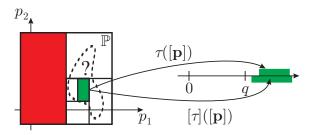
$$\tau(\mathbf{p}) = \sum_{i=1}^m \tau_i(\mathbf{p}).$$



SIVIA

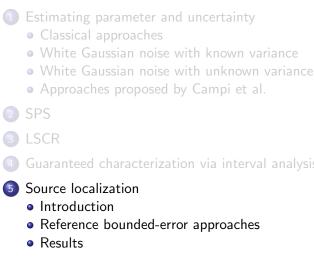
To characterize $\Psi_q = \{ \mathbf{p} \in \mathbb{P} \text{ such that } \sum_{i=1}^m \tau_i(\mathbf{p}) \ge q \}$, one uses an inclusion function $[\tau]([\mathbf{p}])$ of

$$au(\mathbf{p}) = \sum_{i=1}^m au_i(\mathbf{p}).$$



Contractors may also be used, see [KW14].

Outline



Source localization problem

Problem encountered in

- indoor localization
- localization of electromagnetic source

• ...

Various approaches use measurements of wave emitted by object

- Time of arrival
- Difference of time of arrivals
- Received signal strength
- ...

Here, comparison of bounded-error approaches and LSCR [HKL18]

Source localization problem

Problem encountered in

- indoor localization
- localization of electromagnetic source

• ...

Various approaches use measurements of wave emitted by object

- Time of arrival
- Difference of time of arrivals
- Received signal strength
- ...

Here, comparison of bounded-error approaches and LSCR [HKL18]

Source localization problem

Problem encountered in

- indoor localization
- localization of electromagnetic source

• ...

Various approaches use measurements of wave emitted by object

- Time of arrival
- Difference of time of arrivals
- Received signal strength
- ...

Here, comparison of bounded-error approaches and LSCR [HKL18]

n_{a} anchor nodes, with fixed and known locations θ_{i} , $i = 1, \ldots, n_{a}$,

Agent with unknown location $heta_0$

- emits electromagnetic/acoustic signal, received by anchors.
- y(i,k): k-th RSS measurement by anchor node i

Anchor nodes transmit RSS measurements to central processing unit.

Confidence region for estimator of θ_0 to be derived from y(i,k), $i = 1, ..., n_a$, $k = 1, ..., n_a$.

- n_{a} anchor nodes, with fixed and known locations θ_{i} , $i = 1, \ldots, n_{a}$, Agent with unknown location θ_0
 - emits electromagnetic/acoustic signal, received by anchors.
 - y(i,k): k-th RSS measurement by anchor node i

Anchor nodes transmit RSS measurements to central processing unit.

 $n_{\rm a}$ anchor nodes, with fixed and known locations θ_i , $i = 1, \ldots, n_{\rm a}$, Agent with unknown location θ_0

- emits electromagnetic/acoustic signal, received by anchors.
- y(i,k): k-th RSS measurement by anchor node i

Anchor nodes transmit RSS measurements to central processing unit.

Confidence region for estimator of θ_0 to be derived from y(i,k), $i = 1, \ldots, n_{\rm a}, \ k = 1, \ldots, n_{\rm a}$

k-th measurement by anchor node *i* described by Okumura-Hata model [Hat80]

$$y(i,k) = P_0 - 10\gamma_P \log_{10} \frac{\| heta_0 - heta_i\|}{d_0} + \varepsilon(i,k),$$

where

- P_0 signal power at reference distance d_0 ,
- $\gamma_{\rm P}$ path-loss exponent,
- $\varepsilon(i,k)$ measurement noise.

One assumes that

- $\gamma_{\rm P}$ is the same for all anchors.
- $\varepsilon(i,k)$ s, independently, not necessarily identically distributed random variables with distribution symmetric around zero.

k-th measurement by anchor node *i* described by Okumura-Hata model [Hat80]

$$y(i,k) = P_0 - 10\gamma_P \log_{10} \frac{\| heta_0 - heta_i\|}{d_0} + \varepsilon(i,k),$$

where

- P_0 signal power at reference distance d_0 ,
- $\gamma_{\rm P}$ path-loss exponent,
- $\varepsilon(i,k)$ measurement noise.

One assumes that

- $\gamma_{\rm P}$ is the same for all anchors.
- $\varepsilon(i,k)$ s, independently, not necessarily identically distributed random variables with distribution symmetric around zero.

