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Problem statement

Consider a function f : Rn → Rm.

Set inversion (find all x that satisfy f (x) ∈ [y ]):

S =
{

x ∈ [x ] ∈ IRn
∣∣ f (x) ∈ [y ] ∈ IRm

}
(1)

where IRd is the set of boxes of dimension d in Rd .

Box contraction (find a box enclosure for S):

C : [x ] → [S] ∈ IRn (2)

▶ Successfully solved using interval analysis (e.g. SIVIA1, Constraint Satisfaction Problem1);

1. Jaulin, L., Kieffer, M., Didrit, O., Walter, E. (2001). Applied Interval Analysis with Examples in Parameter and State Estimation,
Robust Control and Robotics. Springer London.

▶ Is it possible to solve (1) and (2) when f : G → H applies on non-Euclidean
manifolds (e.g. rotation matrices) ?

3/36 Nicolas Merlinge, DTIS/IGNC, 2024
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Possible approaches of interval analysis on manifolds

▶ Partitioning the manifold itself

Manifold

▶ Enclosing the manifold subset by a superbox

Manifold
Superbox

▶ Define a bijection with the Euclidean space

Manifold

Bijection

ℝ

In
terval
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Interval analysis using Lie groups geometry

▶ Interval and Set membership dynamical propagation using Lie symmetries1

▶ Set inversion and contractors for quaternion estimation2 (enclosed in a "super-set"
of R4)

▶ ...and using the bijection of the quaternion space with Euler angles2, 3

1. Damers, J., Jaulin, L., Rohou, S. (2022). Lie symmetries applied to interval integration. Automatica, 144, 110502.

2. Nguyen, H. V. (2011). Estimation d’attitude et diagnostic d’une centrale d’attitude par des outils ensemblistes (Doctoral dissertation,
Grenoble).

3. Nguyen, H. V., Berbra, C., Lesecq, S., Gentil, S., Barraud, A., Godin, C. (2009, June). Diagnosis of an inertial measurement unit
based on set membership estimation. In 2009 17th Mediterranean Conference on Control and Automation (pp. 211-216). IEEE.

5/36 Nicolas Merlinge, DTIS/IGNC, 2024
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Bissectable Abstract Domains in C

▶ In not-ordered sets or manifolds (e.g. C, angles sets), it is not always possible to
define a Moore family (stable set by intersection, e.g. IR);

▶ Possibility to extend the concepts of interval analysis (e.g. intersection, bissection)
to domains belinging to a Lattice stable by inclusion1.

▶ Application to circular pavings (e.g. large angular domains):

1. Jaulin, L., Desrochers, B., Massé, D. (2016). Bisectable Abstract Domains for the Resolution of Equations Involving Complex
Numbers. Reliable Computing, 23(1), 35-46.

6/36 Nicolas Merlinge, DTIS/IGNC, 2024
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Set membership estimation in Lie algebra

▶ Constrained zonotopes using invariant properties1. Application to quaternions
estimation enclosed in a "superset" of R4

▶ Constrained polytopes2 as a "superset" enclosing SO(3) × R3 for attitude and gyro
bias estimation

▶ 3D ellipsoids in the Lie algebra so(3) of SO(3) for a specific measurement equation3

1. Rego, B. S., Scott, J. K., Raimondo, D. M., Raffo, G. V. (2021). Set-valued state estimation of nonlinear discrete-time systems with
nonlinear invariants based on constrained zonotopes. Automatica, 129, 109638.

2. Brás, S., Rosa, P., Silvestre, C., Oliveira, P. (2013). Global attitude and gyro bias estimation based on set-valued observers. Systems
and Control Letters, 62(10), 937-942.

3. Sanyal, A. K., Lee, T., Leok, M., McClamroch, N. H. (2008). Global optimal attitude estimation using uncertainty ellipsoids.
Systems and Control Letters, 57(3), 236-245.

7/36 Nicolas Merlinge, DTIS/IGNC, 2024
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Observers and filters on Lie groups

▶ Invariant observers1, 2

▶ Invariant Kalman Filter3, Invariant UKF4, Lie group EKF5, 8

▶ Invariant Rao-Backwellized Particle Filter6, Particle filters in Lie group7, 8

▶ And many other contributions

Euclidean Gaussian density (x ∈ Rd )) (left) Lie group Gaussian density (X ∈ G)

p(x) = 1√
(2π)d det(Σ)

e− 1
2 ∥x−µ∥2

Σ p(X) = 1√
(2π)d det

(
ΦL

G (X,µ)ΣΦL
G (X,µ)T )

) e
− 1

2

∥∥log∨
G (µ−1X)

∥∥2

Σ

Example: the Gaussian density translated into Lie groups (concentrated density5).

