

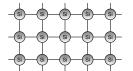
Computer-assisted existence proofs for one-dimensional Schrödinger-Poisson systems

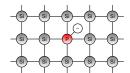
Jonathan Wunderlich July 26, 2018

Outline

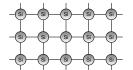
- Schrödinger-Poisson systems
- Theory of computer-assisted proofs
 - Existence and enclosure theorem
- Application to the one-dimensional Schrödinger-Poisson system
 - Approximate solution ũ
 - Defect bound δ
 - Norm bound for L⁻¹
 - Non-decreasing function g
 - Results

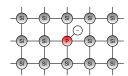
The three-dimensional time-dependent Schrödinger-Poisson system

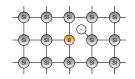




The three-dimensional time-dependent Schrödinger-Poisson system





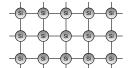


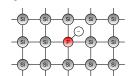
$$i\hbar\partial_t\psi=-rac{\hbar^2}{2m}\Delta\psi+W\psi$$

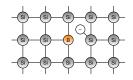
on
$$[0,\infty) \times \mathbb{R}^3$$

wavefunction ψ , mass m, Planck's constant \hbar

The three-dimensional time-dependent Schrödinger-Poisson system





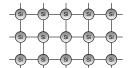


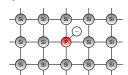
$$i\hbar\partial_t\psi=-rac{\hbar^2}{2m}\Delta\psi-qW_c\psi$$

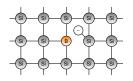
on
$$[0,\infty) \times \mathbb{R}^3$$

- wavefunction ψ , mass m, Planck's constant \hbar
- Coulomb potential W_c , elementary electric charge q

The three-dimensional time-dependent Schrödinger-Poisson system







$$i\hbar\partial_t\psi=-\frac{\hbar^2}{2m}\Delta\psi-qW_c\psi$$

on
$$[0, \infty) \times \mathbb{R}^3$$

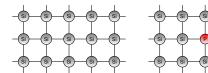
on $[0, \infty) \times \mathbb{R}^3$

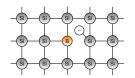
$$- \varepsilon \Delta W_{\rm c} = \rho$$

on
$$[0,\infty) \times \mathbb{R}^3$$

- wavefunction ψ , mass m, Planck's constant \hbar
- Coulomb potential W_c , elementary electric charge q
- dielectric constant ε , charge distribution ρ

The three-dimensional time-dependent Schrödinger-Poisson system

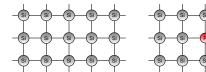


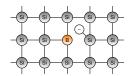


$$\begin{split} i\hbar\partial_t\psi &= -\frac{\hbar^2}{2m}\Delta\psi - qW_c\psi & \text{on } [0,\infty)\times\mathbb{R}^3 \\ &-\varepsilon\Delta W_c = \rho = -q|\psi|^2 & \text{on } [0,\infty)\times\mathbb{R}^3 \end{split}$$

- wavefunction ψ , mass m, Planck's constant \hbar
- lacktriangle Coulomb potential W_c , elementary electric charge q
- lacksquare dielectric constant arepsilon, charge distribution ho

The three-dimensional time-dependent Schrödinger-Poisson system





$$\begin{split} i\hbar\partial_t\psi &= -\frac{\hbar^2}{2m}\Delta\psi - qW_c\psi & \text{on } [0,\infty)\times\mathbb{R}^3 \\ -\varepsilon\Delta W_c &= \rho = -q|\psi|^2 & \text{on } [0,\infty)\times\mathbb{R}^3 \\ \lim \ W_c &= 0 \end{split}$$

- wavefunction ψ , mass m, Planck's constant \hbar
- Coulomb potential W_c, elementary electric charge q
- dielectric constant ε , charge distribution ρ

Goal:

Non-trivial solutions of the one-dimensional stationary Schrödinger-Poisson system

$$egin{aligned} -u'' + V_0 u + W_u u &= u^3 \ -W''_u + cW_u &= u^2 \ &\lim_{x o \pm \infty} \Phi_u &= 0 \end{aligned}
ight\} ext{ on } \mathbb{R}$$