Introduction

Parameters to estimate

Parameter vector

$$\mathbf{p} = \begin{bmatrix} \boldsymbol{\theta}_0^{\, T}, \boldsymbol{P}_0, \boldsymbol{\gamma}_{\rm P} \end{bmatrix}^{\, T}$$

True value **p**^{*} of parameter vector, then

$$y(i,k) = y^{m}(i,\mathbf{p}^{*}) + \varepsilon(i,k)$$
(20)

with

$$y^{m}(i, \mathbf{p}^{*}) = P_{0}^{*} - 10\gamma_{P}^{*}\log_{10}\frac{\|\theta_{0}^{*} - \theta_{i}\|}{d_{0}}.$$

Search for \mathbf{p}^* in \mathbb{P}_0 .

Introduction

Parameters to estimate

Parameter vector

$$\mathbf{p} = \begin{bmatrix} \boldsymbol{\theta}_0^{\, T}, \boldsymbol{P}_0, \boldsymbol{\gamma}_{\rm P} \end{bmatrix}^{\, T}$$

True value \mathbf{p}^* of parameter vector, then

$$y(i,k) = y^{\mathsf{m}}(i,\mathbf{p}^*) + \varepsilon(i,k)$$
⁽²⁰⁾

with

$$y^{m}(i, \mathbf{p}^{*}) = P_{0}^{*} - 10\gamma_{P}^{*}\log_{10}\frac{\|\theta_{0}^{*} - \theta_{i}\|}{d_{0}}.$$
 (21)

Search for \mathbf{p}^* in \mathbb{P}_0 .

<ロ><一><一><一><一><一><一><一</td>4日>4日>46/83

Introduction

Parameters to estimate

Parameter vector

$$\mathbf{p} = \begin{bmatrix} \boldsymbol{\theta}_0^{\, T}, \boldsymbol{P}_0, \boldsymbol{\gamma}_{\rm P} \end{bmatrix}^{\, T}$$

True value \mathbf{p}^* of parameter vector, then

$$y(i,k) = y^{m}(i,\mathbf{p}^{*}) + \varepsilon(i,k)$$
⁽²⁰⁾

イロン イロン イヨン イヨン 三日

46 / 83

with

$$y^{\mathsf{m}}(i, \mathbf{p}^{*}) = P_{0}^{*} - 10\gamma_{\mathsf{P}}^{*}\log_{10}\frac{\|\theta_{0}^{*} - \theta_{i}\|}{d_{0}}.$$
 (21)

Search for \mathbf{p}^* in \mathbb{P}_0 .

Bounded-error estimation

Noise samples $\varepsilon(i, k)$ assumed bounded with known bounds $\varepsilon(i, k) \in [\underline{e}(i, k), \overline{e}(i, k)], i = 1...n_a, k = 1...n$

Set of all $\mathbf{p} \in \mathbb{P}_0$ consistent with

- system model,
- measurements,
- noise bounds

defined as

 $\mathbb{P}_{\mathsf{BE}} = \{\mathbf{p} \in \mathbb{P}_0 | y_{\mathsf{m}}(i, \mathbf{p}) \in y(i, k) - [\underline{e}(i, k), \overline{e}(i, k)], i = 1 \dots n_a, k = 1 \dots n\}.$

Difficulty:

How should $\underline{e}(i,k)$ and $\overline{e}(i,k)$ be chosen?

47 / 83

Bounded-error estimation

Noise samples $\varepsilon(i,k)$ assumed bounded with known bounds

$$\varepsilon(i,k) \in [\underline{e}(i,k), \overline{e}(i,k)], i = 1 \dots n_a, k = 1 \dots n_b$$

Set of all $\boldsymbol{p} \in \mathbb{P}_0$ consistent with

- system model,
- measurements,
- noise bounds

defined as

 $\mathbb{P}_{\mathsf{BE}} = \{ \mathbf{p} \in \mathbb{P}_0 | y_{\mathsf{m}}(i, \mathbf{p}) \in y(i, k) - [\underline{e}(i, k), \overline{e}(i, k)], i = 1 \dots n_a, k = 1 \dots n \}.$

Difficulty:

How should $\underline{e}(i,k)$ and $\overline{e}(i,k)$ be chosen?