1. Barrau, A., Bonnabel, S. (2018). Linear observation systems on groups (I). working paper or preprint.

2. Mahony, R., Hamel, T., Trumpf, J. (2020). Equivariant systems theory and observer design. arXiv preprint arXiv:2006.08276.

3. Barrau, A., Bonnabel, S. (2018). Invariant kalman filtering. Annual Review of Control, Robotics, and Autonomous Systems, 1,
237-257.

4. Brossard, M., Bonnabel, S., Condomines, J. P. (2017, September). Unscented Kalman filtering on Lie groups. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (pp. 2485-2491). IEEE.

5. Bourmaud, G., Mégret, R., Giremus, A., Berthoumieu, Y. (2013, September). Discrete extended Kalman filter on Lie groups. In 21st
European Signal Processing Conference (EUSIPCO 2013) (pp. 1-5). IEEE.

6. Barrau, A., Bonnabel, S. (2014, December). Invariant particle filtering with application to localization. In 53rd IEEE Conference on
Decision and Control (pp. 5599-5605). IEEE.

7. Zhang, C., Taghvaei, A., Mehta, P. G. (2017). Feedback particle filter on riemannian manifolds and matrix lie groups. IEEE
Transactions on Automatic Control, 63(8), 2465-2480.

8. Chahbazian, C. (2023). Particle Filtering on Lie Groups: Application to Navigation (Doctoral dissertation, Université Paris-Saclay).

8/36 Nicolas Merlinge, DTIS/IGNC, 2024
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Lie groups properties: the exponential mapping (bijection exp/log)

Group 𝒢

Algebra 𝔤

ℝ𝑑

log𝒢
⋁

exp𝒢

exp𝒢
∧

log𝒢

. ∧ . ⋁

1. Hilgert, J., Neeb, K. H. (2011). Structure and geometry of Lie groups. Springer Science and Business Media.

2. Chahbazian, C. (2023). Particle Filtering on Lie Groups: Application to Navigation (Doctoral dissertation, Université Paris-Saclay).

9/36 Nicolas Merlinge, DTIS/IGNC, 2024
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"Errors" in Lie groups

Let G be a Lie group endowed with a "product" internal binary operation.

1. Two ways to compute an error between two elements (A,B ∈ G):

Side Generic notation Example with (R,+)
(Left) B−1A −B + A
(Right) AB−1 A − B

2. Log-Euclidean error : mapping to the Euclidean space.

Side Generic notation Example with (R,+)
(Left) log∨

G (B−1A) −B + A
(Right) log∨

G (AB−1) A − B

10/36 Nicolas Merlinge, DTIS/IGNC, 2024
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Lie group boxes

A Lie group box can be defined by an origin µX ∈ G and an algebra domain [x ] ∈ IRn:

[X ] ≡ ⟨µX , [x ]⟩ ∈ I•G (3)

where • is L or R.

Illustration in the left case:

𝒢

[𝑋]

ℝ𝑛 (𝔤)

[𝑥]

log𝒢
⋁ 𝜇𝑋

−1𝑋 ∈ 𝑥

𝜇𝑋

𝜇𝑋 exp𝒢
∧ 𝜀 ∈ 𝑋

∀𝜀 ∈ 𝑥

∀𝑋 ∈ 𝑋

log𝒢
⋁

exp𝒢
∧

𝒢 ℝ𝑛 (𝔤)
𝜀 = log𝒢

⋁ 𝜇𝑋
−1𝑋log𝒢

⋁

exp𝒢
∧

𝜀
𝑋

𝜇𝑋

Euclidean space
(exponential coordinates)

That is to say:
Left: [X ] = µX exp∧

G ([x ])
Right: [X ] = exp∧

G ([x ])µX
(4)

Merlinge, N. (2024). Set Inversion and Box Contraction on Lie groups using interval analysis, accepted to Automatica, to appear soon.
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Example

Consider the unit circle group (U, ·):

U ≜ {X ∈ C∗
∣∣ |X | = 1} (5)