- parameter c > 0
- constant external potential $V_0 > 0$

Using the Green's function Γ for -W'' + cW:

$$extbf{W}_u = \int_{\mathbb{R}} \Gamma(\cdot,t) u(t)^2 \, dt$$

Using the Green's function Γ for -W'' + cW:

$$W_{u} = \int_{\mathbb{R}} \Gamma(\cdot, t) u(t)^{2} dt$$

$$-u'' + \left(V_0 + \int_{\mathbb{R}} \Gamma(\cdot, t) u(t)^2 dt\right) u = u^3 \text{ on } \mathbb{R}$$
 (SPS)

Using the Green's function Γ for -W'' + cW:

$$W_u = \int_{\mathbb{R}} \Gamma(\cdot, t) u(t)^2 dt$$

$$-u^{\prime\prime}+\left(V_0+\int_{\mathbb{R}}\Gamma(\cdot,t)u(t)^2\,dt\right)u=u^3$$
 on \mathbb{R}

•
$$u \in H^1_{\mathcal{S}}(\mathbb{R}) := \{ u \in H^1(\mathbb{R}) : u(x) = u(-x) \ (x \in \mathbb{R}) \}$$

Using the Green's function Γ for -W'' + cW:

$$W_{u} = \int_{\mathbb{R}} \Gamma(\cdot, t) u(t)^{2} dt$$

$$-u^{\prime\prime}+\left(V_0+\int_{\mathbb{R}}\Gamma(\cdot,t)u(t)^2\,dt
ight)u=u^3 ext{ on } \mathbb{R}$$

- $u \in H^1_S(\mathbb{R}) := \{ u \in H^1(\mathbb{R}) : u(x) = u(-x) \ (x \in \mathbb{R}) \}$
- $\bullet \ \mathsf{H}_{\mathcal{S}}^{-1}(\mathbb{R}) := \left(\mathsf{H}_{\mathcal{S}}^{1}(\mathbb{R})\right)'$

Using the Green's function Γ for -W'' + cW:

$$W_u = \int_{\mathbb{R}} \Gamma(\cdot, t) u(t)^2 dt$$

$$-u'' + \left(V_0 + \int_{\mathbb{R}} \Gamma(\cdot, t) u(t)^2 dt\right) u = u^3 \text{ on } \mathbb{R}$$

- $u \in H^1_S(\mathbb{R}) := \{ u \in H^1(\mathbb{R}) : u(x) = u(-x) \ (x \in \mathbb{R}) \}$
- $\bullet \ \mathsf{H}_{\mathcal{S}}^{-1}(\mathbb{R}) := \left(\mathsf{H}_{\mathcal{S}}^{1}(\mathbb{R})\right)'$

Define $F \colon H^1_{\mathcal{S}}(\mathbb{R}) \to H^{-1}_{\mathcal{S}}(\mathbb{R})$ by

$$(Fu)[v] := \int_{\mathbb{R}} \left[u'v' + \left(V_0 + \int_{\mathbb{R}} \Gamma(\cdot, t) u(t)^2 dt \right) uv - u^3 v \right] dx$$

Define $F: H^1_S(\mathbb{R}) \to H^{-1}_S(\mathbb{R})$ by

$$(Fu)[v] := \int_{\mathbb{R}} \left[u'v' + \left(V_0 + \int_{\mathbb{R}} \Gamma(\cdot, t)u(t)^2 dt \right) uv - u^3v \right] dx$$

Thus:

$$u ext{ solves (SPS)} \Leftrightarrow Fu = 0$$

Define $F: H^1_S(\mathbb{R}) \to H^{-1}_S(\mathbb{R})$ by

$$(Fu)[v] := \int_{\mathbb{R}} \left[u'v' + \left(V_0 + \int_{\mathbb{R}} \Gamma(\cdot, t)u(t)^2 dt \right) uv - u^3v \right] dx$$

Thus:

$$u ext{ solves (SPS)} \Leftrightarrow Fu = 0$$

Let some approximate solution $\tilde{u} \in H^1_{\mathfrak{S}}(\mathbb{R})$ of Fu = 0 be computed (A0)

Define $F: H^1_S(\mathbb{R}) \to H^{-1}_S(\mathbb{R})$ by

$$(Fu)[v] := \int_{\mathbb{R}} \left[u'v' + \left(V_0 + \int_{\mathbb{R}} \Gamma(\cdot, t)u(t)^2 dt \right) uv - u^3v \right] dx$$