47 / 83

Bounded-error estimation

Noise samples $\varepsilon(i,k)$ assumed bounded with known bounds

$$\varepsilon(i,k) \in [\underline{e}(i,k), \overline{e}(i,k)], i = 1 \dots n_a, k = 1 \dots n$$

Set of all $\boldsymbol{p} \in \mathbb{P}_0$ consistent with

- system model,
- measurements,
- noise bounds

defined as

 $\mathbb{P}_{\mathsf{BE}} = \{ \mathbf{p} \in \mathbb{P}_0 | y_{\mathsf{m}}(i, \mathbf{p}) \in y(i, k) - [\underline{e}(i, k), \overline{e}(i, k)], i = 1 \dots n_a, k = 1 \dots n \}.$

Difficulty:

How should $\underline{e}(i,k)$ and $\overline{e}(i,k)$ be chosen?

47 / 83

Robust bounded-error estimation

BE approaches may provide $\mathbb{P}_{\mathsf{BE}} = \emptyset$ as a result:

- noise bounds too optimistic
- inappropriate system model
- initial search box too small.

Robust bounded-error estimation

RBE estimation methods: find set of \mathbf{p} consistent with all but q measurements and related noise bounds

$$\mathbb{P}_{\mathsf{RBE},\xi} = \{\mathbf{p} \in \mathbb{P}_0 | \tau(\mathbf{p}) \in \mathbb{Y}_q\},\$$

where

$$\tau(\mathbf{p}) = \sum_{i=1}^{n_a} \sum_{k=1}^n \tau_{i,k}(\mathbf{p}),$$

$$\tau_{i,k}(\mathbf{p}) = \begin{cases} 1 & y_m(i,\mathbf{p}) \in y(i,k) - [\underline{e}(i,k), \overline{e}(i,k)], \\ 0 & \text{else} \end{cases}$$

and $\mathbb{Y}_{\xi} = [n_a n - q, n_a n].$ Problems:

- how should $\underline{e}(i,k)$ and $\overline{e}(i,k)$ be chosen?
- how should *q* be chosen?

Robust bounded-error estimation

RBE estimation methods: find set of \mathbf{p} consistent with all but q measurements and related noise bounds

$$\mathbb{P}_{\mathsf{RBE},\xi} = \{\mathbf{p} \in \mathbb{P}_0 | \tau(\mathbf{p}) \in \mathbb{Y}_q\},\$$

where

$$\tau(\mathbf{p}) = \sum_{i=1}^{n_a} \sum_{k=1}^{n} \tau_{i,k}(\mathbf{p}),$$

$$\tau_{i,k}(\mathbf{p}) = \begin{cases} 1 & y_m(i,\mathbf{p}) \in y(i,k) - [\underline{e}(i,k), \overline{e}(i,k)], \\ 0 & \text{else} \end{cases}$$

and $\mathbb{Y}_{\xi} = [n_a n - q, n_a n]$. Problems:

- how should $\underline{e}(i,k)$ and $\overline{e}(i,k)$ be chosen?
- how should *q* be chosen?

Simulation conditions

- Five anchor nodes $(n_a = 5)$ are placed in the corners and in the center of a square of $20 \text{ m} \times 20 \text{ m}$.
- N = 32 agents are regularly placed in the square
- $P_0 = 30$ dBm at $d_0 = 1$ m is the same for all agents.
- $\gamma_{\rm P} = 4$.

Simulation conditions

- Five anchor nodes $(n_a = 5)$ are placed in the corners and in the center of a square of $20 \text{ m} \times 20 \text{ m}$.
- N = 32 agents are regularly placed in the square
- Each agent broadcasts n = 10 times message containing its identifier.
- $P_0 = 30$ dBm at $d_0 = 1$ m is the same for all agents.
- $\gamma_{\rm P} = 4$.

Simulation conditions

Data are corrupted by two types of noise samples

- iid zero-mean Gaussian noise with $\sigma_0 = 2$ dBm.
- iid Gaussian-Bernoulli-Gaussian variables
 - with a probability $p_0 = 0.9$, $\sigma_0 = 2$ dBm
 - with a probability $p_1 = 0.1$, $\sigma_1 = 5$ dBm.

Simulation conditions

Data are corrupted by two types of noise samples

- iid zero-mean Gaussian noise with $\sigma_0 = 2$ dBm.
- iid Gaussian-Bernoulli-Gaussian variables
 - with a probability $p_0=0.9,~\sigma_0=2$ dBm
 - with a probability $p_1 = 0.1$, $\sigma_1 = 5$ dBm.