Lie algebra ℝ+𝜋 −𝜋

𝑿𝟏

Group 𝑼

0

𝝁𝟏

𝑿𝟐

𝝁𝟐

𝒙𝟐𝒙𝟏

log𝑈
⋁exp𝑈

∧

(bijective domain) 𝑒𝑖0

Re
Im

▶ expU and logU are the usual complex exponential and logarithm functions
▶ expU is bijective on (−π, π]
▶ The multiplication · is commutative

12/36 Nicolas Merlinge, DTIS/IGNC, 2024
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Width, volume

Definition
The width of a Lie group box [X ] ≡ ⟨µX , [x ]⟩ ∈ I•G is defined by:

wG([X ]) ≜ w([x ]). (6)

Definition
The volume of a Lie group box [X ] ≡ ⟨µX , [x ]⟩ ∈ I•G is defined by:

VG([X ]) ≜

∫
[X ]

dHX =
∫

[x ]
| det ΦG(ε)|dε. (7)

13/36 Nicolas Merlinge, DTIS/IGNC, 2024
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Inclusion, intersection

Property
Consider two Lie group boxes [X ] ≡ ⟨µ, [x ]⟩ and [Y ] ≡ ⟨µ, [y ]⟩ in I•G sharing the same
origin µ ∈ G. Then, the inclusion in the algebra domains is equivalent to the inclusion
in the group:

[x ] ⊂ [y ] ⇔ [X ] ⊂ [Y ]. (8)

Property
Consider two Lie group boxes [X ] ≡ ⟨µ, [x ]⟩ and [Y ] ≡ ⟨µ, [y ]⟩ in I•G sharing the same
origin µ ∈ G. Then, the intersection in the algebra domains is equivalent to the
intersection in the group:

[X ] ∩ [Y ] ≡ ⟨µ, [x ] ∩ [y ]⟩ . (9)

14/36 Nicolas Merlinge, DTIS/IGNC, 2024



Introduction Related work Intervals on Lie groups Test cases Conclusion

Lie group subpaving

A Lie group regular subpaving of a subset A ⊂ G can be defined as follows:

Definition

{[Xi ]}A
i∈[1,N] ≜

{
[Xi ] ∈ I•G

∣∣∣∣∣
⋃N

i=1[Xi ] = A
∀i , j ∈ [1,N], i ̸= j,

VG([Xi ] ∩ [Xj ]) = 0

}
. (10)

𝒢 ℝ𝑛 (𝔤)

𝜇𝑋

log𝒢
⋁

exp𝒢
∧

0𝑛

Property
A given regular Euclidean subpaving {[xi ]}B

i∈[1,N] on a Euclidean domain B ⊂ Rn can be
mapped to a unique subpaving on a Lie group G around a given reference point µX ∈ G.

15/36 Nicolas Merlinge, DTIS/IGNC, 2024
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Inclusion functions

A Lie group inclusion function can be defined as follows (• can be L or R):

Definition
Let f : G → H. A Lie group inclusion function [f ] : I•G → I•H can be defined by:

[f ]([X ]) ≜
[{

f (X) ∈ H
∣∣ X ∈ [X ]

}]•
H
, (11)

where [. . .]•H is the wrapping operator from a subset of H to the box set I•H.

Equivalently, by choosing µY ∈ H:

[f ](⟨µX , [x ]⟩) ≡ ⟨µY , [y ]⟩ ≡
〈
µY , [f •

µX ,µY ]([x ])
〉
. (12)

Property
Equivalent Euclidean inclusion function: [f •

µX ,µY ] : IRn → IRm:

[f L
µX ,µY ]([x ]) ≜

[{
log∨

H(µ−1
Y f (µX exp∧

G (ε)))
∣∣ ε ∈ [x ]

}]
(13)

[f R
µX ,µY ]([x ]) ≜

[{
log∨

H(f (exp∧
G (ε)µX )µ−1

Y )
∣∣ ε ∈ [x ]

}]
. (14)

16/36 Nicolas Merlinge, DTIS/IGNC, 2024
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[f ]([X ]) ≜
[{

f (X) ∈ H
∣∣ X ∈ [X ]

}]•
H
, (11)

where [. . .]•H is the wrapping operator from a subset of H to the box set I•H.
Equivalently, by choosing µY ∈ H:

[f ](⟨µX , [x ]⟩) ≡ ⟨µY , [y ]⟩ ≡
〈
µY , [f •

µX ,µY ]([x ])
〉
. (12)

Property
Equivalent Euclidean inclusion function: [f •

µX ,µY ] : IRn → IRm:

[f L
µX ,µY ]([x ]) ≜

[{
log∨

H(µ−1
Y f (µX exp∧

G (ε)))
∣∣ ε ∈ [x ]

}]
(13)

[f R
µX ,µY ]([x ]) ≜

[{
log∨

H(f (exp∧
G (ε)µX )µ−1

Y )
∣∣ ε ∈ [x ]

}]
. (14)
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Inclusion functions

𝒢

[𝑋]

ℝ𝑛 (𝔤)

[𝑥]

exp𝒢
⋀

ℋ

[𝑌]

ℝ𝑚 (𝔥)

[𝑦]

logℋ
⋁

𝑓
𝑓𝜇𝑋,𝜇𝑌
∙

𝜇𝑋

𝜇𝑌

Euclidean
formulation 
for interval
analysis

17/36 Nicolas Merlinge, DTIS/IGNC, 2024



Introduction Related work Intervals on Lie groups Test cases Conclusion

Set inversion on Lie groups

Definition
The set inversion problem on Lie groups is defined as follows ([X ] ∈ I•G, [Y ] ∈ I•H):

SG =
{

X ∈ [X ]
∣∣ f (X) ∈ [Y ]

}
. (15)

Euclidean equivalent problem
Problem (15) is thus equivalent to the following problem:

SG =
{
ε ∈ [x ]

∣∣ f •
µX ,µY (ε) ∈ [y ]

}
. (16)

Theorem
Consider a function f : G → H admitting a convergent Lie group inclusion function and an output domain
[Y ] ⊂ H of which the algebra domain [y ] is a full compact set. Then, Problem (15) can be solved in the Euclidean
space of the Lie algebra g using SIVIA. The resulting undetermined domain SG

und ⊂ G has a finite volume in the
group. Moreover, each box of the regular subpaving that covers SG

und has a bounded volume:

∀[Ui ] ∈ SG
und,VG([Ui ]) < sup

[ui ]
(| det ΦG |)ϵn < ∞ (17)

where ϵ > 0 such that ∀[Ui ] ∈ SG
und,wG([Ui ]) < ϵ.
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Set inversion on Lie groups (SIVIA output)

𝒮𝑖𝑛

𝒮𝑜𝑢𝑡

𝒮𝑢𝑛𝑑

Solution in Rn (isomorphic to g)

In the Euclidean
space:
▶ Sund is a paving

of boxes [s i
und]

such that ∀i
w([s i

und]) < ϵ

▶ Sund corresponds
to a Lie group
paving SG

und that
has a bounded
volume in the
group
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Contractor on Lie groups

Definition
The Lie group box contraction problem to be solved is defined by:

CG([X ]) ≜
[{

X ∈ [X ] ∈ I•G
∣∣ f (X) ∈ [Y ] ∈ I•H

}]•
G

(18)

where CG is a Lie group contractor and • is L or R.

Theorem
Given a function f : G → H admitting a Lie group inclusion function and an output
domain [Y ] ⊂ H of which the algebra domain [y ] is compact, Problem (18) can be
solved in the Euclidean space of the Lie algebra g using a conventional box contractor C
and provides a solution of finite volume in the group. Therefore, the Lie group
contractor can be defined by:

CG (⟨µX , [x ]⟩) ≡ ⟨µX , C([x ])⟩ (19)

where C([x ]) =
[{
ε ∈ [x ]

∣∣ f •
µX ,µY (ε) ∈ [y ]

}]
.
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Contractor properties

Definition
(used in the proof) A Lie group contractor has the following properties:

CG([X ]) ⊂ [X ] (contractance)
[X ] ∩ SG ⊂ CG([X ]) (correctness) (20)

where SG is the exact solution set (15).

Property
A Lie group contractor CG is locally monotonic if the Euclidean contractor C is
monotonic. The local monotonicity is defined for any pair of Lie group boxes of I•G
sharing the same origin µ ∈ G:

∀[X1] ≡ ⟨µ, [x1]⟩
∀[X2] ≡ ⟨µ, [x2]⟩ , [X1] ⊂ [X2] ⇒ CG([X1]) ⊂ CG([X2]). (21)

Property
A Lie group contractor CG is idempotent if the Euclidean contractor C is idempotent,
i.e.:

CG ◦ CG([X ]) = CG([X ]). (22)
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Summary
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1. Merlinge, N. (2024). Set Inversion and Box Contraction on Lie groups using interval analysis, accepted to Automatica, to appear
soon.
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Examples with rotation matrices (Special Orthogonal group SO(3) )

▶ Definition of the rotation matrices SO(3) group:

SO(3) =
{

R ∈ R3×3
∣∣ RRT = I3, det R = 1

}
(23)

▶ E.g. state attitude of a drone/spacecraft Rb→E , body frame to Earth frame.