Thus:

$$u ext{ solves (SPS)} \Leftrightarrow Fu = 0$$

Let some approximate solution $\tilde{u} \in H^1_{\mathfrak{S}}(\mathbb{R})$ of Fu = 0 be computed (A0)

Linearization of F at \tilde{u} :

$$L \colon H^1_{\mathcal{S}}(\mathbb{R}) \to H^{-1}_{\mathcal{S}}(\mathbb{R}), \ L = F'\tilde{u}$$

Need constants $\delta \geq 0$, $K \geq 0$ and a non-decreasing function $g: [0, \infty) \to [0, \infty)$ satisfying:

Need constants $\delta \geq 0$, $K \geq 0$ and a non-decreasing function $g: [0, \infty) \to [0, \infty)$ satisfying:

■ Bound for the defect (residual) of \tilde{u} :

$$\|F\tilde{u}\|_{\mathsf{H}^{-1}} \le \delta \tag{A1}$$

Need constants $\delta \geq 0$, $K \geq 0$ and a non-decreasing function $g: [0, \infty) \to [0, \infty)$ satisfying:

■ Bound for the defect (residual) of \tilde{u} :

$$\|F\tilde{u}\|_{\mathsf{H}^{-1}} \le \delta \tag{A1}$$

Norm bound for L⁻¹:

$$||u||_{\mathsf{H}^{1}} \le K \, ||Lu||_{\mathsf{H}^{-1}} \quad (u \in \mathsf{H}^{1}_{\mathcal{S}}(\mathbb{R}))$$
 (A2)

Need constants $\delta \geq 0$, $K \geq 0$ and a non-decreasing function $g: [0, \infty) \to [0, \infty)$ satisfying:

■ Bound for the defect (residual) of \tilde{u} :

$$\|F\tilde{u}\|_{\mathsf{H}^{-1}} \le \delta \tag{A1}$$

Norm bound for L^{-1} :

$$||u||_{\mathsf{H}^{1}} \le K ||Lu||_{\mathsf{H}^{-1}} \quad (u \in \mathsf{H}^{1}_{\mathcal{S}}(\mathbb{R}))$$
 (A2)

$$\|F'(\tilde{u}+u) - F'\tilde{u}\|_{\mathcal{B}} \le g(\|u\|_{H^1}) \quad (u \in H^1_{\mathcal{S}}(\mathbb{R}))$$

(A3)

Theorem (Existence and enclosure theorem, see [4])

Let $\tilde{u} \in H^1_S(\mathbb{R})$ be an approximate solution of Fu = 0, i.e. of (SPS). Moreover let \tilde{u}, δ, K and $g: [0, \infty) \to [0, \infty)$ satisfy the assumptions (A1) - (A4).

Theorem (Existence and enclosure theorem, see [4])

Let $\tilde{u} \in H^1_S(\mathbb{R})$ be an approximate solution of Fu = 0, i.e. of (SPS). Moreover let \tilde{u}, δ, K and $g: [0, \infty) \to [0, \infty)$ satisfy the assumptions (A1) - (A4).

Suppose some $\alpha \geq 0$ exists, such that

$$\delta \leq \frac{\alpha}{K} - G(\alpha)$$
 and $K \cdot g(\alpha) < 1$,

where
$$G(s) = \int_0^s g(t) dt$$
.

Theorem (Existence and enclosure theorem, see [4])

Let $\tilde{u} \in H^1_S(\mathbb{R})$ be an approximate solution of Fu = 0, i.e. of (SPS). Moreover let \tilde{u}, δ, K and $g: [0, \infty) \to [0, \infty)$ satisfy the assumptions (A1) - (A4).

Suppose some $\alpha \geq 0$ exists, such that

$$\delta \leq \frac{\alpha}{K} - G(\alpha)$$
 and $K \cdot g(\alpha) < 1$,

where $G(s) = \int_0^s g(t) dt$.

Then there exists an exact solution $u^* \in H^1_S(\mathbb{R})$ of Fu = 0, satisfying the enclosure

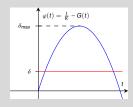
$$\left\|u^*-\tilde{u}\right\|_{\mathsf{H}^1}\leq\alpha.$$

Theorem (Existence and enclosure theorem, see [4])

Let $\tilde{u} \in H^1_S(\mathbb{R})$ be an approximate solution of Fu = 0, i.e. of (SPS). Moreover let \tilde{u}, δ, K and $g \colon [0, \infty) \to [0, \infty)$ satisfy the assumptions (A1) - (A4).