Simulation conditions

Three estimation problems are considered:

- Only the location $\theta_{0,i}$, i = 1, ..., N of each agent has to be estimated, γ and P_0 are assumed to be known.
- (a) $\theta_{0,i}$ and $P_{0,i}$, i = 1, ..., N have to be determined for each agent.
- 0 $heta_{0,i}$ and γ , $i=1,\ldots,N$ have to be determined for each agent.

Simulation conditions

Three estimation problems are considered:

- Only the location $\theta_{0,i}$, i = 1, ..., N of each agent has to be estimated, γ and P_0 are assumed to be known.
- **2** $\theta_{0,i}$ and $P_{0,i}$, i = 1, ..., N have to be determined for each agent.

(a) $\theta_{0,i}$ and γ , i = 1, ..., N have to be determined for each agent.

Simulation conditions

Three estimation problems are considered:

- Only the location θ_{0,i}, i = 1,..., N of each agent has to be estimated, γ and P₀ are assumed to be known.
- **2** $\theta_{0,i}$ and $P_{0,i}$, i = 1, ..., N have to be determined for each agent.
- **③** $\theta_{0,i}$ and γ , i = 1, ..., N have to be determined for each agent.

Selection of the parameters of LSCR

Different ways to organize the measurements are considered

$$\mathbf{y} = (y(1,1), y(1,2), y(1,3), y(2,1), y(2,2), y(2,3), \dots, y(n_a, 1), y(n_a, 2), y(n_a, 3))^T$$

or

$$\mathbf{y} = (y(1,1), y(2,1), \dots, y(n_{a},1), y(1,2), y(2,2), \dots, y(n_{a},2), y(1,3), y(2,3), \dots, y(n_{a},3))^{T}$$

Selection of the parameters of LSCR

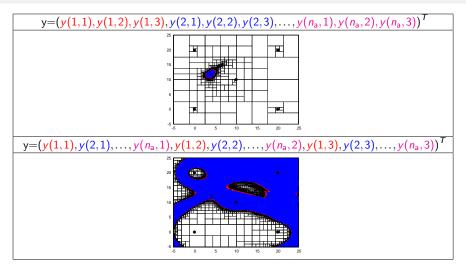


Table: Confidence regions as defined by LSCR obtained for different organizations of the measurement vector