▶ Lie algebra so(3): [ε]× =

[
0 −dΨ3 dΨ2

dΨ3 0 −dΨ1
−dΨ2 dΨ1 0

]
▶ Exponential coordinates: ε =

[
dΨ1 dΨ2 dΨ3

]T
∈ R3

▶ Exponential and logarithm mappings:

exp∧
SO(3)(ε) =

{
I3 + sin ∥ε∥

∥ε∥ [ε]× + 1−cos ∥ε∥
∥ε∥2 [ε]2× if ∥ε∥ > 0

I3 else
(24)

log∨
SO(3)(R) =

{
α

2 sin α
u if α ̸= 0

03 else
(25)

where α = arccos tr(R)−1
2 and [u]× = R − RT .
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Problem 1: Ball on SO(3) (left case)

Define R0 ∈ SO(3) a state attitude matrix.
We search for all attitude matrices for which the rotation norm is below a threshold.

SO(3) → R
f : X 7→ ∥ log∨

SO(3)(R
T
0 X)∥2. (26)

Euclidean equivalent function (by injecting X = R0 exp∧
SO(3) ε):

[f •
R0,0]([x ]) =

[{
εT ε

∣∣ ε ∈ [x ]
}]

. (27)

(the right case is identical)
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Problem 1: set inversion in the Lie group (left case) and with Euler angles

State uncertainty ± 500 mrad
Output uncertainty [0, 0.1] mrad2

State attitude R0 ψ = 1.0 rad, θ = π/2 rad, φ = 1.5 rad
SIVIA accuracy ϵ = 0.05

Lie algebra so(3) Euler angles
The code uses the codac library: Rohou, Simon, Desrochers, Benoit, et al. (2022). The Codac library – Constraint-programming for robotics.

http://codac.io.
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Problem 1: box contraction in the group (left case)

State uncertainty ± 500 mrad
Measurement uncertainty [0, 100] mrad2

State attitude R0 ψ = 1.0 rad, θ = π/2 rad, φ = 1.5 rad

Set inversion (SIVIA) Contractor (Forward-Backward)
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Problem 1: Monte-Carlo results (100 runs)

Results with SIVIA:
ϵ (rad) Framework time (ms) Vund Nboxes

SO(3) (left) 25 0.029 2,744.0
0.05 SO(3) (right) 25 0.029 2,744.0

R3 (Euler) 11,348 0.143 10,278.9

Results for the contractor:
Test case Framework time (ms) rcont rlost

SO(3) (left) ≪ 1 0.75 0.0
1 SO(3) (right) ≪ 1 0.75 0.0

R3 (Euler) 11 0.0 -

Criteria:
▶ CPU time (ms)
▶ Vund : Total volume of the

Euclidean undetermined
subpaving of SIVIA output.

▶ Nboxes : Total number of
boxes obtained by SIVIA
for the three output
subpavings.

▶ rcont : Contraction rate of
the contractor defined by
1 − V (C([x ]))/V ([x ]).

▶ rlost : Efficiency with
respect to the box hull [S]
of the solution set obtained
with SIVIA,
1 − V ([S])/V (C([x ])).
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Problem 1b: Another norm (left case)

Define R0 ∈ SO(3) a state attitude matrix. We search for all attitude matrices for
which the squared Frobenius norm is greater than a threshold.

SO(3) → R
f : X 7→ tr(RT

0 X). (28)

Euclidean equivalent function (by injecting X = R0 exp∧
SO(3) ε):

[f •
R0,0]([x ]) =

[{
1 + 2 cos ∥ε∥

∣∣ ε ∈ [x ]
}]

. (29)

(the right case is identical)
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Problem 1b: set inversion in the Lie group (left case) and with Euler angles

State uncertainty ± 500 mrad
Measurement uncertainty [2.9, 3.0]

State attitude R0 ψ = 1.0 rad, θ = π/2 rad, φ = 1.5 rad
SIVIA accuracy ϵ = 0.05

Lie algebra so(3) Euler angles
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Problem 1b: Monte-Carlo results (100 runs)

Results with SIVIA:
ϵ (rad) Framework time (ms) Vund Nboxes

SO(3) (left) 26 0.030 2,762.0
0.05 SO(3) (right) 26 0.030 2,762.0

R3 (Euler) 2,308 0.353 22,102.4

Results for the contractor:
Test case Framework time (ms) rcont rlost

SO(3) (left) ≪ 1 0.74 0.0
1b SO(3) (right) ≪ 1 0.74 0.0

R3 (Euler) 0.71 0.0 -

Criteria:
▶ CPU time (ms)
▶ Vund : Total volume of the

Euclidean undetermined
subpaving of SIVIA output.