Suppose some $\alpha \geq 0$ exists, such that

$$\delta \leq \frac{\alpha}{K} - G(\alpha) \quad \text{ and } \\ K \cdot g(\alpha) < 1,$$



where
$$G(s) = \int_0^s g(t) dt$$
.

Then there exists an exact solution $u^* \in H^1_S(\mathbb{R})$ of Fu = 0, satisfying the enclosure

$$\left\|u^*-\tilde{u}\right\|_{\mathsf{H}^1}\leq\alpha.$$

(A0) Approximate solution \tilde{u}

Look for approximations in $V_{RM}^S = \text{span} \{ \varphi_{Rk}^S : 1 \le k \le M \} \subset H_S^1(\mathbb{R})$ with

$$\varphi_{R,k}^{S} = \begin{cases} \sin\left((2k-1)\pi\frac{x+R}{2R}\right), & |x| \leq R \\ 0, & |x| > R \end{cases}$$

(A0) Approximate solution \tilde{u}

Look for approximations in $V_{R,M}^S=\operatorname{span}\left\{ \varphi_{R,k}^S\colon 1\leq k\leq M\right\}\subset \operatorname{H}^1_S(\mathbb{R})$ with

$$\varphi_{R,k}^{S} = \begin{cases} sin\big((2k-1)\pi\frac{x+R}{2R}\big), & |x| \leq R \\ 0, & |x| > R \end{cases}$$

Define $F_p \colon \operatorname{H}^1_S(\mathbb{R}) o \operatorname{H}^{-1}_S(\mathbb{R})$ $(p \in [0,1])$ by

$$(F_{p}u)[v] = \int_{\mathbb{R}} \left[u'v' + \left(V_{0} + p \int_{\mathbb{R}} \Gamma(\cdot, t)u(t)^{2} dt \right) uv - u^{3}v \right] dx$$

(A0) Approximate solution \tilde{u}

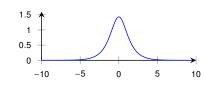
Look for approximations in $V_{R,M}^S=\operatorname{span}\left\{ \varphi_{R,k}^S\colon 1\leq k\leq M\right\}\subset \operatorname{H}^1_S(\mathbb{R})$ with

$$\varphi_{R,k}^{S} = \begin{cases} sin\big((2k-1)\pi\frac{x+R}{2R}\big), & |x| \leq R \\ 0, & |x| > R \end{cases}$$

Define $F_p \colon H^1_S(\mathbb{R}) \to H^{-1}_S(\mathbb{R}) \ (p \in [0, 1])$ by

$$(F_{\rho}u)[v] = \int_{\mathbb{R}} \left[u'v' + \left(V_0 + \rho \int_{\mathbb{R}} \Gamma(\cdot, t)u(t)^2 dt \right) uv - u^3 v \right] dx$$

Start Newton method with p=0 and $u=\frac{\sqrt{2V_0}}{\cosh(\sqrt{V_0}\cdot)}$



Need a verified $\delta \geq 0$ with

$$\|F\tilde{u}\|_{H^{-1}} \leq \delta$$

Need a verified $\delta \geq 0$ with

$$||F\tilde{u}||_{\mathsf{H}^{-1}} \leq \delta$$

Have:
$$\tilde{u}(x) = 0$$
 for $|x| > R$ and $\tilde{u}\big|_{[-R,R]} \in \mathrm{H}^2(-R,R)$

Jonathan Wunderlich - Computer-assisted existence proofs for one-dimensional Schrödinger-Poisson systems

SWIM 2018: 11th Summer Workshop on Interval Methods

Need a verified $\delta > 0$ with

$$||F\tilde{u}||_{\mathsf{H}^{-1}} \leq \delta$$

Have:
$$\tilde{u}(x) = 0$$
 for $|x| > R$ and $\tilde{u}|_{[-R,R]} \in H^2(-R,R)$

Thus for $\varphi \in H^1_{\mathfrak{S}}(\mathbb{R})$

$$(F\tilde{u})[\varphi] = \int_{-R}^{R} \left\{ \tilde{u}'\varphi' + \left[\left(V_0 + \int_{-R}^{R} \Gamma(\cdot, t) \tilde{u}(t)^2 dt \right) \tilde{u} - \tilde{u}^3 \right] \varphi \right\} dx$$