Comparison with alternative techniques

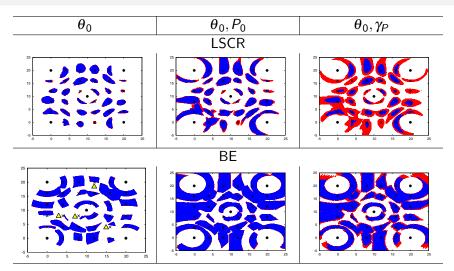


Table: Measurements corrupted by Gaussian noise

Comparison with alternative techniques

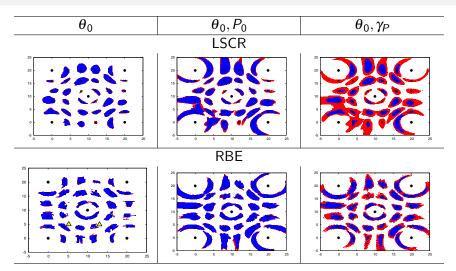


Table: Measurements corrupted by Gaussian noise

Comparison with alternative techniques

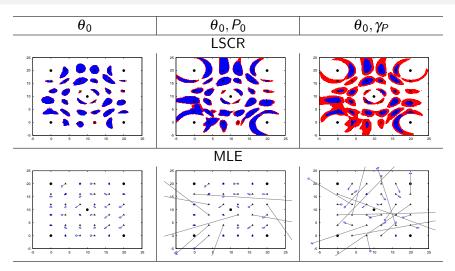


Table: Measurements corrupted by Gaussian noise

Comparison with alternative techniques

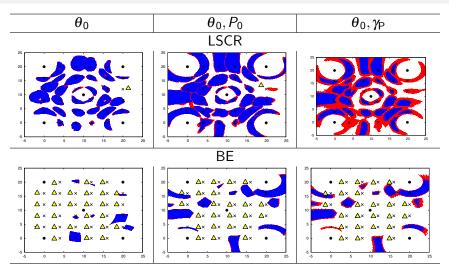


Table: Measurements corrupted by Gaussian-Bernoulli-Gaussian noise

Comparison with alternative techniques

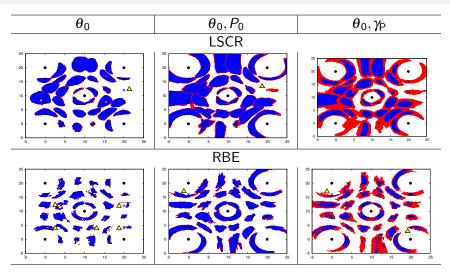


Table: Measurements corrupted by Gaussian-Bernoulli-Gaussian noise

Comparison with alternative techniques

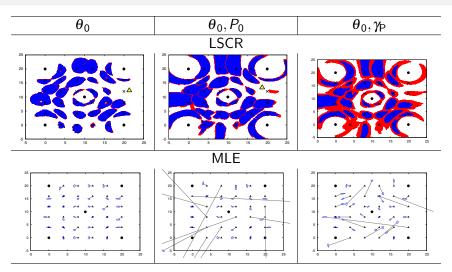


Table: Simulations considering Gaussian-Bernoulli-Gaussian noise

Comparison with alternative techniques

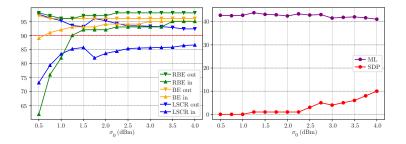


Figure: Proportions of agents for which the true value of the agent location is contained in the projection on the (θ_1, θ_2) -plane of the NACRs, the set estimates or the confidence region derived from the CRLB

Comparison with alternative techniques

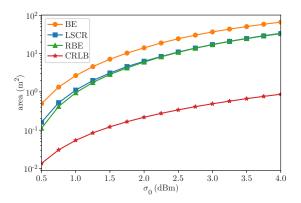


Figure: Evolution of the average surface of the projection on the (θ_1, θ_2) -plane of the NACRs, the set estimates or the confidence region derived from the CRLB

Comparison with alternative techniques

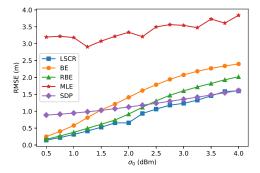
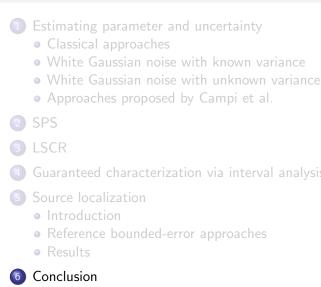


Figure: RMS localization error as a function of σ_0

Outline



Conclusions

Several ways to obtain non-asymptotic confidence regions

- Gaussian noise with known variance: adapted to characterization using IA
- Gaussian noise with unknown variance: difficult for IA
- Suited for model linear in the parameters
- Efficient characterization, efficient contractors, see [KW14]

LSCR

- Applies to linear and nonlinear models
- Efficient characterization, less efficient contractors, see [KW14]

Conclusions

Several ways to obtain non-asymptotic confidence regions

- Gaussian noise with known variance: adapted to characterization using IA
- Gaussian noise with unknown variance: difficult for IA

SPS

- Suited for model linear in the parameters
- Efficient characterization, efficient contractors, see [KW14] SCR
- Applies to linear and nonlinear models
- Efficient characterization, less efficient contractors, see [KW14]

Conclusions

Several ways to obtain non-asymptotic confidence regions

- Gaussian noise with known variance: adapted to characterization using IA
- Gaussian noise with unknown variance: difficult for IA

SPS

- Suited for model linear in the parameters
- Efficient characterization, efficient contractors, see [KW14]

LSCR

- Applies to linear and nonlinear models
- Efficient characterization, less efficient contractors, see [KW14]

References I

B. C. Csáji, M. C. Campi, and E. Weyer. Non-asymptotic confidence regions for the least-squares estimate. In *Proc. IFAC Symposium on System Identification*, pages 227–232, Brussels, Belgium, 2012.

M. C. Campi and E. Weyer. Guaranteed non-asymptotic confidence regions in system identification.

Automatica, 41(10):1751-1764, 2005.

M. Dalai, E. Weyer, and M. C. Campi.

Parameter identification for nonlinear systems: Guaranteed confidence regions through LSCR.