▶ Nboxes : Total number of
boxes obtained by SIVIA
for the three output
subpavings.

▶ rcont : Contraction rate of
the contractor defined by
1 − V (C([x ]))/V ([x ]).

▶ rlost : Efficiency with
respect to the box hull [S]
of the solution set obtained
with SIVIA,
1 − V ([S])/V (C([x ])).

30/36 Nicolas Merlinge, DTIS/IGNC, 2024



Introduction Related work Intervals on Lie groups Test cases Conclusion

Problem 1b: what happens if we go into the surjective domain of exp∧
SO(3) ?

State uncertainty ± 3π
2 rad (truncated on dPSIy for readability)

Output uncertainty [1.5, 3.0]
State attitude µX ψ = 1.0 rad, θ = π/2 rad, φ = 1.5 rad
SIVIA accuracy ϵ = 0.2

Lie algebra so(3) Euler angles
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Problem 2: Magnetic field measurement for satellite attitude estimation.

Define a tri-axis magnetometer aboard a spacecraft: Magnetometers

SO(3) → R3

f : X 7→ XT B0
(30)

where B0 ∈ R3 is the local magnetic field model in a fixed Earth frame and X ∈ [X ] a
left or right Lie group box.

The equivalent Euclidean formulation is obtained by defining
X = R0 exp∧

SO(3) ε (left) and X = exp∧
SO(3) εR0 (right):

[f L
µX ,B̃

]([x ]) =
[{

exp∧
SO(3)(−ε)R

T
0 B0 − B̃

∣∣ ε ∈ [x ]
}]

[f R
µX ,B̃

]([x ]) =
[{

RT
0 exp∧

SO(3)(−ε)B0 − B̃
∣∣ ε ∈ [x ]

}]
.

(31)

For implementation purpose, the following Taylor expansion can be used for exp∧
SO(3)

(assumption: "small" angle errors):

exp∧
SO(3)(ε) = I3 + [ε]× +

1
2

[ε]2× + o([ε]2×) (32)
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Problem 2: set inversion in the Lie group (left case) and with Euler angles

State uncertainty ± 500 mrad
Measurement uncertainty ± 0.6 µT

State attitude µX ψ = 1.0 rad, θ = 0.5 rad, φ = 1.5 rad
SIVIA accuracy ϵ = 0.01

Lie group (SO(3) left) Euler angles
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Problem 2: Monte-Carlo results (100 runs)

Results with SIVIA:
ϵ
(rad) Framework time

(ms) Vund Nboxes

SO(3) (left) 378 4.74 10−4 8,339.2
0.01 SO(3) (right) 766 6.40 10−4 9,744.5

R3 (Euler) 1,467 10.1 10−4 12,459.3

Results for the contractor:
Test case Framework time (ms) rcont rlost

SO(3) (left) 1 0.61 0.78
2 SO(3) (right) 1 0.36 0.87

R3 (Euler) 1 0.37 0.84

Criteria:
▶ CPU time (ms)
▶ Vund : Total volume of the

Euclidean undetermined
subpaving of SIVIA output.

▶ Nboxes : Total number of
boxes obtained by SIVIA
for the three output
subpavings.

▶ rcont : Contraction rate of
the contractor defined by
1 − V (C([x ]))/V ([x ]).

▶ rlost : Efficiency with
respect to the box hull [S]
of the solution set obtained
with SIVIA,
1 − V ([S])/V (C([x ])).
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Conclusion and perspective

To conclude:
▶ Theoretical framework using the exp/log mappings to deal with interval analysis

when the inputs/outputs belong to Lie groups
▶ Interesting parametrization for bounded attitude estimation problems
▶ Left and right formulations are not equivalent

Perspectives:
▶ Dealing with cases where the search domain is outside the bijective domain of exp∧

G
▶ Tackling dynamical propagation of Lie group boxes
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Conclusion and perspective

Thank you !
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