Need a verified $\delta > 0$ with

$$||F\tilde{u}||_{\mathsf{H}^{-1}} \leq \delta$$

Have:
$$\tilde{u}(x) = 0$$
 for $|x| > R$ and $\tilde{u}|_{[-R,R]} \in H^2(-R,R)$

Thus for $\varphi \in H^1_{\mathfrak{S}}(\mathbb{R})$

$$(F\tilde{u})[\varphi] = \tilde{u}'\varphi\Big|_{-R}^{R} + \int_{-R}^{R} \left[-\tilde{u}'' + \left(V_{0} + \int_{-R}^{R} \Gamma(\cdot, t)\tilde{u}(t)^{2} dt\right)\tilde{u} - \tilde{u}^{3} \right] \varphi dx$$

Need a verified $\delta \geq 0$ with

$$||F\tilde{u}||_{\mathsf{H}^{-1}} \leq \delta$$

Have:
$$\tilde{u}(x) = 0$$
 for $|x| > R$ and $\tilde{u}|_{[-R,R]} \in H^2(-R,R)$

Thus for $\varphi \in \mathrm{H}^1_{\mathcal{S}}(\mathbb{R})$

$$(F\tilde{u})[\varphi] = \tilde{u}'\varphi\Big|_{-R}^{R} + \int_{-R}^{R} \left[-\tilde{u}'' + \left(V_{0} + \int_{-R}^{R} \Gamma(\cdot, t)\tilde{u}(t)^{2} dt\right)\tilde{u} - \tilde{u}^{3} \right] \varphi dx$$

Verified computation:

- $|\tilde{u}'(R)| + |\tilde{u}'(-R)|$
- $\qquad \qquad \big\| \tilde{u}^{\prime\prime} + \Big(V_0 + \textstyle \int_{-R}^R \Gamma(\cdot,t) \tilde{u}(t)^2 \ \mathit{d}t \Big) \tilde{u} \tilde{u}^3 \big\|_{L^2(-R,R)}$

(A2) Norm bound for L^{-1}

Norm bound $K \ge 0$ for L^{-1} :

$$\|u\|_{\mathsf{H}^1} \leq K \|Lu\|_{\mathsf{H}^{-1}}$$

$$(u \in H^1_{\mathcal{S}}(\mathbb{R}))$$

(A2)

(A2) Norm bound for L^{-1}

Norm bound $K \ge 0$ for L^{-1} :

$$||u||_{\mathsf{H}^1} \le K||Lu||_{\mathsf{H}^{-1}} \qquad (u \in \mathsf{H}^1_S(\mathbb{R}))$$
 (A2)

Isometric isomorphism:

$$\Phi \colon \mathsf{H}^1_{\mathcal{S}}(\mathbb{R}) \to \mathsf{H}^{-1}_{\mathcal{S}}(\mathbb{R}), \ u \mapsto \langle u, \cdot \rangle_{\mathsf{H}^1}$$

Norm bound $K \ge 0$ for L^{-1} :

$$||u||_{\mathsf{H}^1} \le K||\Phi^{-1}Lu||_{\mathsf{H}^1} \qquad (u \in \mathsf{H}^1_S(\mathbb{R}))$$
 (A2)

Isometric isomorphism:

$$\Phi \colon \mathsf{H}^1_{\mathcal{S}}(\mathbb{R}) \to \mathsf{H}^{-1}_{\mathcal{S}}(\mathbb{R}), \ u \mapsto \langle u, \cdot \rangle_{\mathsf{H}^1}$$

Norm bound K > 0 for L^{-1} :

$$\|u\|_{H^1} \leq K \|\Phi^{-1}Lu\|_{H^1} \qquad \left(u \in H^1_S(\mathbb{R})\right) \tag{A2}$$

Isometric isomorphism:

$$\Phi \colon \mathsf{H}^1_{\mathcal{S}}(\mathbb{R}) \to \mathsf{H}^{-1}_{\mathcal{S}}(\mathbb{R}), \ u \mapsto \langle u, \cdot \rangle_{\mathsf{H}^1}$$

Spectral decomposition of $\Phi^{-1}L$ yields:

(A2) holds
$$\Leftrightarrow \gamma := \min\{|\lambda| : \lambda \in \sigma(\Phi^{-1}L)\} > 0$$