Automatica, 43:1418 – 1425, 2007.

References II

L. Gordon.

Completely separating groups in subsampling. *Annals of Statistics*, 2(3):572–578, 1974.

M. Hata.

Empirical formula for propagation loss in land mobile radio services. *IEEE Transactions on Vehicular Technology*, 29(3):317–325, 1980.

C.Y. Han, M. Kieffer, and A. Lambert.
 Guaranteed confidence region characterization for source localization using rss measurements.
 Signal Processing, 2018.

References III

L. Jaulin.

Robust set membership state estimation; application to underwater robotics.

Automatica, 45(1):202–206, 2009.

🔋 L. Jaulin.

Set-membership localization with probabilistic errors. *Robotics and Autonomous Systems*, 59(6):489–495, 2011.

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. *Applied Interval Analysis*. Springer-Verlag, London, 2001.

L. Jaulin and E. Walter.

Guaranteed robust nonlinear minimax estimation.

IEEE Transaction on Automatic Control, 47(11):1857–1864, 2002.

イロト 不得 トイヨト イヨト

References IV

🚺 S. M. Kay.

Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory. Prentice Hall, 1993.

M. Kieffer and E. Walter.

Guaranteed characterization of exact non-asymptotic confidence regions as defined by SPS and LSCR.

Automatica, 50(2):507–512, 2014.

M. Milanese, J. Norton, H. Piet-Lahanier, and E. Walter, editors. Bounding Approaches to System Identification. Plenum Press, New York, NY, 1996.

References V

R. E. Moore.

Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

- G. A. F. Seber and C. J. Wild. *Nonlinear Regression.* Wiley-Interscience, 2003.

E. Walter and L. Pronzato. *Identification of Parametric Models from Experimental Data*. Springer-Verlag, London, 1997.

Contractors

Contractor $\mathscr{C}_{f,\mathbb{Y}}$ associated with generic set-inversion problem

$$\mathbb{X} = [\mathbf{x}] \cap \mathbf{f}^{-1}(\mathbb{Y}), \qquad (22)$$

takes [x] as input and returns

$$\mathscr{C}_{\mathbf{f},\mathbb{Y}}([\mathbf{x}]) \subset [\mathbf{x}] \tag{23}$$

イロン イロン イヨン イヨン 三日

71/83

such that

$$[\mathbf{x}] \cap \mathbb{X} = \mathscr{C}_{\mathbf{f}, \mathbb{Y}}([\mathbf{x}]) \cap \mathbb{X}, \tag{24}$$

so no part of X in [x] is lost.

Contractors Examples

Various types of contractors

- by interval constraint propagation,
- by parallel linearization,
- the Newton contractor,
- the Krawczyk contractor, etc.

Contractors With LSCR and SPS

$$\Psi_q = \mathbb{P} \cap \tau^{-1}([q,m]), \qquad (25)$$

The τ s are not differentiable and forbid use of classic contractors.

Proposed contractor assumes f_i s differentiable.

- build set of *m* possibly overlapping subboxes of [**p**], trying to remove all values of $\mathbf{p} \in [\mathbf{p}]$ such that $f_i(\mathbf{p}) < 0, i = 1, ..., m$.
- Output intersections of at least q of these boxes.

Box contraction using the f_i 's, suitable for LSCR and SPS

First step: Centered inclusion function of f_i , for some $\mathbf{m} \in [\mathbf{p}]$,

$$f_{i,c}]([\mathbf{p}]) = f_i(\mathbf{m}) + ([\mathbf{p}] - \mathbf{m})^{\mathsf{T}}[\mathbf{g}_i]([\mathbf{p}])$$
(26)
= $f_i(\mathbf{m}) + \sum_{j=1}^{n_{\mathsf{p}}} ([p_j] - m_j)[g_{i,j}]([\mathbf{p}]),$ (27)

where \mathbf{g}_i is gradient of f_i .