11

Norm bound $K \ge 0$ for L^{-1} :

$$\|u\|_{\mathsf{H}^1} \leq K \|\Phi^{-1}Lu\|_{\mathsf{H}^1} \qquad \left(u \in \mathsf{H}^1_{S}(\mathbb{R})\right) \tag{A2}$$

Isometric isomorphism:

$$\Phi \colon H^1_{\mathcal{S}}(\mathbb{R}) \to H^{-1}_{\mathcal{S}}(\mathbb{R}), \ u \mapsto \langle u, \cdot \rangle_{H^1}$$

Spectral decomposition of $\Phi^{-1}L$ yields:

(A2) holds
$$\Leftrightarrow \gamma := \min\{|\lambda| : \lambda \in \sigma(\Phi^{-1}L)\} > 0$$

Compute verified lower bounds:

- $\gamma_{\text{ev}} > 0$ for min{ $|\lambda|$: λ isolated eigenvalue of $\Phi^{-1}L$ }
- $\gamma_{\text{ess}} > 0$ for $\min\{|\lambda| : \lambda \in \sigma_{\text{ess}}(\Phi^{-1}L)\}$

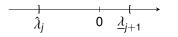
Eigenvalue bound γ_{ev} :

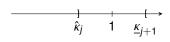
$$\Phi^{-1}Lu = \lambda u \underset{\kappa := \frac{1}{1-\lambda}}{\Leftrightarrow} \langle u, \varphi \rangle_{\mathsf{H}^1} = \kappa (\Phi u - Lu)[\varphi] \ (\varphi \in \mathsf{H}^1(\mathbb{R}))$$

12

Eigenvalue bound γ_{ev} :

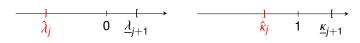
$$\Phi^{-1}Lu = \lambda u \underset{\kappa := \frac{1}{1-\lambda}}{\Leftrightarrow} \langle u, \varphi \rangle_{\mathsf{H}^1} = \kappa (\Phi u - Lu)[\varphi] \ (\varphi \in \mathsf{H}^1(\mathbb{R}))$$





Eigenvalue bound γ_{ev} :

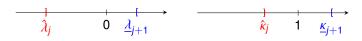
$$\Phi^{-1}Lu = \lambda u \underset{\kappa:=\frac{1}{1-\lambda}}{\Leftrightarrow} \langle u, \varphi \rangle_{\mathsf{H}^1} = \kappa (\Phi u - Lu)[\varphi] \ (\varphi \in \mathsf{H}^1(\mathbb{R}))$$



Upper eigenvalue bounds: Rayleigh-Ritz method

Eigenvalue bound γ_{ev} :

$$\Phi^{-1}Lu = \lambda u \underset{\kappa := \frac{1}{1-\lambda}}{\Leftrightarrow} \langle u, \varphi \rangle_{\mathsf{H}^1} = \kappa (\Phi u - Lu)[\varphi] \ (\varphi \in \mathsf{H}^1(\mathbb{R}))$$

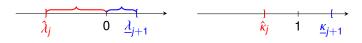


Upper eigenvalue bounds: Rayleigh-Ritz method

Lower eigenvalue bounds: Lehmann-Goerisch and homotopy method

Eigenvalue bound γ_{ev} :

$$\Phi^{-1}Lu = \lambda u \underset{\kappa:=\frac{1}{1-\lambda}}{\Leftrightarrow} \langle u, \varphi \rangle_{\mathsf{H}^1} = \kappa (\Phi u - Lu)[\varphi] \ (\varphi \in \mathsf{H}^1(\mathbb{R}))$$



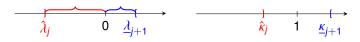
Upper eigenvalue bounds: Rayleigh-Ritz method

Lower eigenvalue bounds: Lehmann-Goerisch and homotopy method

Set
$$\gamma_{\text{ev}} = \min\{|\hat{\lambda}_{j}|, \underline{\lambda}_{j+1}\} = \min\{|1 - \frac{1}{\hat{\kappa}_{j}}|, 1 - \frac{1}{\underline{\kappa}_{j+1}}\}$$

Eigenvalue bound γ_{ev} :

$$\Phi^{-1}Lu = \lambda u \underset{\kappa:=\frac{1}{1-\lambda}}{\Leftrightarrow} \langle u, \varphi \rangle_{\mathsf{H}^1} = \kappa (\Phi u - Lu)[\varphi] \ (\varphi \in \mathsf{H}^1(\mathbb{R}))$$