[

Box contraction using the f_i 's, suitable for LSCR and SPS

For k-th component $[p_k]$ of $[\mathbf{p}]$, when $0 \notin [g_{i,k}]([\mathbf{p}])$, $\mathscr{C}_{f_i,[0,\infty[}$ associates the contracted interval

$$[p'_{i,k}] = [p_k] \cap \left(\left(([f_{i,c}]([\mathbf{p}]) \cap [0,\infty[) - f_i(\mathbf{m}) - \sum_{j=1, j \neq k}^{n_p} ([p_j] - m_j) [g_{i,j}]([\mathbf{p}]) \right) / [g_{i,k}]([\mathbf{p}]) + m_k \right).$$
(28)

When $0 \in [g_{i,k}]([\mathbf{p}])$, $\mathscr{C}_{f_i,[0,\infty[}$ leaves $[p_k]$ unchanged, *i.e.*,

$$\left[\boldsymbol{p}_{i,k}'\right] = \left[\boldsymbol{p}_k\right]. \tag{29}$$

<ロト < 回 > < 直 > < 直 > < 直 > < 亘 > < 亘 > < 亘 > < 三 > < 三 > < ○ < ○ 75 / 83

Box contraction using the f_i 's, suitable for LSCR and SPS

Considering *m* functions f_i and applying all the contractors $\mathscr{C}_{f_i,[0,\infty[}, i = 1, ..., n$, to [**p**], one obtains

$$\mathcal{L} = \left\{ \mathscr{C}_{f_1,[0,\infty[}([\mathbf{p}]),\ldots,\mathscr{C}_{f_m,[0,\infty[}([\mathbf{p}])) \right\}$$

$$= \left\{ \left[\mathbf{p}'_1 \right],\ldots, \left[\mathbf{p}'_m \right] \right\}.$$
(30)
(31)

 $[\mathbf{p}'_i] = \emptyset$ indicates that there is no $\mathbf{p} \in [\mathbf{p}]$ such that $f_i(\mathbf{p}) \ge 0$.

<ロ><一><一><一><一><一><一><一</td>76/83

Box contraction suitable for SPS only Main idea

Takes advantage of $\mathbf{s}_i(\mathbf{p})$, i = 0, ..., m affine in \mathbf{p} to

- reduce number of occurrences of \mathbf{p} in $\mathbf{s}_i(\mathbf{p})$,
- reduce pessimism of corresponding inclusion functions.

One may rewrite

$$\mathbf{s}_{0}(\mathbf{p}) = \sum_{t=1}^{n} \varphi_{t} \left(y_{t} - \varphi_{t}^{\mathsf{T}} \mathbf{p} \right),$$

as

$$\mathbf{s}_{0}(\mathbf{p}) = \sum_{t=1}^{n} y_{t} \varphi_{t} - \left(\sum_{t=1}^{n} \varphi_{t} \varphi_{t}^{\mathsf{T}}\right) \mathbf{p} \qquad (32)$$
$$= \mathbf{b}_{0} - \mathbf{A}_{0} \mathbf{p} \qquad (33)$$

with $\mathbf{b}_0 = \sum_{t=1}^n y_t \varphi_t$ and $\mathbf{A}_0 = \sum_{t=1}^n \varphi_t \varphi_t^{\mathsf{T}}$.

Similarly,

$$\mathbf{s}_{i}(\mathbf{p}) = \sum_{t=1}^{n} \alpha_{i,t} \varphi_{t} \left(y_{t} - \varphi_{t}^{\mathsf{T}} \mathbf{p} \right), \qquad (34)$$

may be rewritten as

$$\mathbf{s}_i(\mathbf{p}) = \mathbf{b}_i - \mathbf{A}_i \mathbf{p} \tag{35}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

79 / 83

with $\mathbf{b}_i = \sum_{t=1}^n \alpha_{i,t} y_t \varphi_t$ and $\mathbf{A}_i = \sum_{t=1}^n \alpha_{i,t} \varphi_t \varphi_t^{\mathsf{T}}$.

One gets then

$$z_{i}(\mathbf{p}) - z_{0}(\mathbf{p}) = (\mathbf{b}_{i} - \mathbf{A}_{i}\mathbf{p})^{\mathsf{T}}(\mathbf{b}_{i} - \mathbf{A}_{i}\mathbf{p}) - (\mathbf{b}_{0} - \mathbf{A}_{0}\mathbf{p})^{\mathsf{T}}(\mathbf{b}_{0} - \mathbf{A}_{0}\mathbf{p})$$
(36)

The matrices $\mathbf{A}_i^2 - \mathbf{A}_0^2$ are symmetric

$$\mathbf{A}_i^2 - \mathbf{A}_0^2 = \mathbf{U}_i^{\mathsf{T}} \mathbf{D}_i \mathbf{U}_i.$$
(37)

Using the change of variables $\pi = \mathbf{U}_i \mathbf{p}, \ z_i(\mathbf{p}) - z_0(\mathbf{p})$ becomes

$$z_i(\mathbf{p}) - z_0(\mathbf{p}) = \pi^{\mathsf{T}} \mathbf{D}_i \pi - 2\beta_i^{\mathsf{T}} \pi + \gamma_i, \qquad (38)$$

with $\boldsymbol{\beta}_i^{\mathsf{T}} = (\mathbf{b}_i^{\mathsf{T}} \mathbf{A}_i - \mathbf{b}_0^{\mathsf{T}} \mathbf{A}_0) \mathbf{U}_i^{\mathsf{T}}$ and $\gamma_i = \mathbf{b}_i^{\mathsf{T}} \mathbf{b}_i - \mathbf{b}_0^{\mathsf{T}} \mathbf{b}_0$.

One then obtains

$$z_{i}(\mathbf{p}) - z_{0}(\mathbf{p}) = \sum_{j=1}^{n_{p}} d_{i,j} \left(\pi_{j} - \frac{\beta_{i,j}}{d_{i,j}}\right)^{2} + \gamma_{i} - \sum_{j=1}^{n_{p}} \frac{\beta_{i,j}^{2}}{d_{i,j}}.$$
 (39)

If $\mathbf{p} \in [\underline{\mathbf{p}}, \overline{\mathbf{p}}]$, one is able to get $\pi \in [\underline{\pi}, \overline{\pi}] = \mathbf{U}[\underline{\mathbf{p}}, \overline{\mathbf{p}}]$. Whenever $d_k \neq 0$, a contractor for $[\pi_k]$ is obtained from (39) as follows $[\pi'_k] = [\pi_k] \cap \left(\pm \sqrt{\left(([z_i - z_0]([\mathbf{p}]) \cap [0, \infty[) - \sum_{j=1, j \neq i}^{n_p} d_{i,j} \left(\pi_j - \frac{\beta_{i,j}}{d_{i,j}} \right)^2 - \gamma_i + \sum_{j=1}^{n_p} \frac{\beta_{i,j}}{d_{i,j}} \right) / d_{i,k}} + \frac{\beta_{i,k}}{d_{i,k}} \right).$ (40) If $d_{i,k} = 0$, $[\pi_k]$ is left unchanged. From (40), a contractor for $[\mathbf{p}]$ is obtained as

$$\left[\mathbf{p}'\right] = \left[\mathbf{p}\right] \cap \left(\mathbf{U}_{i}^{\mathsf{T}}\left[\pi'\right]\right). \tag{41}$$

Building a q-relaxed intersection

Second step: contractor builds a box $[\mathbf{p}']$ enclosing the *q*-relaxed intersection \mathscr{P} [JW02, Jau09, Jau11] of the boxes in $\mathscr{L} = \{[\mathbf{p}'_1], \dots, [\mathbf{p}'_m]\}$

$$\mathscr{P} = \bigcap_{j \in \{1, \dots, m\}}^{q} [\mathbf{p}'_{j}].$$

$$= \bigcup_{\substack{J \subset [1, \dots, m] \\ \mathsf{card}(J) \ge q}} \bigcap_{j \in J} [\mathbf{p}'_{j}],$$
(42)
(42)

and satisfying

$$\mathscr{P} \subset [\mathbf{p}'] \subset [\mathbf{p}]. \tag{44}$$

<ロト < 回 > < 直 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < 0 < 0 82 / 83

Evaluating the q-relaxed intersection

Consider a list $\mathscr{L} = \{[p_1], \dots, [p_m]\}$ of *m* intervals. $1 | [p] = \emptyset;$ 2 Reindex the boxes [p_i] in such a way that $p_1 \leqslant p_2 \leqslant \cdots \leqslant p_n;$ 3 For i = q to nif $\sum_{j=1}^{n} \left(\underline{p}_{i} \in [p_{j}] \right) \ge q$ 4 5 $p = p_i$; break; 6 Reindex the boxes $[p_i]$ in such a way that $\overline{p}_1 \geq \overline{p}_2 \geq \cdots \geq \overline{p}_n$ 7 For i = q to n8 if $\sum_{i=1}^{n} (\overline{p}_i \in [p_i]) \ge q$ 9 $\overline{p} = \overline{p}_i$; break; [p] = q-relaxed intersection $([p_1], \dots, [p_n])$