Upper eigenvalue bounds: Rayleigh-Ritz method

Lower eigenvalue bounds: Lehmann-Goerisch and homotopy method

Set
$$\gamma_{\text{ev}} = \min\{|\hat{\lambda}_j|, \underline{\lambda}_{j+1}\} = \min\{|1 - \frac{1}{\hat{k}_j}|, 1 - \frac{1}{\underline{k}_{j+1}}\}$$

Choose

$$K = \frac{1}{\min\{\gamma_{\text{ev}}, \gamma_{\text{ess}}\}}$$

(A3)/(A4) Non-decreasing function g

Need a non-decreasing function $g: [0, \infty) \to [0, \infty)$ which satisfies

$$\|F'(\tilde{u}+u) - F'\tilde{u}\|_{\mathcal{B}} \le g(\|u\|_{H^1}) \quad (u \in H^1_{\mathcal{S}}(\mathbb{R}))$$
 (A3)

and
$$g(t) \rightarrow 0 \ (t \rightarrow 0^+)$$
 (A4)

(A3)/(A4) Non-decreasing function α

Need a non-decreasing function $g: [0, \infty) \to [0, \infty)$ which satisfies

$$\left| (F'(\tilde{u} + u)v - (F'\tilde{u})v)[\varphi] \right| \le g(\|u\|_{H^1}) \|v\|_{H^1} \|\varphi\|_{H^1} (u, v, \varphi \in H^1_S(\mathbb{R}))$$
 (A3)

and
$$g(t) \rightarrow 0 \ (t \rightarrow 0^+)$$
 (A4)

13

(A3)/(A4) Non-decreasing function g

Need a non-decreasing function $g: [0, \infty) \to [0, \infty)$ which satisfies

$$\left| \left(F'(\tilde{u} + u)v - (F'\tilde{u})v \right) [\varphi] \right| \le g(\|u\|_{\mathsf{H}^1}) \|v\|_{\mathsf{H}^1} \|\varphi\|_{\mathsf{H}^1} \ (u, v, \varphi \in \mathsf{H}^1_{\mathsf{S}}(\mathbb{R})) \ \ (\mathsf{A3})$$

and
$$g(t) \to 0 \ (t \to 0^+)$$
 (A4)

Set

$$g(t) = \frac{3t}{2\sigma^{\frac{3}{2}}} \left(2\|\tilde{u}\|_{\mathsf{H}^{1}} + t + \frac{1}{\sqrt{c}} \left(2\|\tilde{u}\|_{\mathsf{L}^{2}} + \frac{t}{\sqrt{\sigma}} \right) \right)$$

Results for the one-dimensional system

Proved a non-trivial solution in the following cases:

С	<i>V</i> ₀	σ	δ	K	α
30.0	1.0	2.133	3.085e-4	3.753	1.17e-3
40.0	1.0	1.973	3.154e-4	3.543	1.12e-3
50.0	1.0	1.866	3.174e-4	3.498	1.12e-3

References

- Alefeld, R.; Herzberger, J.: Einführung in die Intervallrechnung. Bibliographisches Institut (Reihe Informatik, Nr. 12), Mannheim, Wien, Zürich, 1974
- [2] Breuer, B.; Horák, J.; McKenna, P.; Plum, M.: A computer-assisted existence and multiplicity proof for travelling waves in a nonlinear supported beam. In: Journal of Differential Equations Vol. 224. Elsevier, 2006, p. 60-97
- [3] Markowich, P. Q.; Ringhofer, C. A.; Schmeiser, C.: Semiconductor equations. Springer, Wien, New York, 1990
- [4] Plum, M.: Existence and Multiplicity Proofs for Semilinear Elliptic Boundary Value Problems by Computer Assistance. In: Jahresbericht der DMV Vol. 110. Teubner, 2008, p. 19-54
- [5] Rump, S.: INTLAB INTerval LABoratory. In: CSENDES, T (ed.): Developments in Reliable Computing. Dordrecht: Kluwer Academic Publishers, 1999, p. 77-104. - http://www.ti3.tuhh.de/rump/
- [6] Weinstein, A.; Stenger, W.: Methodes of intermediate Problems for Eigenvalues. Academic Press, New York, London, 1972